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Abstract. This paper presents a Vector Field Benchmark (VFB) gen-
erator to study and evaluate the performance of collective search algo-
rithms under the influence of unknown external dynamic environments.
The VFB generator is inspired by nature (simulating wind or flow) and
constructs artificially dynamic environments based on time-dependent
vector fields with moving singularities (vortices). Some experiments us-
ing the Particle Swarm Optimization (PSO) algorithm, along with two
specially developed updating mechanisms for the global knowledge about
the external environment, are conducted to investigate the performance
of the proposed benchmarks.

1 Introduction

Swarm Intelligence algorithms such as Particle Swarm Optimization (PSO) [13]
and Ant Colony Optimization [6] are shown to be very effective in solving opti-
mization problems. Due to their distributed nature, they can be easily used in
swarm robotic search scenarios [8]. In the past years, PSO has been successfully
used in this context [5, 1, 16, 11]. However, there are only a few existing methods
that have addressed the influence of the external environments on the collec-
tive search algorithms [2, 3, 12, 17, 9]. The main goal of this paper is to provide
new benchmark problems, simulating the influence of the dynamic external en-
vironment (such as wind, flow, etc.), which will serve as a baseline testbed for
the development of new collective search mechanisms, that are robust to the
unknown perturbations and can be further employed in real-world applications.
In [2], the authors have introduced vector fields to simulate the external dy-
namics in a PSO-based collective search scenario designed for a swarm of aerial
micro-robots. This approach only considered static vector fields, which are rather
rare in nature, as the external dynamics change over time (i.e. unsteady flows).
In this paper, we consider time-dependent vector fields and propose a unified
method, called Vector Field Benchmark (VFB), to construct such dynamic en-
vironments using singular points [4]. In order to test the proposed VFB system,
experiments are made using VFM-PSO [2] under the composition of changing
vector fields and moving singular points. The results show that the VFB system
can give different properties by simply setting the environmental types. The pa-
per is organized as follows. We define VFB generator in Section 2. In Section 3,
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we describe the generalized “VFB-Map Exploration Framework” in the context
of which we test the proposed benchmark. Section 4 contains several experiments
to test the performance of VFB. The paper is concluded in Section 5.

2 Vector Fields Benchmark (VFB)

The time-varying dynamics of the environment are modeled by the unsteady
vector fields with or without vortices, which are described below. In general,
most vortex definitions are characterized by means of differential properties of
the observed vector fields. For simplicity, our VFB functions are limited to a
two-dimensional space (as horizontal wind).
Definition 1. A Vector Field V F on a planar domain D ⊂ R2 is a func-
tion assigning to each point (x, y) ∈ D a 2-dimensional vector V F (x, y) =
(u(x, y), v(x, y)).

Definition 2. A point (x0, y0) ∈ D is singular for V F if V F (x0, y0) = (0, 0).
The values at any point p ∈ D of local vector field SP defined by corresponding
singular point can be calculated as follows [14]:

SP (p) = e−d||p−p0||2JV (p− p0), (1)

where JV is the Jacobian matrix of the desired Singular Point, p0 = (x0, y0) is
the center of the Singular Point and d is a decay constant limiting the intensity
of the Singular Point influence with increasing distance to its center p0.
Definition 3. The spatial Jacobian JV is an n × n matrix that contains a
first-order description of how the flow V F behaves locally around a given loca-
tion. Following Hartman-Grobman theorem [10], singular points can be partly
classified by looking to the eigenvalues of the Jacobian matrix at that point (see
Fig. 1, where k denotes the spread of SP ).

However, in measured data, the vector field V F is not given as a differentiable
function. Following that, we discretize a domain D ⊂ R2 of the vector field and
assume that we have the values of V F at the points (xi, yj) of a regular grid of
size M × N cells. We will denote the unit cell ci,j of the grid by sample point
(xi, yj) as follows ci,j = (ui,j , vi,j) = V F (xi, yj).

Sink Source Saddle Center CC-Center

Fig. 1: Five types of Singular Points shown on grids with 9× 9 cells with k = 5
and corresponding values of JV matrix below.
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Definition 4. An Unsteady Vector Field varies over time and is given as a
time-dependent map V F (x, t) = V F (x, y, t) : D×T → D. It can be also written
as an (2 + 1)-dimensional steady field [7]: V F (x, y, t) = (u(x, y, t), v(x, y, t), t).

VFB Generator When there are 2 or more Singular Points in a Vector Field,
the velocities are calculated by simply adding the vector fields SP of each Sin-
gular Point. The overall VFB is defined as a sum of the underlying VF and the
Singular Points influences:

V FB := V F (p, t) +
∑

SP (p; JV (k), center : p0, decay : d,MoveType), (2)

where singular points p0 are characterized by their type and strength k per-
formed with Jacobian JV (k), and movement types MoveType. The dynamics
of SPs are organized mainly by the moving center point p0 of the defined SP
according to some law of movement (denoted by MoveType). Additionally, SPs
movements are also affected by the underlying VF (if any), which means that the
velocity vectors of the the underlying V F at the SPs current centers positions,
i.e. V F (p0), will be added to the MoveType movement. The dynamics of un-
derlying VFs, as well as of SPs, can also be complicated through multiplication
on the Rotation Matrix Rot(α, t), thereby making their vectors rotating by some
angle α at each time step t.

3 VFB-Map Exploration Framework

In order to test the proposed VFB functions, we take the same concept of Infor-
mation Map (IM) approach for steady vector fields which was proposed in [2].
We adapt the concept for time-dependent flows with new ways of saving informa-
tion in IM, which are supposed to catch the main features of unknown unsteady
external dynamics. To estimate the external dynamics, the explorer population
is used with simple movements based on the value of the VFB at their own po-
sitions. The explorers are coming from one and the same initial positions every
∆t time steps and save the information about VFBs magnitude and direction at
their positions in the IM, which is a global and central archive accessible by all
individuals. The optimizers follow the rules of PSO and retrieve the information
about VFB from the IM to organize a better collective search process by full
compensation of negative factors at already explored regions. The type of the
optimizers decision, based on the IM, is not limited to full compensation (see for
example, [3]), however, in this paper we consider only this type of action. As the
VFB (i.e. V F (x, t)) changes over time, its values at the same positions might
be different at different time steps t. So it is the question of how to store the
measured values in IM, in order to take the relation between the past and the
present into account. We present two update mechanisms of the IM for storing
collected data:
(1) Recent (Rec) saves only the most recent measured values of the cells and
left them unchangeable in the IM until their next visit. When a cell is visited a
second time, all information from the first visit is replaced.
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(2) Evaporating Mean (EM) computes the mean of measured values, if the
cell ci,j is visited several times, and applies an evaporation operator ρt to it,
which linearly decreases the saved value for the ci,j by subtracting from its
initially saved value the evaporation rate ρ0t constantly at each time step t.
The evaporation continues until the value in ci,j reaches the minimum limit of
ρmin, after which it is stopped, in order to preserve the information in already
information-starved environment. The value of evaporation rate itself is constant
ρ0t = ρ0 unless the cell is visited only once, otherwise its value is decreased by
dividing on the number of cell visits Nvis for each cell ci,j individually, as a
means of ‘confidence’ in the saved value. In other words, the more times the cell
is visited the less it is evaporated, i.e. ρ0t (ci,j) is a function, which takes a value
(
∑
Nvis(ci,j))

−1ρ0t−1(ci,j) if Nvis(ci,j) > 1 and ρ0t−1(ci,j) otherwise.
Both of the above approaches consider the cells separately, therefore we refer

to them as discrete methods denoted by Rec-D and EM-D. We also consider their
continuous variants (denoted by Rec-C and EM-C) by using interpolation and
extrapolation for the rest of the cells inside and outside the convex hull, defined
by the cells with already saved information in IM. The Nearest interpolation [15]
is used, as the fastest interpolation method among the others known in the
literature (what is sufficient for time-dependent changes).

4 Experimental Study

The goal of the experiments is to demonstrate the usage of the introduced VFBs
and to estimate the performance of the proposed updating mechanisms.

Parameter Settings Similar to [2], we use a VFM-PSO algorithm with 20
optimizers initialized randomly over the search space S : [−15, 15] × [−15, 15].
The velocity limit vmax is set to 2, inertia weight w is selected to be 0.6 along with
acceleration coefficients C1, C2 = 1. The number of explorers is set to 10 with
frequency of update each ∆t = 10 iterations. The total number of iterations
is 150. The algorithm has been run on Sphere, Ackley and Rosenbrock over
proposed further VFBs. We compare the proposed update mechanisms for the
IM both for discrete (Rec-D and EM-D) and continuous (Rec-C and EM-C )
variants. In the experiments, “None” indicates the approach without IM (i.e.,
without explorers). According to the preliminary experiments, the evaporation
rate ρ0 is set to 0.3 and ρmin is 0.5. Each experiment is repeated 30 times
with different random initializations for both optimizers and explorers. Table 1
provides the function description of considered VFBs without SPs, i.e. VFB1-
VFB3. Table 2 describes the VFBs containing moving SPs, i.e. VFB4-VFB7.
For each VFB4-VFB7 one considers 9 singular points of at most two types with
given coordinates (x0, y0). Each scenario can have an underlying vector field,
indicated as V F in the last row of Table 2 and equations for which can be
taken from Table 1. For all used in VFB4-VFB7 SPs, spread k is set to 15 and
decay d is 0.4. MoveType is defined by sinus law in horizontal direction. The only
exception is VFB7, where SPs move according to the velocities of the underlying
VF, i.e. Waves.
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Table 1: Function descriptions for VFBs without singularities: VFB1-VFB3.
VBF1 CrossRot V F (x1, x2) = Rot(5, t) ∗ (x2, x1)

VBF2 Waves V F (x1, x2) = (10, cos(x1 − 0.5 ∗ t) ∗ 3)

VBF3 UniformRot V F (x1, x2) = Rot(5, t) ∗ (3, 3)

Sheared V F (x1, x2) = (x1 + x2, x2)

Table 2: Parameters descriptions for VFBs with singularities: VFB4-VFB7.
VBF4 VBF5 VBF6 VBF7 Coordinates (x0, y0)

type
Source Source

Center Center
(-10,-8) (-10,10) (0,-1) (0,-6) (10,12)

Saddle Saddle (-10,1) (0,-10) (0,8) (10,3)

VF Cross Sheared None Waves

Results Figure 2 shows a comparison of median fitness values obtained using
None, Rec-D, EM-D, Rec-C and EM-C (from left to right) within considered
VFB (i.e. VFB1-VFB7 indicated by columns) on the corresponding objective
function (indicated by rows). Since the main objective of the experiments is to
demonstrate the usage of the introduced VFBs and to estimate the performance
of the proposed exploration techniques, we have made multiple pairwise statisti-
cal comparison tests to identify which of the approaches are specifically different.
Pairwise Mood’s median tests were performed for VFBs, which have indicated
statistical differences in at least one of the medians, i.e. VFB2-VFB5 and VFB7.
For visual representation of the statistical differences between approaches the
reader is referred to Figure 2. The boxes, which do not share any letter in com-
mon within one and the same VFB over certain objective function, indicate
statistical differences between compared types of updating mechanisms. From
this we can see that the obtained results reveal our hypothesis as on the most of
the considered VFBs, regardless of the objective function, discrete mechanisms
(Rec-D, EM-D) are not statistically different from each other and None. While
almost in all of the cases, continuous updating mechanisms (Rec-C, EM-C ) are
statistically different from None and their discrete analogies (i.e. Rec-D, EM-D).
Rec-C seems to be the most successful among the presented approaches, as its
median fitness values are significantly lower than those using EM-C on VFB2,
VFB3, VFB4 and VFB7. Although, EM approach was supposed to be a com-
promise between taking changes into account and compensating for the cases
with partial covering by the VF at a time (as on VFB7), EM-C is statistically
worse than Rec-C on all considered VFBs, including VFB7.

In the following we also report the convergence behavior of the proposed algo-
rithms. Figure 3 illustrates Euclidean distances between the center of the swarm
and the obtained global best over the iterations for VFB2, VFB7 and VFB8,
which is a composition of VFB2 and VFB7. It can be observed that None, Rec-D
and EM-D variants have similar behavior and do not change over iterations on
VFB2 and VFB8, while EM-C and Rec-C reproduce an oscillation behavior, in-
dicating that they have found the equilibrium point and it does not change with
time anymore. The results differ for VFB7, as in this case the SPs only partially
influence the movements of the optimizers, so we expect that the continuous
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Fig. 2: Boxplots of the median fitness values obtained by None, Rec-D, EM-D,
Rec-C and EM-C (from left to right) within VFB1 to VFB7. The central mark
on each boxplot indicates the median. Boxplots which share at least one common
letter within one and the same VFB indicate not statistical difference in median
fitness values with significance level α = 0.05 according to Pairwise Mood’s Test.
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Fig. 3: Distances between the center of the swarm and the global best over the
iterations obtained on Ackley function over VFB2 (full covering VF without
SPs), VFB7 (consists only of SPs) and VFB8 (composition of VFB2 and VFB7).

update mechanisms do not help as they disturb the movements themselves at
the positions where there is no VF influence. This can be observed on the perfor-
mance of EM-C and Rec-C in VFB7, while the other update approaches help to
converge until a change in the environment occurs. The changes in the environ-
ment can be depicted by the oscillating behaviors in the convergence plots. The
results reported in Fig. 3 are obtained on the Ackley search landscape. However,
our experiments show that the observed movement patterns (i.e. oscillations)
are the same for all the other considered objective functions on the same VFBs.
The only difference is in the value of the drift (i.e. vertical shift on the plots
in Fig. 3), as it is defined by the found global best solution. In comparison to
standard PSO problems (i.e. without VFBs), where distance between the swarm
center and the global best is constantly decreasing as the particles converge to
the best, acting under VFBs the swarm can not really converge. Therefore, in
order to improve its performance, we observe oscillations in certain limited area
around the best so-far obtained solution.

5 Conclusions and Future Work

This paper presents new benchmark functions for simulating and modeling the
external dynamics for swarm robotics applications. We propose to use time-
dependent vector fields with moving singularities and analyze their influence
on the existing PSO-based methods in the context of “VFB-Map Exploration
Framework”. The results illustrate the strong influence of the environment on
the collective search. One feature, imposed by moving singularities, concerns the
oscillating behavior in the convergence plots. We have tested two various schemes
based on continuous and discrete updating mechanisms for storing the global in-
formation about the unknown environment. The results show the advantage of
the continuous variant over discrete in unsteady environments without singular-
ities, while this degrades for environments which contain ones. Our experiments
illustrate that the VFB can be used as a good base for developing search algo-
rithms and is not limited to the proposed exploration framework and PSO. In
future, we aim to work on other swarm based collective search mechanisms on
the presented VFB.
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