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Abstract. This paper presents nine different visual patterns for a Collec-
tivePerception scenario as newbenchmarkproblems,which canbe used for
the future development of more efficient collective decision-making strate-
gies. The experiments using isomorphism and three of the well-studied col-
lective decision-making mechanisms are conducted to validate the perfor-
mance of the new scenarios. The results on a diverse set of problems show
that the real task difficulty lies not only in the quantity ratio of the features
in the environment but also in their distributions and the clustering levels.
Given this, two new metrics for the difficulty of the task are additionally
proposed and evaluated on the provided set of benchmarks.

Keywords: Collective decision making · Collective perception ·
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1 Introduction

In the past decade, researchers have shown an increased interest in the study of
self-organizing collective decision-making (further denoted as CDM) using multi-
agent and swarm robotics systems. There are two typical scenarios to test the
performance of such systems, Site Selection and Collective Perception [9,13].
However, unlike in optimization, there are no standard benchmark functions
(artificial landscapes) for these scenarios. In this paper, we intend to propose a
new set of benchmarks, particularly for Collective Perception, along with two
new metrics to quantify the difficulty of the task for more comprehensive vali-
dation and comparison of new CDM methodologies.

We focus on the Collective Perception [14], where the individuals move in
an environment with a certain pattern and make a collective decision about the
specific features derived from this pattern. In particular, in this paper, the final
collective decision has to be taken on which color is prevalent in the scene.

The Site Selection mechanisms [9] are slightly different. There, the individuals
start their movements from a certain region in the environment, the “nest”,
explore alternative sites for other opinions and go back to the “nest” to exchange
the new explored opinions with other individuals. Although the latter is mostly
observed in nature, i.e. the behaviour of honeybees and ants, multiple returns
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to the “nest” cost extra time and energy, which are ones of the most critical
limitations in the robotic systems. While in the collective perception s cenario
the agents are able to act and decide directly “on the fly” during the exploration
without going back to the starting point. Among possible applications are the
monitoring of the air and water quality, the concentration estimate of CO2 and
oxygen in the burning buildings, or the frequency evaluation of the scattered
natural resources in the hard-to-reach areas.

The most common benchmark scenario for collective perception is a ran-
domly generated 2D square grid, mostly equiprobably painted with two colors,
black and white [12,14]. In this paper, we aim to develop new benchmark prob-
lems representing various features which can be used as a baseline for further
validation of the CDM strategies. Our benchmark contains a set of nine different
patterns, taken from the matrix visualization literature [2–4]. Unlike the existing
Collective Perception scenario with random distribution of the features [8,14],
these visual patterns contain certain structural information, i.e. clustering, which
can cover a diverse representation of various real-world scenarios. In order to val-
idate the proposed benchmarks, we investigate the influence of different feature
distributions on the performance of the existing CDM methods, which are pri-
marily used in the current state-of-the-art [13], the majority rule (DMMD), the
voter model (DMVD) and the direct comparison (DC).

In order to verify how general is the proposed benchmarking approach, we
refer to the recent study [1], which has shown a positive impact of a special kind
transformation in the environment, namely isomorphism, on the CDM perfor-
mance. Different from [1], here, we use isomorphism to prove that the color-ratio
difficulty, mostly examined in the previous research, is an intrinsic property of
a certain CDM strategy, while the clustering level of the features is the actual
difficulty of the task. To support this claim, we introduce two new metrics to
specify the task difficulty for the CDM and perform the analysis of the proposed
benchmarks based on them.

The paper is organized as follows. In Sect. 2, we provide the related work on
collective perception. Afterwards, we describe new task difficulty metrics along
with the multi-agent simulation in Sect. 3. Section 4 presents the evaluation of the
obtained results and the paper is concluded in Sect. 5 including some discussion.

2 Related Work

The Collective Perception scenario was originally introduced in 2010 by Morlino
et al. [8], who studied how a swarm of robots can collectively encode the den-
sity of black spots on the ground using flashing signals. In [14], Valentini et al.
compared the performance of several CDM strategies in the context of Collec-
tive Perception, considering two black-and-white static grid setups: the easiest
one with the proportion of the prevailing color closely twice of another, and
the most difficult one, characterized by almost equal color ratio. Later, Strobel
et al. in [12] tested the same CDM approaches on more percentage variations. In
[6], Ebert et al. investigated for the first time a 3-feature case and demonstrated



Benchmarking Collective Perception: New Task Difficulty Metrics 701

a new decentralized decision-making algorithm with a dynamic task allocation
strategy to classify a 3-colored grid. Prasetyo et al. in [10] has considered an
application of a CDM to the dynamic Site Selection problem, where the qual-
ity of two sites is changing over time. Recently, Valentini has also published
a book [13] about the design and analysis of CDM strategies for the best-of-n
problems. However, in the application part, attention mainly for n = 2 is paid.
So far, all the research in this area has studied either the quality or the total
amount of the features in the environment (i.e. global information), as a measure
for the task difficulty, ignoring their actual distributions.

3 Methodology

For the generation of benchmark environments, we refer to the matrix visual-
ization literature [2–4] and consider nine of the most important visual patterns,
which can be observed in visual matrices (see the top of Fig. 2). In order to
prevent the attachment of the further simulation results to the concrete config-
uration, for each type of the pattern and the color-ratio, a random environment
with the same visual structure as the whole class corresponding to this pattern is
generated. For some color ratios (e.g. 48% black and 52% white, see top Fig. 2),
the patterns may contain some artifacts, due to the insufficient amount of avail-
able cells to shape the pattern. That is, random black cells placed out of the
pattern or, vice a verse, white cells disrupting the pattern can be observed.

3.1 Pattern Metrics

In order to classify the considered patterns, we propose the following metrics:

– Entropy (Ec): It measures the density of the clusters in pattern P .

To calculate Ec, we need to detect clusters Ci in P . Without loss of gener-
ality, we assume that black color determines the pattern and, hence, clustering.
Therefore, let |Ci| denotes the number of black cells that belong to the cluster
Ci and Nbl is the total number of black cells in P . Then, the metric Ec is defined
as follows:

Ec =
Hmax

c − Hc

Hmax
c

(1)

Hc = −
M∑

i=1

|Ci|
Nbl

log2
|Ci|
Nbl

(2)

Hmax
c = −

∑

Nbl

1
Nbl

log2
1

Nbl
, (3)

where M is the number of clusters, Hmax
c is the maximum entropy. The value

of Ec increases with decreasing number of clusters (Ec → 1 is ordered, Ec → 0
is random). However, the value of Ec does not characterize how this cluster (or
clusters) looks like, i.e. is it compact (e.g. as a “block”) or more sparse (e.g. as
a “chain”). To address this issue, we also consider the following metric:
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– Moran Index (MI): It estimates the level of connectivity between clusters (if
any) in pattern P .

In our case, MI is calculated as the correlation of the colors between adjacent
cells ci and cj in P , where N is the total number of cells:

MI =
N

∑N
ij wij

·
∑N

ij wij(ci − c̄)(cj − c̄)
∑N

i (ci − c̄)2
. (4)

The value of ci is equal to 1 if it is black, and 0 if it is white; c̄ is the mean
of all cell values in P and c̄ = Nbl/N . The values of wij , wij = wji, define the
the degree of spatial closeness of the cells ci and cj , i.e. wij = 1 if the cells
ci and cj have a common side, i.e. placed as ←→←→ (where ←→←→ shows which cells
neighbour a central one), otherwise wij = 0. The more ←→←→ -connected black cells
are in a pattern, the closer the value of MI is to 1. When colors tend to be
more randomly distributed, then MI → 0 (i.e. random pattern gives MI = 0).
Alternation of white and black (like in a chessboard) brings MI → −1.
– Color Ratio: It describes the “task difficulty” from [12,13].

It is calculated as ρ∗
b = Nbl

Nwh
, ρ∗

b ∈ [0, 1], taking into account that Nwh > Nbl.
The more visible is the difference between the amount of colors, the lower is the
value of ρ∗

b (e.g. 34%−66%, ρ∗
b ≈ 0.52). As soon as the proportions of the colors

are coming closer to each other, ρ∗
b → 1 (e.g. 48% − 52%, ρ∗

b ≈ 0.92).

3.2 Multi-agent Simulation

To conduct the experiments, we implement a multi-agent simulation along with
nine pattern generators in MatlabR2017a. The environment is defined by a
square grid of 20 × 20 cells, 1 × 1 unit each, painted over in black and white.
Without loss of generality, we consider that in all the considered environments
the white color is prevailing. As in the previous research [12], we consider 100
iterations in simulation as 1 s, and we plot the simulation environment each 10
iterations (i.e. 0.1 s). We use a swarm of 20 agents, initially assigned with half
for opinion white and half for black, keeping the other agents parameters similar
to Valentini et al.’s work [15]. Each agent can be in one of the two alternating
states: (1) exploration, where it moves and only estimates the quality of its cur-
rent opinion, or (2) dissemination, when it moves and only exchanges its own
opinion with the others. At the end of the state (2), it makes a decision on either
to keep or to switch its current opinion. The communication between agents is
set only pairwise for each 0.1 s in a random order within the distance of 5 units
and only if both of them are in states (2). Each agent logs the opinions of its
neighbors during the last 0.3 s of its (2) state and takes the last 2 opinions to
decide based on one of the mentioned in Sect. 1 decision-making strategies (fur-
ther denoted as DMs). Two metrics, Exit probability (EN ) and Consensus time
(T correct

N ), are used to evaluate the performance of DMs. EN measures the ratio
of successful runs among all simulations. The simulation is considered success-
ful, if the collective reached consensus on the correct option. T correct

N defines the
number of iterations until all the individuals come up with the same opinion.
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4 Experimental Study

4.1 Pattern Characteristics

In order to determine how the patterns quantitatively differ from each other,
we evaluate the mean values and the standard deviations of Entropy and Moran
Index over 100 generations of each pattern (see Fig. 1-left). According to the pre-
liminary calculations, the metrics’ values mainly differ only within a pattern type
and are not affected by the change of the color ratio (as intended). The Kruskal-
Wallis ANOVA analysis of MI values reveals that there is a significant difference
(p < 0.01) between all the grid-patterns, except for “Off-diagonal” and “Block”.
Referring to the same analysis of the Ec values, we group the patterns corre-
spondingly to their non-significant differences with the others (see Fig. 1): (1)
“Off-diagonal” and “Block” (in blue); (2) “Stripe” and “Band-Random-Width”
(in green); (3) “Band-Stripe”, “Bandwidth” and “Star” (in red). Therefore, pat-
terns belonging to the same group have a non-significant difference (p > 0.01) in
distributions of their Ec values. However, all of them are significantly different
(p < 0.01) according to their Moran indexes, except of the first group. “Band”
and “Random” do not belong to any of the formed groups and are significantly
different (p < 0.01) from all the others in both parameters. We expect similar
results in the CDMs performance on the patterns within the same group.

4.2 Experiment I - Influence of the Patterns

The goal of the first experiment is to show the influence of different pattern con-
figurations and their respective color ratios on the performance trend of CDMs.
We perform 40 simulation runs with maximum 400 s each. That is, if the swarm
was not able to reach the consensus during these 400 s or came to the wrong deci-
sion before the time expired, the simulation is stopped and the run is considered
as unsuccessful.

Figure 2 shows the mean consensus time calculated only among successful
runs and the exit probability obtained on nine different patterns for the three
tested CDMs within eight variants of color ratio. The curves are created by local
regression over boxplots (not reported here) with shading areas of 95% confidence
interval.The DMVD strategy shows rather stable results for all “difficulties” (ρ∗

b)
in both T correct

N and EN on all the patterns (except for P5-Stripe), while the
performance of DMMD and DC differs among the patterns. However, the exit
probability of DMVD for the most of the patterns (i.e. P3-P9) is mainly observed
by the chance level. P1-Random does not have any structure and was primarily
the focus of the previous studies. We also obtained here the similar trend for the
CDMs as in [12].
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Fig. 1. Scatter diagram of the statistics for patterns characteristics (means (points) and
standard deviations (bars)) “before” (left) and “after” applying isomorphism (right).
Colors indicate the belonging to one and the same group. (Color figure online)

Fig. 2. Consensus time (T correct
N ) and exit probability (EN ) over eight types of the task

difficulty ρ∗
b for each of nine patterns (top row). Dashed (red), solid (green) and dot-

dashed (blue) lines correspond to the DMVD, DMMD and DC strategies respectively.
(Color figure online)

Patterns P4-Star (performed by horizontal and vertical lines) and P6-Band
(by diagonals of the upper and lower triangles) show similar results to P1-
Random in T correct

N for all three CDM strategies. In addition, we obtain here
the lowest value of consensus time for DMMD among all the other considered
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patterns and DMs (of around 40 s), which is slightly increasing for higher ρ∗
b .

Nevertheless, the T correct
N performance of DC strategy on P4 and P6 is worse

than on P1, increasing in T correct
N and rapidly decreasing in EN after ρ∗

b ≈ 0.72.
The EN result for DMMD is similar and reaches the chance level by ρ∗

b ≈ 0.92.
The considered patterns, i.e. P1, P4 and P6, are characterized by MI < 0.5 and
different values of Ec.

P8-Bandwidth (visual rhombus-like enclosure with fixed width around the
main diagonal, MI = 0.572±0.029, Ec = 0.866±0.06) is “the second best” pat-
tern after P1, P4 and P6, where DMMD is still one of the fastest strategies among
the others with “ups and downs” in the performance between ρ∗

b = [0.61, 0.79]
and ρ∗

b = (0.79, 0.92] respectively. DC, here, is characterized by the linear growth
in T correct

N with increasing ρ∗
b . For ρ∗

b ≈ 0.92 the DMs strategies perform actu-
ally the same (even with equal exit probabilities), while for other ρ∗

b the EN

resembles the similar trend as in P1 for all DMs.
In patterns P9-Bandwidth-Rand (the same as P8 but with random width,

MI = 0.698 ± 0.046, Ec = 0.98 ± 0.048) and P7-Band-Stripe (the same as P6
but lines are clustered, MI = 0.633±0.122, Ec = 0.861±0.041), there is no single
DM strategy which is better than the other one in terms of consensus time (DC
even shows the highest T correct

N in P7 with the linearly decreasing EN , getting
lower than the chance level for ρ∗

b > 0.79). On P9, the EN trend of DMMD and
DC is similar.

P2-Block and P3-Off-diagonal (for both MI ≈ 0.8, Ec ≈ 0.9) are character-
ized by similar visual structures with the difference that in P3 there are only two
rectangular coherent areas in the corners of off-diagonal, while in P2 the blocks
must cover the whole main diagonal and only for higher ρ∗

b some possible blocks
are added in the off-corners. The performance of DMMD strategy here is worse
than DMVD and is not significantly better than DC for all ρ∗

b . In P3, DMMD
and DC have higher T correct

N than in P2 along with non significantly different
exit probabilities, which are lower than in P2, and both are characterized by
the rapid decline to the chance level, which does not significantly change after
ρ∗
b > 0.72.

Fig. 3. The heatmaps of p-values (i.e. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001) according to the
Mann-Whitney U-test indicating a statistically significant difference in the performance
between DMs on each pattern. The lower triangular (LT) part of the matrix corresponds
to the results “before” a nd the upper to the “after” applying isomorphism (top row:
ρ∗
b ≈ 0.52; bottom row: ρ∗

b ≈ 0.92).
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Fig. 4. The heatmaps of significance levels according to the Mann-Whitney U-test for
the difference in the performance of the DMs within the patterns (on the left) and on
one DM strategy with itself between the highest and the lowest values of ρ∗

b on each
pattern (on the right). Left: The lower (LT) and the upper triangular (UT) parts of
the matrix correspond to the results “before” and “after” isomorphic changes (top row:
ρ∗
b ≈ 0.52; bottom row: ρ∗

b ≈ 0.92). The diagonal elements show how the performance
of a certain DM strategy on one pattern changes after applying isomorphism. The size
of the circles reflects the same value as the color intensity.

P5-Stripe (clustered vertical/horizontal lines, MI = 0.827 ± 0.051, Ec → 1)
is a notable exception among the other patterns. The performance of DMVD
strategy here is the best one among the others in both T correct

N and EN with a
slight decreasing of consensus time for higher ρ∗

b , followed by DMMD, while DC
shows its the worst performance. The DC strategy completely fails for ρ∗

b > 0.79
(with EN → 0) and is characterized by the high variability for lower ρ∗

b with the
lowest EN than the other DMs. However, the exit probability for both DMMD
and DC strategies here is less than by the chance.

Discussion. The obtained results confirm our initial claim that the real task
difficulty lies not in the amount of prevailing feature (i.e. ρ∗

b) but in the distri-
bution of the features. Our analysis shows that in the patterns with low density
of clustering (MI � 0.6 and Ec < 0.8: P1, P4, P6, P8) the DMMD performs
the best, while for the patterns with higher clusterization (0.6 < MI � 0.8 and
Ec → 1: P2, P3, P5, P7, P9) the DMMD performance significantly drops. P5
is the hardest pattern among all of the others (MI > 0.8, Ec → 1), where the
DMMD has the highest time with the lowest probability of reaching the con-
sensus. The DC strategy shows mostly similar consensus time as DMMD within
the patterns and the color-ratios but with higher variability and more rapidly
decrease in the exit probability at higher ρ∗

b than the DMMD (in P4, P5, P7 and
P9). It also completely fails in P5 (after ρ∗

b > 0.79). The results obtained by the
DMVD in all of the considered patterns are mostly due to the chance. Figures 5
and 6 (both left) support the above conclusions.
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4.3 Experiment II - Isomorphic Patterns

In order to evaluate the generalizability of the proposed benchmarks, in the
second experiment, we use isomorphic transformations, firstly considered in [1].
Such transformations allow us easily to construct a large variety of structurally
identical objects at the global level (i.e. environments with similar connectivity
interactions and sharing the same amount of features). There, the grid of black-
and-white cells is identified with a certain undirected graph via its incidence
matrix [1], resembling the corresponding pattern with ‘0’s and ‘1’s instead of
white and black colors. To construct an isomorphic environment to the given,
we multiply an incidence matrix of the current environment, M ∈ Z

k×k
2 , on two

random permutation matrices, P,Q ∈ Z
k×k
2 , as follows: M ′ = PMQ. Doing by

this, we aim to investigate the performance of CDM even on a more diverse set
of benchmark problems. In the following, we fix two extreme color ratios (the
easiest and the hardest ones), namely ρ∗

b ≈ 0.52 and ρ∗
b ≈ 0.92, and study the

influence of isomorphism on the consensus time and the exit probability within
various patterns using different CDMs. Additionally, we also investigate how the
isomorphic changes differ between the patterns.

The results show a clear difference in the performance of the CDM strategies
in both metrics, T correct

N and EN , before (Figs. 5 and 6-left) and after apply-
ing the isomorphism on the patterns (Figs. 5 and 6-right). The comparison is
supported by Figs. 3 and 4 showing the levels of significant difference in the
consensus time between the DMs, patterns and color-ratios, according to the
Mann-Whitney U-test. From the data in Fig. 4, we can see that the DMVD
strategy has no significant difference on its performance either within the pat-
terns “before” or “after” the isomorphic changes nor within the “difficulties”.
Along with Figs. 5 and 6, one can claim that it completely relies on a random
chance. For the DMMD and DC strategies the picture is different. The DMMD
and DC performances are significantly improved on isomorphic patterns with
respect to the initial ones (see the diagonal elements in Fig. 4-left), and are
characterized by a decrease in the consensus time and increase in the exit proba-
bility for both considered “difficulties” (Figs. 5 and 6). While the T correct

N values,
obtained on the patterns before the transformation, mostly significantly differ
between each other (see the LT-parts in Fig. 4), after transformations the differ-
ences in T correct

N within the patterns disappear (especially for ρ∗
b ≈ 0.92, see the

UT-parts in Fig. 4). However, for ρ∗
b ≈ 0.52, P4-Star and P5-Stripe indicate

a statistically significant increment in T correct
N among the other “after”-patterns

but both are not statistically different between each other for both DMMD and
DC (see P4-P5 columns and rows of the UT-parts in Fig. 4-left). Interestingly,
the DMs strategies indicate a significantly different performance in the consen-
sus time with each other on all “after”-patterns (except P5, where only DMVD
and DC differ with p < 0.05) for ρ∗

b ≈ 0.52 (see the UT-parts in the top row of
Fig. 3). But this is not true for the “before” case (see the top row, the LT-parts
in Fig. 3): there is even no significant differences between the DMMD and the
DC on all the patterns (except P1). For ρ∗

b ≈ 0.92 (see the bottom row, UT-parts
in Fig. 3), the differences within all the DMs strategies on “after”- P2, P4-Star,
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Fig. 5. Comparison of consensus time (T correct
N ) and exit probability (EN ) within pat-

terns “before” (left) and “after” applying isomorphism (right) for the “task difficulty”
of ρ∗

b ≈ 0.52. The curves are fitted via local regression with shading areas representing
95% confidence interval.
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Fig. 6. The same comparison as in Fig. 5 but for the “task difficulty” of ρ∗
b ≈ 0.92.

P5-Stripe and P8 are non-significant, and even on the other patterns there is
no significant difference in the DMMD and the DC performance. However, the
consensus time of the strategies itself has significantly decreased after isomor-
phism. In summary, the DC strategy yields the best performance on isomorphic
patterns, followed by the DMMD and then the DMVD, regardless of the color
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ratios. The analysis in Fig. 4-right shows that the isomorphic transformations do
not considerably change the influence of the ρ∗

b -“difficulty” on the DMs. That
is, the DMMD is significantly worsening on one and the same “before”- and
“after”-patterns (i.e. P1-P3 and P8), while for DC this holds for all “before”-
(except P2, P6 and P7) and “after”-patterns (except P5 and P9).

Discussion. Although an isomorphism preserves the global structure of the
environment, the characteristics of the patterns with high density of clustering
after applying isomorphic mappings have changed. From the data in Fig. 1, we
can see that almost all “after”-patterns are characterized by Ec ∈ [0.7, 0.8] and
significantly decreased MI values (i.e. MI ≈ 0), except for P3-Off-diagonal,
P4-Star and P5-Stripe, where MI ∈ [0.2, 0.5]. Interestingly, exactly on these
exceptions for both ρ∗

b (the easiest and the hardest) the analysis illustrates a
significant increase in T correct

N w.r.t. other patterns. These findings support the
results of our first experiment, indicating that the higher density of clustering
significantly degrades the performance of CDM. To sum up, the difference in the
performance of a certain CDM approach vanishes on isomorphic patterns and
narrows to its intrinsic properties, thereby underlining the generalization and
necessity of the proposed benchmarks.

5 Discussion and Conclusion

In this paper, we extended a Collective Perception scenario, used in the swarm
robotics research, with nine different patterns to test the generalizability of the
existing collective decision-making strategies and to promote the future develop-
ment of the new ones. Previous research examined only a single and the easiest
example of the environment, considering the proportion of the features as a “task
difficulty” for decision makers. However, our benchmark study reveals that the
“difficulty” connected with the ratio of the colors (i.e. global information) is
mainly related to the intrinsic property of a certain CDM method, while the dis-
tribution of the features in the environment (i.e. local information) is the actual
difficulty of the task. In this scope, we also proposed and examined two new met-
rics that have shown to be a good choice to define the difficulty and to predict
the behavior of the CDM. Experiments on isomorphic test problems were also
conducted to support the study. Isomorphism has been already proven to be an
effective tool to design a diverse set of digital cognitive games [11]. Similar, in
this work, we used isomorphism to diversify the set of the benchmarks. At the
same time, our results fully support the previous research [1] on a bigger set of
problems, where isomorphic changes in the environment result in the speed up of
CDM. From this side, a collective perception is considered as a cognitive activity
mediated in human brains. There, isomorphism is described as the brain moving
objects in order to facilitate a decision-making process. While for humans it is
more relevant to mentally re-order the objects to enhance the problem solving [5]
(e.g. to figure out the prevailing color), to make direct changes in the real envi-
ronment with acting swarm of robots seems to be problematic. However, if the
agents will be able to build individually or collectively a cognitive map of the
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environment during the exploration process (i.e. latent learning [7]), isomorphic
transformations can be used inside their “inner world” [16] to assist a CDM,
without the need to be adapted to the specific scenario.
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