,ﬁ OTTO VON GUERICKE
. J UNIVERSITAT FAKULTAT FUR
'A' MAGDEBURG INF INFORMATIK

Otto von Guericke University Magdeburg
Chair of Intelligent Systems

Institute of Knowledge and Language Engineering
Digital Engineering Project

Analysis of Extended Movement Models for
Autonomous Quadrocopters

Bodnar, David

david.bodnar@st.ovgu.de

Magdeburg, 2015

Supervisor:
Steup, Christoph

steup@ivs.cs.uni-magdeburg.de

OTTO VON GUERICKE Chair Of

TSRV INTELLIGENT SYSTEMS
MAGDEBURG

mailto:david.bodnar@st.ovgu.de
mailto:steup@ivs.cs.uni-magdeburg.de

Abstract

The reliable estimation of the motion state of a moving object is very important if the
motion state needs to be controlled. This problem gets more advanced once the system is
not fully observable and the sensor values are noisy or incorrect.

To be able to handle this problem a Kalman filter might be the optimal solution. In
this documentation the implementation of such a filter is discussed for a quadrocopter
application. In the following the basic description of the system, the implementation and
the evaluation of the Kalman filter will be specified.

Keywords: Quadcopter, Kalman-Filter, Motion tracking, Paparazzi

Contents

Abstract I
Contents 11
1 Imtroduction 1
2 Kalman filter 2
2.1 Prediction 2
2.2 Correctiono 3
3 Theoretical model 5
3.1 Nonlinear model 5
3.1.1 Rotormodel 5

3.1.2 Force balance 6

3.1.3 Momentum balance 7

3.2 Modified model 8
3.3 LUT for motor 9
4 Implementation. 11
4.1 Libfixkalman 11
4.2 Kalman filter implementation 11
5 Evaluation 14
6 Conclusion 20
7 Acknowledgement 21

Bibliography e 22

CHAPTER 1. INTRODUCTION 1/22

1 Introduction

Nowadays quadcopters are slowly getting part of our everyday life. First they were just used
as a toy or to shoot photographs or capture videos that people were not able to do before.
The new prototypes are developed to make a wider range of applications possible, for example
package delivery services, border protection or construction of rope bridges.

In all of these cases precise motion state control is required to make it possible for the quad-
copters to follow specified paths accurately. Unfortunately in most of the cases the raw sensor
values are not accurate enough to base the whole control on them. Not only the noisy or faulty
measurement values but also the different measurement frequencies might cause problems.

To overcome these limitations a Kalman filter might be the optimal solution. The Kalman filter
is a linear quadratic estimator which uses prediction and correction steps to give an accurate
result for the process variables.

In this documentation I will present the basic idea of the Kalman filter and the implementation
of one for motion state estimation of a quadcopter. In the following chapters the equations of
the Kalman filter and the physical model of the quadcopter will be discussed. After that I will
go through the steps of the implementation and list the limitations of the designed system.

CHAPTER 2. KALMAN FILTER 2 /22

2 Kalman filter

As already mentioned, the Kalman filter is a linear quadratic estimator. The most well-known
application of the filter is the GPS navigation system used in cars. In the following, I will use
this example to describe the behavior of a Kalman filter.

But before discussing the mathematical background of the system, some requirements of the
Kalman filter need to be observed. The filter was invented for tracking discrete linear dynamic
systems which are disturbed by white Gaussian noise. If these system requirements are fulfilled,
than it can be mathematically shown that the Kalman filter is the optimal linear estimator of the
system. This means that the system tries to minimize the mean square error of the parameters.

If our system is not linear, it needs to be linearized or an extended Kalman filter should be
applied. If the noise is not Gaussian, it can be also shown mathematically that the Kalman
filter is the best linear estimator which can be taken.

The filter can be split into two processes, the prediction and the correction, which do not
necessarily occur with the same frequency. To be exact, the prediction happens in most of the
cases at least with the same frequency as the measurement, but in most real life applications
it happens more often. In the following these two phases will be discussed.

2.1 Prediction

In the prediction phase the filter gives an estimation about how the system variables might
have changed during the elapsed time. This process can be described with the following two
equations:

X, = Ax;_; + Bu, (2.1)

Ft - APt_lAT + Q (22)

Here and in the following the overline refers to a predicted value. The first equation describes
the change of the system variables. The second one characterizes the goodness of the estimation
by defining the covariance for the estimation.

The vector x is the system state vector and is used to refer to the system variables. These are
the values which describe the state of the system for a given time. If the values of x are known,
the behavior of the system over time can be described. It has the dimension of [n x 1].

The vector u is called the input vector and is used to refer to the excitation of the system.
The values of u describe the system input which is controlled by the user directly or indirectly
through another process. It has the dimension of [m x 1].

The matrix A is the system state transition model matrix. It has the dimension of [n x n]. This
matrix describes the system behavior if it gets no excitation from its environment. Taking this
into account the first part of the equation 2.1 is just the effect of the system variables on each
other as time goes by.

The second part of the equation describes the system excitation. The matrix B (control input

CHAPTER 2. KALMAN FILTER 3/ 22

model matrix) has the dimension of [n x m|. The matrix shows to which system state variables
the user or the environment has direct access by the control. The matrix A describes the
indirect access to the system variables and the matrix B shows the direct access to the system
variables.

If one constructs a state space controller and writes up the state equation of the system without
sensor observation, the equation is the same as the equation 2.1. This is the most common way
of getting started constructing a Kalman filter.

In the second equation (2.2) the uncertainty of the current prediction is calculated. The matrix
Q is the so called system process noise matrix. By choosing these values correctly, the simplified
model can be extended and the effects of neglected environment (wind, calibration error etc.)
can be taken into account. The matrix Q has the same size as the matrix A.

The matrix P is the system state covariance matrix which has the size of [n x n]. This defines
the part of the n dimensional space around the predicted system state where the system might
be. This uncertainty keeps growing, because the filter algorithm keeps adding the static process
noise (Q) to the uncertainty, as long as no correction takes place.

As it can be seen from the equations the prediction is a recursive process. This means that
both the matrix P and the vector x need to be initialized at the beginning to be able to start
the Kalman filter.

From the prediction equations one can see that matrices A, B and Q are constants. They
characterize the simplified linear physical model of the system so they need to be constructed
during the implementation.

To show the importance of the prediction phase let us take a look at the GPS example. Suppose
that you are driving on the motorway and you have a navigation system on board which
navigates you during your trip. You drive into a tunnel where you lose the signal of the satellites.
In this case your navigation will suppose that you are driving with a constant speed through
the tunnel and it might be able to assist you if you have to switch the traffic lane or take
another exit. As this example shows, the system cannot measure where you are, but it gives a
prediction where you might be and uses it as a system output. Of course if there are additional
sensors on board, it might provide you a more sophisticated prediction for your movement in
the tunnel.

2.2 Correction

If you would slow down your car in the tunnel, it would have no effect on the prediction at all.
The on board navigation would still suggest that you have the same speed as you entered the
tunnel. As you get out of the tunnel your navigation will have satellite signal again. This means
that the system is able to measure the current state of your car. The measured position will
definitely differ from the result of the prediction. Using the correction step the Kalman filter
corrects the system state according to the following equations:

Yt =724 — Hft (23)

K, =PH'S"! (2.5)

CHAPTER 2. KALMAN FILTER 4 /22

Xt = it + Kt}’t (26)
P, = (I- KH)P, (2.7)

The sensor measurement values are represented in the vector z, which is the so called observation
vector. This vector has the same size as the system state vector x. In most of the cases the
vector z will have the state variables in the same form as the vector x. In these cases the
observation model matrix (H) is a simple identity matrix (I). If this is not the case then the
[n x n| observation model matrix H is used to transform the predicted system state into the
observation space.

The vector y is the measurement residual which contains the error between the predicted states
and the measurement values. It has the same dimensions as the vectors z and x.

Beside the error for the system variables the error for the uncertainties has to be computed.
So the residual covariance is calculated. This is the matrix S which has the same dimensions
as P. The residual is put together from two separate parts. First of all the predicted estimate
covariance is transformed into the measurement space. After that the observation covariance
matrix (R) is added which includes the uncertainty of the sensor measurements.

After all of these steps everything is given to be able to compute the so called Kalman gain
which is represented by the matrix K. This matrix has the same dimensions as P. The actual
meaning of the Kalman gain is how much the sensors can be trusted. The equations 2.6 and
2.7 are the consequences of this meaning. If the sensors are more reliable the measured values
should get a higher weight in the result, if not the weight of the predicted values should be
increased. Using the weights the filter results for the system state and the uncertainty of these
state variables can be obtained.

From the equations one can easily see that only the matrices H and R are constants. They
characterize the measurement model of the system.

It is very important to know that the equation 2.7 can only be used if the calculated Kalman
gain is the optimal Kalman gain. In other cases the Kalman gain is not computed with the
equation 2.5 or the designed Kalman filter has problems with numerical stability.

In these cases the so called Joseph form needs to be used.
P, = (I- K,H)P,(I - K.H)” + K,;RK” (2.8)

The Joseph form produces more stable results for the posterior error but computationally it
costs more than the equation 2.7. So in most of the cases people use the equation 2.7 when
implementing a Kalman filter.

CHAPTER 3. THEORETICAL MODEL 5/ 22

3 Theoretical model

In this chapter I will discuss two models of the systems. First of all, a nonlinear system model
will be shown. After that, I will modify this model to make a Kalman filter constructible with
the resulted equations.

Figure 3.1: Rendered CAD model of the quadrotor

3.1 Nonlinear model

To be able to model the behavior of the quadcopter the model will be split into three separate
parts. First I will discuss the rotor model. After that the force and the momentum balance

equations will be analyzed.

Fs

Figure 3.2: Model of the quadcopter

3.1.1 Rotor model

First let us take a look at one motor. For the quadcopter BLDC (Brushless Direct Current)
motors were used. In the motor model the electronic behavior of the motor will not be ana-
lyzed, only its mechanical part is relevant. For the transformation of the electrical energy into
mechanical energy a LUT (look-up table) needs to be constructed on measurement basis.

CHAPTER 3. THEORETICAL MODEL 6/ 22

The motors are the actuators in the system which can be controlled to change the state of the
quadcopter. In this way the input will be the angular speed of the motor and the resulting force
and momentum need to be specified. They can be calculated using the following equations:

_ 2
Fy= ¢ Trotor - Wrotor (31)

MM - <9mot0r + 8rotor> : wrotor (32)

The constant c is a rotor specific constant which comes in most of the cases from the manufac-
turer. The 7, is the angular velocity of the rotor. With # I marked the moment of inertia in
the equations.

As the motor forces and moments always point in the z direction the equations were formed in
2D and all 3D relevant parts of the equations were neglected.

3.1.2 Force balance

By using the force balance equation the connection between the motor forces and the acceler-
ation of the quadcopter can be constructed.

> F=m-a (3.3)

To be able to handle the rotation of the system rotational matrices were used in the equations.
Based on the fact that rotational matrices are orthogonal matrices if I use a matrix to transform
from local to global coordinate system, I can use the transpose of it to get the backward
transformation. To identify the angles the Euler angles were used. The angle state of the copter
is defined in the following way:

(3.4)

3
Il
=2 @ Q

Figure 3.3: Euler angle convention

CHAPTER 3. THEORETICAL MODEL 7/ 22

The rotation convention is also showed on the figure 3.3. To calculate the backward transfor-
mation from local to global coordinate system the following rotational matrix R was used:

R = (R.R,R,)" (3.5)
10 0 |
R, = [0 cos(a) —sin(«) (3.6)

(
0 sin(a) cos(a)
[cos(ﬁ) 0 sin(p)
R,=| 0 1 o0 (3.7)
—sin(B) 0 cos(f)

cos(y) —sin(y) 0
R. = [sin(y) cos(y) 0 (3.8)
0 0 1

cos() cos() sin(7) cos(5) —sin(g)
R = |cos()sin(B) sin(«) — sin(y) cos(«) sin(y) sin(5) sin(a) + cos(7y) cos(a) cos(f) sin(a)
(

cos(7y) sin(B) cos(ar) + sin(y) sin(a) sin(7y) sin(f8) cos(a) — cos(7y) sin(a) cos(f) cos(a)
(3.9)
The motor forces always point in the positive z direction in the local coordinate system. This
needs to be transformed into the global coordinate system by using the matrix R. The gravi-
tation always indicates a force in the negative z direction in the global coordinate system.

By taking these into account the force balance equation for the system can be written in this
way:
0 0
R 0 — 10 (3.10)
FL+F+F5+ Fy F,

T
|1
y_m
VA

3.1.3 Momentum balance
The rotation of the motors not just indicate a force but a torque, too. These torques and

the lifting motor force differences define the angular state of the quadcopter. This can be
characterized with the following equations:

Q:

3 (Z M) (3.11)

f)/
0 (Fy—Fy) -1
> M=R 0 + |(Fs—Fy) -1 (3.12)
M1+M2+M3+M4 0

Until this point I characterized the motors and the resulting accelerations and angular acceler-
ations. This means that everything is available to construct the Kalman filter. In the following
this model will be modified to better suit the criteria of the filter.

CHAPTER 3. THEORETICAL MODEL 8 /22

3.2 Modified model

AF,
X
Yy
Z
Fe

Figure 3.4: Simplified model for linearisation

The first modification that I apply to the model is changing the coordinate system. The equa-
tions until now were easier describable in the coordinate system shown in figure 3.2. Some
of the equations above will not be implemented because the Paparazzi system provides other
possibilities to describe the system.

North

Figure 3.5: NED (North-East-Down) coordinate system

The quadcopter operates in NED (North-East-Down) coordinate system. This changes signifi-
cantly some parts of the equations because some trigonometric parts will occur and the gravity
vector will be directed in the opposite direction.

The Kalman filter requires a linear system model. This means that trigonometric terms are
not allowed in the matrix equations. To overcome this limitation I decided to integrate all
non-linear terms in the system excitation and the measurement process. This means that the
resulting motor force is taken as control input. The control input and the sensor values for the
measurement need to be rotated in the required direction before being processed.

CHAPTER 3. THEORETICAL MODEL 9 /22

Figure 3.6: Measurement construction

After this simplification the motion state of the copter in all directions can be characterized
using the following equations:

1
a=—F, (3.13)
v=a-t (3.14)
S=v-t+ o2 (3.15)

2
This way I got a number of linear system equations so the requirements of the Kalman filter are

fulfilled in the model. The remaining part of the system model is a LUT which will construct
the resulting motor force for the system. This will be discussed in the next section.

3.3 LUT for motor

The quadcopter control is based on the control of the throttle of the motors. To be able to
calculate the control input forces of the Kalman filter a LUT was needed which converts the
throttle [%)] values into thrust [g].

op

380 cm L F

Figure 3.7: Simplified measurement model

To create the LUT the characteristic needed to be measured. To do this the test station on
figure 3.6 was built. The simplified model of the measurement setup can be seen on figure 3.7.
The rotation of the rotor indicates a force F'. This force is transmitted to the bottom of the

CHAPTER 3. THEORETICAL MODEL 10 / 22

measurement set where it was measured by using a scale. If the system is considered to be
frictionless, the scale shows the thrust in grams.

An Arduino program was written to control the throttle of the motor. Using a Raspberry Pi
I tried to measure the dynamic characteristic of the motor too. Unfortunately, the signal was
hard to measure due to the high angular velocity and the measurement error was significant so
the motor model was based on the pure static behavior.

Using the Arduino program we were able to control the throttle and measure the indicated
thrust to defined throttle levels. This can be seen on figure 3.8. The circles indicate the measure-
ments. The second order regression model was calculated using Microsoft Excel. The resulting
LUT function was constructed by Christoph Pahlke which is:

T = 0.01514k* 4 0.65268k (3.16)
Where £ is the throttle in [%)] and T is the thrust in [g].

LUT for motor

150 200
1 1

Thrust [g]
100
|

T
0 20 40 60 80 100
Throttle [%]

Figure 3.8: LUT for one motor

Of course, the resulting thrust of the four motors is not the same as four times the result of the
LUT. But unfortunately we have no direct access to the control of the motors and modeling
the motor mixture would be too complex. Because of this during the implementation I will
consider the resulting thrust to be four times the result of the LUT.

During the measurement of the thrust it was also important how far the measurement system is
from the next wall. To avoid big differences between the measurement and the real environment
the distance between them was set to 80 [cm] because the altitude controller was designed to
hold the quadrotor at this height.

CHAPTER 4. IMPLEMENTATION 11 /22

4 Implementation

4.1 Libfixkalman

To solve the implementation task efficiently I decided to use the libfixkalman library. Lib-
fixkalman is a Kalman filter library which is designed for microcontrollers without floating
point unit. The libfixkalman depends on the libraries libfixmath and libfixmatrix.

The libfixkalman stores the values as 16.16 bit fixed point values in integers. Using these
arithmetic the microcontroller is able to solve the operations significantly faster. The library
gives the possibility to implement controlled and uncontrolled Kalman filter.

To be able to use this library efficiently to implement the Kalman filter some modifications
needed to be done. First of all there was a bug in the controlled Kalman filter implementation
which needed to be corrected.

Another problem was that the implemented controlled Kalman filter was a Time-varying
Kalman filter. In the Time-varying Kalman filter the system process noise matrix is not constant
but is defined in the following way:

Q = BoB” (4.1)

Where o is a [m x m] matrix which contains the covariance of the process noise. It is called
the control input covariance matrix. The elements of the matrix define the covariance of the
control input.

This means, that the matrix Q is not directly controllable which can cause some problems in
the application. First of all this causes an additional calculation during the run of the Kalman
filter. As the frequency for calling the function is fix, it would just waste resources. Another
problem is that the double integration for the position would cause a t* element in the resulting
Q matrix. As the call frequency is f = 15 [Hz| this would result in a ﬁ term which is very
small and would definitely cause numerical instability.

With this we get to the last problem of the current libfixkalman implementation. This is the
numerical instability. As I already mentioned in the chapter about the Kalman filter, if the
computation is not numerically stable, the equation 2.7 cannot be used. It needs to be replaced
by the Joseph form (equation 2.8).

These modifications were applied to the libfixkalman library. The Joseph form and the Time-
varying Kalman can be activated or deactivated from the settings.h header file. Please note
that these last two modifications are not yet present in the official libfixkalman library.

4.2 Kalman filter implementation

First I implemented one Kalman filter to handle the problem. The problem with this imple-
mentation was that it caused quite big static matrices in the memory with a large number of
zeros which just slow down the run of the whole process. To overcome this problem I decided
to split the big Kalman filter into three smaller one for each direction. As the directions are

CHAPTER 4. IMPLEMENTATION 12 / 22

independent from each other this will not cause any difference in the results but it will speed
up the computation significantly. In the following matrices the indices x, y, z are refering to
the Kalman filter in the defined direction. Please note that to reduce the unnecessary memory
consumption the FIXMATRIX_MAX _SIZE constant in the fixmatrix.h was set to 3.

The Kalman filter in the z direction is always compensated with the gravity in the computation
of the excitation and the sensor values.

1t 0 1t 0 1t 0
A,= |01 0 A,=10 1 0 A.=10 10 (4.2)
000 000 000

The system state transition model matrix is the implementation of Newton’s first law of motion.
It is very important to note that the rows containing the acceleration values are filled with zeros.
This means that the system will not be able to track the acceleration of the system as it will
delete the uncertainty of this value in each prediction step because of the equation 2.2. This
means that the relation of the matrices Q; and R,; will define the exact result of the Kalman
filter for the accelerations.

(4.3)

t2 t2
2m 2m
_ t _ t _
B,=|L B,=|L B, =
1 1
m m

3~ 31~ §%

To get the excitation of the system motion the throttle is converted using the LUT to thrust and
decomposed into the forces in the different directions. The impact of these forces are transferred
into the Kalman filter using the control input model matrix. This is the implementation of
Newton’s second law of motion.

The mass used in this computation is not the real mass of the copter anymore. As the throttle is
completely controlled by the altitude controller a virtual mass needed to be computed to handle
the difference between the real world and the system model. The real mass of the quadrotor is
0.304 [kg] and the computed virtual mass was set to 0.380 [kg]. This virtualization of the mass
can compensate the zero level difference between reality and the system model.

0.1 0 O 0.1 0 O 0.1 0 O
0 0 1 0 0 1 0 0 1

As already mentioned the initialization of the uncertainty is also required. As I can be certain in
the position and the velocity values after starting the module I set the corresponding covariance
values to a lower value. The motors produce significant vibration even in idle running. This
means that the initial value can be quite different from the actual acceleration. To overcome
this effect a higher value was set.

100 1
H.,= {0 1 0| H,=|0 H, =
00 1 0

o = O
_ o O
o O =

0 0
10 (4.5)
0 1

To transfer the state vector into the measurement space identity matrices are used as the
measurement values are computed independently from each other and the observation vector

CHAPTER 4. IMPLEMENTATION 13 / 22

is ordered the same way as the state vector.

005 0 0 005 0 0 100
Q=|0 075 0] Q=|0 07 0 Q=1{050 (4.6)
0o 0 1 0 0 1 00 2
005 0 0 005 0 0 01 0 0
R.=| 0 065 0/ R,=|0 0650/ R.=|0 05 0 (4.7)
0 0 3 0 0 3 0 0 35

The matrices Q and R define the default uncertainty of the prediction and the measurement
which is added in each step to the current uncertainty of the system which is tracked in P.
This means that the relation between these two matrices affects whether the prediction or the
measurement is considered to be more reliable.

The matrices for the directions x and y are defined in the same way because the observation
of these states and the basic model in the two directions are the same. As already mentioned
the uncertainty values of the acceleration are lost in each step. In this way the prediction value
damps the sensor measurement with a factor of about % As the noise generated by the rotor
rotation can be considered to be Gaussian this damping will produce acceptable results.

In direction z the values differ. The altitude controller produces higher peaks in this direction
as this is the controlled direction. Secondly, the sensor values are more accurate for this Kalman
filter except from the acceleration.

The basic idea to get these constants was to do static measurements to observe the noise
occurring on the output of the different sensors. Unfortunately, as the telemetry is the limiting
factor for this measurements no distribution tests could be made.

As an alternative method, standard deviation computation and the produced peaks were taken
into consideration. The acceleration values were very well reproducible but had quite big stan-
dard deviation even in static case. By the flow sensor the repeatability was sometimes quite
problematic as the sensor is very sensitive to light intensity and some settings produce signif-
icant change in the behavior. The biggest problem was the virtual position sensor in x and y
directions as the integrator timestamp might not be accurate. Based on these tests the only re-
liable measurement values were produced by the ultrasonic sensor which measured the altitude
of the quadrotor.

The constants in matrices R were computed based on the standard deviation and slightly
adjusted taking the peaks into consideration. After that process the matrices Q were set in an
experimental way. At the end both matrices were adjusted until the best results were produced.

CHAPTER 5. EVALUATION

14 / 22

5 Evaluation

Position in x direction

Cf) —
N —
E
X
c O L 1
9
."i)
o
o T -
N
—— Sensor
I . Kalman
T T T T I
0 20 40 60 80
Time [s]
Figure 5.1: Sensor and Kalman filter data of position in x direction
Position in y direction
m —
N —
E
>
s °7) ‘
."i)
o
[
N
—— Sensor
o { — Kalman
T T T T I
0 20 40 60 80

Time [s]

Figure 5.2: Sensor and Kalman filter data of position in y direction

CHAPTER 5. EVALUATION

Position z [m]

Velocity x [m/s]

Position in z direction

| —— Kalman

—— Sensor

T T T I
20 40 60 80
Time [s]

Figure 5.3: Sensor and Kalman filter data of position in z direction

Velocity in x direction

—

| |
§ 'Mﬂlrr’l "111 W l;w”’” ; \L ‘1/(],M

—— Sensor
—— Kalman

20 40 60 80

Time [s]

Figure 5.4: Sensor and Kalman filter data of velocity in x direction

15 / 22

CHAPTER 5. EVALUATION 16 / 22

Velocity y [m/s]

Velocity z [m/s]

Velocity in y direction

7

—— Sensor
—— Kalman

T T T I
20 40 60 80
Time [s]

Figure 5.5: Sensor and Kalman filter data of velocity in y direction

Velocity in z direction

—— Sensor
—— Kalman

20 40 60 80

Time [s]

Figure 5.6: Sensor and Kalman filter data of velocity in z direction

CHAPTER 5. EVALUATION 17 / 22

Acceleration in x direction

8 _
— 2 ‘
= u ‘
(2]
: I/ H di ‘H“
9
5 2.
[9) |
3
&gl
o | — Sensor
? 1 — Kalman
| T T T T
0 20 40 60 80
Time [s]
Figure 5.7: Sensor and Kalman filter data of acceleration in x direction
Acceleration in y direction
9 _
o
“ ll il 'M
S
; o =, Sk R T AR whftr I ',‘ \y
c
Q
S
9L o
8 T
0
<
<3 Sensor
I —— Kalman
| T T T T
0 20 40 60 80

Time [s]

Figure 5.8: Sensor and Kalman filter data of acceleration in y direction

CHAPTER 5. EVALUATION 18 / 22

Acceleration in z direction

% N I bl " TINin
o P VR ‘lh M’,.W.,L\ wnw ‘.‘LJ,',K.'" fh.'w,ll"w
) Q : Sensor

(I) 2IO 4I0 6I0 8IO

Time [s]

Figure 5.9: Sensor and Kalman filter data of acceleration in z direction

The figures from figure 5.1 to 5.9 show the evaluation results. First of all I must note that these
are very good results compared to other tests because sometimes the module produces much
worse results. This might be the result of some low-level modules not being initialized properly
or crashing during execution.

On the graphs in the first 40 [s] time the Kalman module produces no results because in that
time the module is waiting for the altitude controller to start. The sensor results show differences
because they are already active. At the end at about 90 [s| the quadrotor fell down and flipped.

The sensor values are always in local NED coordinate system while the Kalman module is
recomputing everything to the fixed global NED coordinate system. This produces differences
on the diagrams. The yaw angle of the quadrotor cannot be tracked accurately that is why it
was set to constant zero in both cases.

The acceleration results show the already described ~ % damping ratio in most cases. At the
end the altitude controller tries to compensate the decreasing maximal throttle by landing.
This way it produces an outlier in every direction as the copter is flipping.

The velocity and the position in z direction are reasonable. By takeoff the controller tries to
reach the required height as fast as possible. So it produces a strong controller output. The same
way it tries to compensate the decreasing maximal throttle at the end of the flight. The position
jumps to 3 [m] as the quadrotor senses the ceiling. The position tracking in the direction z is
very accurate. In the velocity some outliers might occur every time as there a virtual sensor
value is given to the Kalman filter which is a discrete derivation of the position.

In the x and y directions neither the Kalman filter nor the sensor model results are accurate.
Two basic problems can be noticed. First the sensor measurements are not very realistic. The

CHAPTER 5. EVALUATION 19 / 22

arena itself is at least 4 x 4 [m]. As I was flying back and forth in the arena the sensor model
produced only 1 - 1.5 [m] position change. This can be caused for example by the following
phenomena: If the module is not scheduled periodically by the core of the paparazzi, the motion
is too fast for the sensor to be tracked or the pattern is not recognizable for the flow sensor.

The second problem is that the directions x and y differ somehow. As I did multiple measure-
ments they always showed that in the y direction the Kalman is following the sensor values
closer than in the x direction. This was independent from the direction of the flight. This might
be caused by a scaling error or an improper configuration and/or calibration of the flow sensor.
Unfortunately trying to reconfigure the flow sensor did not brought any change so I suppose
that some low level modules are also involved in this conflict.

The Kalman filter takes the control input also into account. In this way it recognizes that the
sensor values cannot be real and indicates higher position change. Unfortunately, as the linear
system model implemented in the matrices A and B are not so close to the reality the corrected
positions are also not good enough for the quadrotor to be tracked accurately.

When 1 let the quadrotor fly back and forth in the x or in the y direction one can notice a
constant drift in the results in one direction. This is caused be some under sampling effect. As
the position is predicted through a double integrator and corrected through a single integrator
it will never be stable. The 15 [Hz| frequency which is the call frequency of the Kalman module
is unfortunately not enough to track fast motions and this causes a drift, similarly to the case
when I was flying the quadrotor back and forth.

CHAPTER 6. CONCLUSION 20 / 22

6 Conclusion

At the end of the documentation I would like to summarize the results of the project.

Unfortunately the Kalman filter module cannot be used for motion state tracking in this state.
This is the result of inaccurate sensor results and the unpredictable behavior of the quadrotor.

The constant drift in the flight of the quadrotor and the compensation signal influences the
results of the Kalman filter module so a proper initialization of the 0 angles for pitch, roll and
yaw is also required.

The linear system model cannot handle the tracking problem as the noise occurring in the
system is not Gaussian. To overcome this issue an extended Kalman filter might be the solution
which will require more computation power. In this case a better MCU might be required.

As all states of the copter are only observable through the current telemetry, an observation
process with higher throughput might also be needed.

Unfortunately the current state of the quadcopter and the implementation cannot fulfill the
goal of the project which was an accurate motion state tracking of the quadrotor but the results
might be helpful in the further development of the FINken project and a more robust motion
state tracking project in the future.

CHAPTER 7. ACKNOWLEDGEMENT 21 /22

7 Acknowledgement

I would like to take this opportunity to express my gratitude and regards to my supervisor,
Christoph Steup for his guidance, help and monitoring throughout the project. Especially for
repairing the quadrotor every time it produced some strange error.

I would also like to say thank you to Sebastian Mai for his help during the project, Christoph
Pahlke for the LUT construction and Martin Knoll for his Kalman filter example.

BIBLIOGRAPHY 22 /22

Bibliography

1] Inc., W. F. Kalman filter. https://en.wikipedia.org/wiki/Kalman_filter.
Version: 2015

[2] MAYER, M. : libfizkalman: Function reference. — https://github.com/sunsided/
libfixkalman/blob/master/FUNCTIONS.rst. Version: 2015

[3] SINGHAL, T. ; HARIT, A. ; VISHWAKARMA, D. N.: Kalman Filter Implementation on an
Accelerometer sensor data for three state estimation of a dynamic system.

[4] STILLER, P. D. . C.: Grundlagen der Mess- und Regelungstechnik. Engler-Bunte-Ring 21,
76131 Karlsruhe, Germany, 2006

https://en.wikipedia.org/wiki/Kalman_filter
https://github.com/sunsided/libfixkalman/blob/master/FUNCTIONS.rst
https://github.com/sunsided/libfixkalman/blob/master/FUNCTIONS.rst

	Abstract
	Contents
	Introduction
	Kalman filter
	Prediction
	Correction

	Theoretical model
	Nonlinear model
	Rotor model
	Force balance
	Momentum balance

	Modified model
	LUT for motor

	Implementation
	Libfixkalman
	Kalman filter implementation

	Evaluation
	Conclusion
	Acknowledgement
	Bibliography

