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Abstract. This paper investigates the influence of the preferences of
individuals on the process of collective perception in the collective
decision-making systems. To do this, the Ising model from the context of
Social Impact Theory is studied on a dynamic network of agents within
an environment. This model additionally considers the mechanisms of
the direct modulation of positive feedback. We propose learning rules for
updating the preferences. Such rules depend on the undertaken decisions
of the individuals. The experiments are evaluated on the best-of-2 collec-
tive perception problem and compared with the state-of-the-art voting
mechanisms such as majority and voter models. The results show that
assigning preferences to the agents allows a designer to take control over
the outcome of the collective decision-making process. In addition, the
agents with a right conjecture can faster reach the correct conclusion
even if only 20% of the initial population holds the target opinion.

Keywords: Ising model · Collective decision making ·
Collective perception · Social impact theory

1 Introduction

The Ising model is a well-known model in statistical physics to study ferro-
magnetism, the property of a material to exhibit spontaneous aligned magnetic
moments. Due to the emerging dynamics, it can be also used as a tool to study
collective behaviors connected with opinion formation like consensus decision-
making. The Ising model is always assumed to perform on a static network,
where each agent keeps its neighbors. However, many natural collective decision-
making systems (e.g. ant colonies, bird flocks) form dynamic networks, where
the individuals move, change their local neighbors, and actively interact with
each other and with the environment. The main goal of this paper is to investi-
gate a variation of the Ising model as a potential voting mechanism in collective
decision-making systems.

In recent years, there has been a surge of interest in the research on designing
and validating collective decision-making approaches using robot swarms. Artifi-
cial systems make the study easier than dealing with natural collectives, giving a
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designer the possibility to focus on a particular decision-making phase excluding
the others. Previous studies [9,11] have mainly focused on the voting mecha-
nisms, especially the majority voting and the voter models. However, mostly
one voting algorithm is assumed to be selected at the beginning by the designer
and it is assigned to all the individuals, and remains unchanged throughout the
whole decision-making process.

In this work, we aim to provide the individuals the capability to switch
between different voting mechanisms based on their current preferences. To do
this, we examine a family of nonlinear voter models with Ising-like criticality [5]
and couple it with the direct modulation of positive feedback [11] on a dynamic
network of agents, where each individual exerts a bias regarding a certain out-
come. As the benchmark scenario, we consider collective perception [11], where
a swarm of agents explores a certain environment on the availability of par-
ticular resources (features) and has to determine which is an abundant one.
Although the local interactions here are different from [5], since they are modu-
lated by internal (direct modulation) and external factors (changing interactions
with others), we expect to get an adaptive collective decision-making mechanism
according to [1,10]. In addition, we also study how incorporation of a learning
procedure affects the decision process and enhances the model with the prefer-
ence update rules, which allow the agents to change their preferences over time
depending on the taken decisions.

In the remaining part of the paper, we draw the parallel between the Ising
model and the social impact theory along with some corresponding background.
Based on that, we then describe the considered voting mechanism together with
learning update rules. Afterwards, we provide the description of the multi-agent
simulation and the undertaken experiments. The results from the experiments
are discussed and analyzed, and, finally, the conclusion provides a brief summary,
highlighting the further research direction.

2 Related Work

2.1 Ising Model

In its original formulation, the Ising model is defined on a d-dimensional lattice,
i.e. Zd ⊆ R

d, with all coordinates as integer numbers. Let’s consider the finite
lattice ΛL ⊂ Z

d of size L:

ΛL = {(i1, i2, ..., id) : |ij | ≤ L, j = 1, 2, ..., d},

where i is a site in the lattice. One usually wants to work with the full infinite
lattice L → ∞. Each site has a discrete variable σi, which is called spin, and
can take only two values σi = +1 (spin pointed “up”) or σi = −1 (spin pointed
“down”). A spin configuration σ describes an assignment of a spin value σi to
each lattice site i ∈ ΛL, i.e. σ = {σi}i∈ΛL

. The total energy of the configuration
σ, defines the Ising model and is calculated using its Hamiltonian:

H(σ) = −
∑

〈ij〉
wijσiσj − h

∑

i

σi, (1)
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where 〈ij〉 denotes a pair of sites in a finite ΛL with Euclidean distance of
1: 〈ij〉 = {i, j ∈ ΛL : |i − j| = 1}. The parameter coefficient wij indicates the
interaction between two spins σi and σj , where |wij | is the strength of interaction,
and h is an external magnetic field (if any). We consider the Ising model without
an external field, therefore h = 0:

H(σ) = −
∑

〈ij〉
wijσiσj . (2)

The probability that the system is in a state with configuration σ is called the
configuration probability μL(σ):

μL(σ) = exp(−βH(σ))/
∑

σ

exp(−βH(σ)), (3)

where β = 1/kT with the temperature T and Boltzmann constant k. The denom-
inator is defined by the sum over all possible 2L spin configurations on a finite
lattice ΛL. To simulate the Ising model, the single-spin-flip dynamics are estab-
lished as follows: (1) In the current configuration σ, select a random spin with
probability 1/L and flip its value (2) calculate the energy H(σ′) of a new configu-
ration σ′ (3) if H(σ′) < H(σ) accept the flip, else accept it only with probability
exp(−β(H(σ′)−H(σ)) (4) repeat the process until all the spins become aligned,
i.e. the lattice becomes ferromagnetic. It is stated that the system converges in
d ≥ 2. To quantify the level of magnetization, one can calculate the average
value of all the spins: M(σ) = (1/L)

∑L
i=1 σi. Although the system dynamics

are studied in the thermodynamic limit (L → ∞), Peierls [2] has shown that
spontaneous magnetization already occurs in a relative small lattices but with
the smoothed singularities due to the finite size.

2.2 Social Impact Theory

Theory of social impact is based on psychosocial laws and describes how indi-
viduals are affected by their social environment [8]. It is defined by microlevel
rules (i.e. in individual level) expressed for each individual i via social force field
Ii, which depends on the total number of individuals in the group N , strength
of their assertiveness si, and either spatial or abstract (e.g. personal relations)
distance between its members dij . Therefore, the social impact is considered as
a multiplicative function of the described above parameters: I = f(N · s · d).

The impact of a group with N members on the i-th individual, Ii, is calcu-
lated as follows:

Ii =
[ N∑

j=1

pij

dα
ij

(1 − σiσj)
]

−
[ N∑

j=1

sij

dα
ij

(1 + σiσj)
]
, (4)

σi ∈ {−1,+1} is the binary opinion (e.g. yes/no) of the individual i; α ≥ 0
indicates the speed of the distance influence decline with the increase of the
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distance dij between the individuals. Parameter sij ≥ 0 corresponds to the so-
called supportiveness, i.e. the ability to support someone to keep the opinion and
pij ≥ 0 indicates the so-called persuasiveness, the ability to convince someone
to change his opinion. Nowak and Latane [8] re-assign these parameters to some
positive random values every time an individual has changed his opinion. In case,
β = 0 and we have no noise in the system, the opinion σi changes for Ii > 0, and
remains the same for Ii < 0: σi(t + 1) = −σi(t)sgn(Ii(t)). For β > 0 (noise in
the system), the probability to switch the opinion is proportional to exp(βIi(t)).

As the result of using the above operations, a collective behavior such as
polarization or fragmentation [6], can be observed on the macro-level, depending
on the initial conditions. Both the social impact theory and the Ising model
consider that the agents do not move in a physical space and evaluate them
on a cellular automata. In comparison to statistical physics, a finite number of
individuals brings difficulties into the analysis of the sociophysical models [3],
since the singular behavior (i.e. order-disorder phase transition) can emerge only
in the thermodynamic limit of the system (N → ∞).

3 Proposed Model and Learning Process

Similar to the Ising model, we consider a swarm of N interacting individuals
(instead of sites in the lattice, we take individuals), which move in a search space
and explore for certain features (Fig. 1). The goal of the swarm is to collectively
find the most occurring feature in the environment. In this work, we concentrate
on the estimation of two environmental features, so that each individual holds
its own opinion, σi = ±1, similar to the “up” and “down” spins. Different from
previous approaches [11], we additionally assume that each individual has its own
internal preference for a certain overall outcome, σ(i) = ±1. This strengthens
the influence of the neighbors whose opinion correlates with own preference. In
this case, the strength of the preference impact, wi ∈ R

2
+, will act similar to the

supportiveness parameter in Eq. (4).
Now, we redefine Eq. (2) in a more convenient form for the z-th individual:

Iz = −
∑

〈zj〉
wzjσzσj =

1
2

∑

〈zj〉
wzj(1 − σzσj) − 1

2

∑

〈zj〉
wzj(1 + σzσj), (5)

where 〈zj〉 indicates the pair of the individual z and its neighbor j. The param-
eter |wzj | is the intensity of the influence of z on j. The first term in Eq. (5)
contributes if the individuals j and z have opposite opinions. The second term
is non zero if the individual j holds the same opinion as the individual z and
is zero otherwise. In this case, if the preference of the individual z is σz = +1,
then it means that if there are any agents in the neighborhood with opinion
σj = +1, the second part of the Eq. (5) has to be |wzj | times stronger than
the first part. And vice versa, if the preference of the individual z is σz = −1,
the first part of Eq. (5) should take an advantage over the second one. In this
sense, the value of |wzj | represents the relation of weight between neighbors with
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contradiction opinion to the zth individual’s preference and those with the con-
sistent one. Assuming that individual z has the same impact on all his neighbors,
i.e. wzj = wz for any j, we can write the following:

Iz =
Nz∑

j=1

wzσ(z)(1 + σzσj) −
Nz∑

j=1

σ(z)(1 − σzσj) (6)

=

{
wzn

+
z − n−

z , if σ(z) = +1
n+

z − wzn
−
z , if σ(z) = −1

= w′
zn

+
z − n−

z , where w′
z =

{
wz, if σ(z) = +1
1

wz
, if σ(z) = −1,

where σ(z) is the preference opinion of individual z, |wz| > 1 is the strength
of the preference and σz is the opinion holding by z. If w′

z = 1, the individual
is considered as not biased, i.e. without any preference, while w′

z ∈ (0, 1) and
w′

z > 1 corresponds to σ(z) = −1 and σ(z) = +1 respectively. The parameters
n+

z and n−
z indicate the amount of the neighboring individuals with opinion

σj = +1 and σj = −1 accordingly.
If we take the spatial distances between the individuals into account, we can

combine Eq. (4) and Eq. (6):

Iz = w′
z

∑

j∈N+
z

(1/dα
zj) −

∑

j∈N −
z

(1/dα
zj), (7)

where N+
z and N −

z correspond to the neighbors of z-th individual, which are
holding opinions σj = +1 and σj = −1 respectively. In this way, the distances
between z and j influence the value for Iz. Considering two individuals with
different distances to z, the influence of the closer one to z is greater than the
other.

The opinion dynamics are defined probabilistically using the following sig-
moid function as in [5]:

p(βIz) =
1
2

(
1 +

tanh(βIz)
tanh(β)

)
∈ [0, 1], (8)

where a social field Iz is normalized, i.e. Iz =
w′

z

∑

j∈N+
z

(1/dα
zj)−

∑

j∈N−
z

(1/dα
zj)

w′
z

∑

j∈N+
z

(1/dα
zj)+

∑

j∈N−
z

(1/dα
zj)

∈ [−1, 1],

and β acts as a noise parameter. Varying β values from 0 to ∞ allows observing
a spectrum of voting mechanisms from the voter (β → 0) to majority models
(β → ∞) and everything in between [4]. The transitions from the state σt

z = −1
at time t to σt+1

z = +1 at t+1 occur with p(βIz) probability, and from σt
z = +1

to σt+1
z = −1 with probability 1 − p(βIz) respectively, for all swarm members.
In the following, we introduce a learning process for updating the preferences

(see Algorithm 1). The main idea is based on the fact that the current opinion
of the individual σt

z and its preference σ(z) can be in conflict with each other
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(e.g. wz > 1 corresponds to σ(z) = +1, while the holding opinion is σt
z = −1).

However, when due to the interactions with the others and the environment
the individual changes his opinion, so that it becomes in agreement with its
preference σ(z), we reinforce the preference strength on Δw either in a positive
or in a negative side depending on the current sign of the preference (i.e. we add if
wz > 1 and subtract if wz < 1). In case if the agent keeps its opinion in conflict
with its own preference, we make a double reinforcement (i.e. wz ± 2Δw) in
order to change the preference to the side of this opinion (e.g. (5+6) and (9+11)
lines in Algorithm 1). If there is no conflict between the individual’s preference
and the current opinion, we keep the preference strength wz unchangeable (lines
(1+3) and (12+14) in Algorithm 1). In this way both opinions and preferences
are evolved as the result of the interactions between the individuals and the
environment.

Algorithm 1 Preference Update Rules

3.1 Multi-Agent Simulation

The environment is defined by a square grid of 20 × 20 cells 1 × 1 unit each,
painted in black and white. Without loss of generality, we consider that in all
environments the white color is prevailing. We consider 100 iterations in simula-
tion as 1 s, and we plot the simulation environment every 10 iterations (i.e. 0.1 s)
as it was done in previous research [9]. We use a swarm of 20 agents, initially
assigned with half for opinion white (σi = −1) and half for black (σi = +1). The
preferences of the individuals coincides with their initial opinions. We keep the
other parameters similar to [11].

The size (diameter) of an agent is proportional to the size of the grid cells
and is equal to 0.7 units (considering 1 unit = 10 cm). The agents move in the
environment using a random walk executed along with collision avoidance to
other agents and the borders of the grid. The random walk is performed by
alternating periods of the straight linear motion and rotation on the spot for
random periods of time taken from normal distribution with mean 40 s and
uniform distribution between 0 and 4.5 s respectively. The linear velocity v is set
to 1.6 units/s and the angular velocity ω is 7.5 rad/s. If agents collide with each
other or with the borders of the grid, they randomly rotate on the spot (equally
likely clockwise or counterclockwise) until their bearings will not allow them to
go freely further resuming a straight motion.

Besides different movement phases, each agent i can be also in either
one of the two following states going one after another: (1) exploration Ei,
where it moves and only estimates the quality of its current opinion ρ̂i, or
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Fig. 1. Dissemination of opinions: (a) in multi-agent simulation; (b) on static lattice.
Colors represent agents opinions (red for black, blue for white). Lines indicate possible
connections at the current time step. Bold lines (magenta) show agents in commu-
nication with each other. The agents in (a), while moving, perceive the environment
consisting of black and white cells. (Color figure online)

(2) dissemination Di, when it moves and only exchanges its own opinion with
the others, making at the end a decision on either to keep or to switch its current
opinion i. The communication between agents is set only pair-wise, and only if
both of them are in dissemination state, for each 10 iterations (0.1 s) in a ran-
dom order within the communication distance of dmax = 5 units. The duration
of exploration state for each individual i is the same and takes tE = 10 s, while
the dissemination state is biased and proportional to the quality of the current
opinion, i.e. tDi = tE ∗ ρ̂i, so that the less quality opinions promotes the shorter
periods of time. The quality ρ̂i is calculated as the ratio of time when the agent
observed the color related with its current opinion i during tE. Each agent logs
the opinions of its neighbors during the last 30 iterations of its dissemination
state as in [11] and takes the last N opinions to decide based on one of the
three DM strategies with N = 2: In DMMD, the agent takes opinion which
is preferred by the majority out of N including its own opinion. In DMVD, it
adopts the opinion of a random agent from N excluding itself. In DC, time tD is
unbiased (tDi = tE ∀i) and at the end of tDi each agent directly compares the
quality of its own opinion i with a randomly chosen neighbor’s j, and if ρ̂j > ρ̂i,
then it switches its opinion i → j and starts Ej . The agents also transmit their
individual IDs and save the received ones, so that in case, if the agent was per-
ceiving the opinion of one and the same neighbor for two consecutive steps,
only the first one is saved in the log. To validate the performance of DMs we
consider two commonly used metrics: (1) Exit probability (EN ) to measure the
ratio of successful runs among all simulations and (2) Consensus time (T correct

N )
as the number of iterations until all the agents converge to the correct opinion.
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The run is considered successful, if the swarm has come to the consensus with
the correct opinion.

4 Experimental Results and Discussion

In the first experiment, we study the impact of unbiased individuals (i.e. which
do not have any intrinsic preference wz = 1) on the consensus time and the
exit probability for different values of the nonlinearity parameter β on the most
difficult scenario, i.e ρ∗

b = 0.92, where ρ∗
b is the ratio of black Nbl and white Nwh

cells in the grid, considering Nwh > Nbl: ρ∗
b = Nbl

Nwh
. We examine three decision-

making strategies (denoted further as DMs): Static, Adaptive, and W-Adaptive.
In W-Adaptive the initial distribution of the preferences is set to the range of
(0, 1) for all agents despite their current opinions, while in Adaptive the initial
preferences of the individuals coincide with their initial opinions (i.e. half with
preferences for white and half for black). In all the experiments below, we set
Δw = 0.1 in Algorithm 1 and α = 0 in the Eq. (7), unless otherwise stated.

Fig. 2. Consensus time (T correct
N ) and exit probability (EN ) as a function of the pro-

portion of unbiased individuals in the swarm (i.e. {0, 0.1, ..., 1.0}) for each value of
the noise level β ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0} (top headings). Task dif-
ficulty: ρ∗

b = 0.92. Dashed (pink), solid (blue) and dotdashed (red) lines correspond to
the Static, W-Adaptive and Adaptive strategies respectively. (Color figure online)

Figure 2 shows the estimated smoothed conditional means of the consensus
time calculated only among successful runs and the exit probability with shad-
ing areas of 95% confidence interval for the described above experiment. For all
noise levels, there is a clear trend of the performance deterioration in all of the
considered DMs with the increase of unbiased individuals in the population. The
best performance in terms of consensus time as well as in the accuracy is mostly
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Fig. 3. Consensus time (T correct
N ) and exit probability (EN ) as a function of the task

difficulty ρ∗
b . Parameter configurations: ρun = 0, β = 4.5. Solid (red), longdashed

(khaki), dotdashed (green), twodashed (pink) and dashed (blue) lines correspond to
the Adaptive, DMMD, DMVD, Static and W-Adaptive strategies respectively. (Color
figure online)

at ρun = 0 for both adaptive strategies with β ∈ (2.0, 5.0). The performance
of W-Adaptive suggests that when the whole population is initially biased to
the white (i.e. ρun = 0), the agents are able to gain a momentum and to keep
their weights in (0, 1) range during the adaptation process, thereby leading the
collective to the fastest and the most accurate (almost 100% success rate) collec-
tive decisions among the others (see Fig. 2). However, with the introduction of
unbiased individuals into W-Adaptive population, the accuracy starts decreas-
ing at any values of β, while for Static and adaptive strategies it keeps almost
stable at around (0.65, 0.7) exit probability. For the consensus time, at β = 4.0,
we observe a stable rate for both W-Adaptive and Adaptive until ρun = 0.4
along with a significant drop for Static. At other noise levels, the consensus time
for W-Adaptive and Adaptive mostly increases with the increase of unbiased
individuals along with a few non-significant drops at the lower values of noise,
i.e. β ∈ (0.5, 1.5) at ρun = 0.6. While for the Static, the presence of unbiased
individuals promotes a significant decrease in the consensus time without com-
promising the accuracy for most levels of β, i.e. at ρun = 0.4 and ρun = 0.5 for
β = {2.0, 4.0} and β = {4.5, 5.0} respectively.

The obtained results for the Static are in agreement with findings in [5],
which showed that the individuals without a preference (unbiased) help to min-
imize the time to achieve the consensus but on the 2D square lattice. In our
case with Static strategy, this finding goes further in its understanding as our
results indicate that an unbiased sub-population aids to propagate exactly the
correct opinions (i.e. with the highest quality) in the dynamic network coupled
with the environment within the concept of a direct modulation mechanism of
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positive feedback [11]. Although, this differs for both of the considered adaptive
strategies, where the unbiased agents mostly slow down the adaptation process,
especially in the case of W-Adaptive. Such a result can be attributed to the fact
that the weights of unbiased individuals, wz = 1, keep stable for all period of
time without taking part in adaptation, thereby diluting the reforming process
of the already existence preferences, that leads to the increase of the consensus
time. The difference in the performance between the considered strategies in
Fig. 2 provide the evidence to support the above conjecture.

Additionally, we also perform the experiments of the discussed above DMs
on all eight types of the task difficulty but without any unbiased individuals to
examine the influence of the preferences in comparison to the two well-studied
DMs in [11], namely the majority rule (DMMD) and the voter model (DMVD).
As in previous studies of [11], the results in Fig. 3 indicate that the consensus
time increases with the increase of the problem difficulty and the DMMD is
much faster than DMVD. For most of the ρ∗

b , the Adaptive is significantly faster
than DMMD but evens out with it at higher ρ∗

b = 0.92. The W-Adaptive is the
fastest among the others with a slight acceleration in the consensus time after
ρ∗

b = 0.72. It is approximately three times faster than the DMMD for all ρ∗
b .

The Static shows the intermediate performance between the DMMD and the
Adaptive with an increase in consensus time after ρ∗

b = 0.72. It is significantly
worse than Adaptive for higher ρ∗

b (i.e. after ρ∗
b = 0.72). For the exit probability,

the difficulty of ρ∗
b = 0.72 is a breaking point for the preference-based DMs.

That is, until ρ∗
b = 0.72, Static and W-Adaptive indicate the similar accuracy

trend in (0.9, 1.0) range along with almost 1.0 stable rate until ρ∗
b = 0.67 for

Adaptive. After ρ∗
b = 0.72, the performance of Static and Adaptive is decreasing

until (0.6, 0.7) exit probability, while W-Adaptive keeps the highest accuracy
(i.e. 0.9 − 1.0) also for higher ρ∗

b . The accuracy of the DMMD is lower than
for the preference-based DMs starting from ρ∗

b = 0.67 and decreasing until the
chance level at higher ρ∗

b . While the exit probability of the preference-based DMs
is always higher than by the chance, the DMVD accuracy is almost always in
(0.5, 0.6) range despite the problem difficulty.

Altogether, these results suggest that the Ising model performs mostly sim-
ilar to the majority rule in the context of the direct modulation of the positive
feedback. However, the existence of preferences allows taking control over the
decision-making process by manipulating the influence of neighbors whose opin-
ions are in agreement with an individual’s preference (as it is done in W-Adaptive
and Adaptive).

4.1 Influence of Initial Preferences

In the following, we study the performance of the preference-based DMs without
unbiased individuals depending on the initial number of the agents Ea(0) favoring
the incorrect opinion a (black), and compare it with the DMMD and the DMVD
strategies. Taking into account that the total number of agents N = 20, we varied
Ea(0) from 1 to 19 with all the values in between and performed 40 simulation
runs for each configuration. Figure 4-left shows that in a simple scenario ρ∗

b =
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Fig. 4. Consensus time (T correct
N ) and exit probability (EN ) as a function of the initial

number Ea(0) of individuals with opinion a (black) in the swarm (while prevailing
color in the environment is b, i.e. white). The values of initial preference bias of an
individual are in accordance with its initial opinion. Parameter configurations: ρ∗

b ∈
{0.52, 0.92}, β = 4.5, ρun = 0, N = 20. Solid (red), longdashed (khaki), dotdashed
(green) and twodashed (pink) lines correspond to the Adaptive, DMMD, DMVD and
Static strategies respectively. (Color figure online)

0.52, Adaptive is the fastest strategy for all initial conditions Ea(0) than the
others, along with the highest accuracy holding (0.9, 1.0) exit probability even
with 80% of the initial population targeting the wrong opinion (i.e Ea(0) =
16), while the DMMD starts already degrading from Ea(0) = 9 (i.e. 45%).
For the difficult scenario, in Fig. 4-right, the DMMD and Adaptive have similar
consensus speed followed by the Static and the DMVD. Although, the decision
accuracy of the Adaptive strategy decreases more slowly than the DMMD with
increase of Ea(0).

4.2 Matter of Distance Dependency

We have also performed the experiments incorporating the influence of the
moments α of the spatial Euclidean distance dij between the individuals (see
Eq. 7) with α ∈ {−1, 0, 1, 2}. The obtained results (not reported here) indicate
no significant impact of the spatial distance dependencies on the overall decision-
making process, independently on the parameter α. This can be explained by
the fact that agents communicate with each other in a very limited radius of max
5 units, which resulted in a small numbers not affecting the outcome of Eq. (8).
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However, more experiments with unlimited interactions, i.e. global communica-
tion, are needed to support this claim.

5 Summary and Conclusion

In this work, we provided an Ising-based approach for the collective decision-
making systems incorporating the dynamic preferences of the individuals. We
proposed a learning procedure for the preferences, so that opinions and the pref-
erences can co-evolve together to allow a better decision process. The Ising model
can be considered as a general voting approach, integrating in itself the variety
of the mechanisms from voter to majority models, which can be controlled by its
non-linearity (noise) parameter. Our results indicate that the preferences give
an external observer (a designer) an opportunity to manipulate the undertaken
decisions of the individuals with an initial conjecture of the suggested outcome.
With the right conjecture, the latter can significantly increase the speed and
accuracy of the collective decision-making process even with 80% of the initial
population holding the opposite opinion. The same is observed with the equally
distributed preferences over the population, i.e. 50%–50% for two opinions. As
part of the future work, we are going to investigate the generalization of the Ising
model, which is called the Potts model [7], to explore the case of the best-of-n
problem with n > 2.
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9. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario. In:
Proceedings of the 17th International Conference on AAMAS, pp. 541–549 (2018)



Ising Model as a Switch Voting Mechanism in Collective Perception 629

10. Torney, C., Neufeld, Z., Couzin, I.D.: Context-dependent interaction leads to emer-
gent search behavior in social aggregates. Proc. Natl. Acad. Sci. 106(52), 22055–
22060 (2009)

11. Valentini, G.: Achieving Consensus in Robot Swarms. SCI, vol. 706. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53609-5

https://doi.org/10.1007/978-3-319-53609-5

	Ising Model as a Switch Voting Mechanism in Collective Perception
	1 Introduction
	2 Related Work
	2.1 Ising Model
	2.2 Social Impact Theory

	3 Proposed Model and Learning Process
	3.1 Multi-Agent Simulation

	4 Experimental Results and Discussion
	4.1 Influence of Initial Preferences
	4.2 Matter of Distance Dependency

	5 Summary and Conclusion
	References




