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Abstract

Being faced with an increasingly complicated world, decision makers need to
collaborate as well as consider multiple conflicting interest to tackle more dif-
ficult problems. The use of multi-objective optimisation algorithms has been
geared towards solving such problems, with many works attempting to in-
corporate specific decision makers preferences or exploring particular areas
of interest. The goal of this thesis is to provide a self contained method
to aid many decision makers when they are collectively confronted with a
multi-criteria optimisation problem and need to collaborate and consider each
others preferences. The main ideas for this thesis come courtesy of the 2020
Dagstuhl report, Supporting Problem Solving with Many Decision Makers in
Multi-objective Optimization [63]. Thus, this thesis incorporates a multi-level
structure, where we have two multi-objective optimisation tasks. The initial
level constitutes of the real-world problem to be solved, while the second level
serves as a mechanism to incorporate an element of fairness, which provides
solutions acceptable by all participating decision makers. The proposed ap-
proach is based on the NSGA-II algorithm, with the fast non-dominated sorting
approach being used to handle the gain and fairness level. The approach was
then employed on a number of simulated scenarios, featuring different num-
bers of decision makers and mindfully placed preference points to have greater
understanding of the potential of the concept. The results indicate that the
newly proposed Adaptive NSGA-II for Teams algorithm focuses the solutions
within an area defined by the preference points of the decision makers. This
results in superior convergence compared to the base NSGA-II, however, it
negatively effects the diversity of the solutions. Adaptive NSGA-II for Teams,
along with an additional filter to represent certain power dynamics between
the decision makers, form the structure of a unified concept which may help
many decision makers tackle a multi-objective optimization problem.
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1. Introduction

1.1. Motivation

Increasingly complex problems inevitably require multiple differing Decision
makers (DMs) and multiple objectives which are to be pursued [5][63]. Thus,
the methods to solve multi-objective optimization problems need to accommo-
date a situation when more than one Decision maker (DM) is involved in the
decision making process. This additional consideration carries with it many
additional challenges, some of which may be:

• Differing views on constraints and objective functions.

• Differing interests and motives for solving the problem.

• Differing negotiation tactics.

• Differences between the DMs in terms of influence or power.

In order to tackle the problem of multiple DMs in multi-objective optimization
this work will examine scenarios in which the DMs involved have been able to:

• Express their preferences in terms of the objectives.

• Agreed on a problem formulation.

• Agreed to participate in a negotiation in order to reach a joint decision.

Albeit challenging, the aforementioned set of requirements should be a reason-
able expectation for a group of DMs attempting to solve a particular problem
[63].

The problem of many DMs tackling a multi-objective optimization problem
has been addressed by other scholarly works. However, the ideas behind these
approaches have been either problem specific [37] or have focused on imple-
menting weighted methods [38]. In contrast, this approach focuses on the
ideas set up by the 2020 Dagstuhl report, Supporting Problem Solving with
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1. Introduction

Many DMs in Multi-objective Optimization [63]. Thus, it uses pre-existing
Preference points (PfPs) from the DMs in order to tackle the problem of mul-
tiple DMs. Additionally, the 2020 Dagstuhl report necessitates the use of
a multi leveled structure, where the second level consists of another multi-
objective optimization problem. Therefore, this approach will be a multi-level
multi-objective optimization concept, where the multiple DMs specify their
preferences as PfPs i.e. specific values for the objectives which are to be opti-
mised. The optimization process is regulated by the second level, which is an
additional mechanism to modify the behaviour of the solutions and get a set
of alternatives, inline with the participants interests.

1.2. Goals of this Work

This work aims to build upon the method described in the aforementioned
2020 Dagstuhl report [63]. Henceforth, its goals are:

• To formulate a complete implementation of the approach in the 2020
Dagstuhl report [63].

• To understand the behaviour of the algorithm, with respects to various
positioning of the PfPs, in terms of distance and domination.

• To propose improvements of the idea in the 2020 Dagstuhl report [63]
and examine their effectiveness.

• To examine the applicability of the algorithm when dealing with complex
problems consisting of many decision variables and objectives.

• To create an overall methodology for dealing with multi-objective opti-
mization problems with multiple differing DMs, with the ideas of this
thesis at its core.

• To enable this approach to also capture elementary power dynamics be-
tween DMs.

Thus, this approach aims to supply future DMs with a more flexible and mod-
ifiable set of tools, enabling them to make better decisions.

2



1.3. Thesis Structure

1.3. Thesis Structure

After the introduction of this thesis, Chapter 2 covers the theoretical back-
ground of the concepts used in the proposed approach. The fundamentals of
multi-objective optimization are conveyed along with a general explanation
of genetic algorithms. This is followed by a presentation of the evolutionary
algorithms used as the back bone of the thesis. Afterwards, an overview the
various metrics and test problems is presented, along with the fairness and
gain concepts from the 2020 Dagstuhl report [63]. The related work, cate-
gorised by its various similarities to the concepts of this thesis is conveyed in
Chapter 3. The exact implementation details and other proposed concepts are
explained in Chapter 4. Chapter 5 contains the details of the various tests and
experiments, as well as certain technical details regarding the implementation.
Following, the results and their interpretation is covered in Chapter 6. Finally,
Chapter 7 delivers a conclusion about the presented approach and the found
results whilst also including avenues for future research.
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2. Background

This chapter covers the fundamentals of the concepts applied in this thesis.
It can be used as reference for details of the underlying methods used in the
proposed approach.

2.1. Multi-Objective optimization

Given that the topic deals with multi-objective optimization it seems only
fitting that we start by specifying it in greater detail. Optimization refers
to finding one or more solutions which correspond to extreme values of one
or multiple objectives. While single-objective optimization is concerned with
optimising the value of just one objective, multi-objective optimization involves
a set of objectives which are subject to either minimisation or maximisation
[18, Chapter 2]. Mathematically, a multi-objective optimization problem can
be defined as

min/max(f(~x)) where: f(~x) = [f1(~x), ..., fm(~x)], s.t ~x ∈ S, (2.1)

where m is the number of objectives functions fi : S → Z. The ~x is a vector
of decision variables, such that ~x ∈ Rn. The set S is a feasible set formed by
constraint functions and is referred to as (feasible) decision space or (feasible)
search space. In multi-objective optimization the objectives constitute a multi-
dimensional space in addition to the decision variable space. This additional
space is called the objective space Z which is of great interest. For each
solution ~x in the decision space there exists a point in the objective space. The
aforementioned mapping takes place between the an n-dimensional decision
variable vector and and m-dimensional objective vector [18, Chapter 2]. A
representation of this mapping is illustrated in figure 2.1
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1

2

2

Figure 2.1.: Representation of the mapping between decision space and objec-
tive space

Although more prominent, single objective optimization involves greater infor-
mation loss than multi-objective optimization. This is due to the fact that most
real world problems are in fact multi-objective problems, often consisting of a
great many objectives. Thus, when one uses single objective optimization it
generally means that a multi-objective optimization problem was degenerated
into a single-objective one, which results in certain quality loss [18, Chapter
2] [4, Chapter 1]. This focus on multiple objectives means a greater focus on
trade-offs between the differing solutions, which is why the general idea behind
multi-objective optimization is to generate a diverse set of solutions with the
best trade-offs. These solutions can then be examined and analysed by a DM,
usually human, to make a final decision [18, Chapters 1 and 2] [4, Chapter 1].
Due to the presence of multiple objectives, a simple comparison is somewhat
difficult. Therefore, in order to compare the solutions and specify the set of
best solutions the concept of domination is employed. Mathematically speak-
ing, a solution ~x1 ∈ S is said to dominate a solution ~x2 ∈ S if both of the
following conditions are met:

• fi( ~x1) ≤ fi( ~x2) for all i = 1...m

• fj( ~x1) < fj( ~x2) for at least one j,

where the fi( ~xn) are the objective values for the ith objective with regards to
the solution ~xn. Additionally, the equations suppose a minimization problem

6
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i.e. where all the objectives are minimized. A solution is refereed to as a non
dominated solution if there is no other solution which dominates it. A non-
dominated set contains all the solutions which are not dominated by the other
solutions.

f1

f2

Figure 2.2.: Illustration of domination and a non-dominated set for a mini-
mization problem

With a better understanding of the concept of domination we can now define
Pareto optimality. Specifically, a solution ~x∗ ∈ S is said to be Pareto optimal
if there exist no other solution ~x ∈ S such that:

• fi(~x) ≤ fi( ~x∗) for all i = 1...m

• fj(~x) < fj( ~x∗) for at least one j,

where again the presented equations are for a minimization problem. The
non-dominated set of the entire feasible decision space S is the globally Pareto-
optimal set [18, Chapter 2] [4, Chapter 1].

Generating a Pareto-optimal set of solutions is the real focus when one tries to
solve multi-objective optimization problems. As stated before, due to the fact
that we end up with a set of solutions, we need a DM/DMs to chose the final
course of action [4, Part 2, Chapter 1]. Thus, based on the classification of the
methods by Hwang and Masud [31] and taking into account the participation
of the DM we have:

• Methods where no articulation of preference information is used (no-
preference methods).

7



2. Background

• Methods where a posteriori articulation of preference information is used
(a posteriori methods).

• Methods where a priori articulation of preference information is used (a
priori methods) .

• Methods where progressive articulation of preference information is used
(interactive methods).

Although not the only kind of classification for these methods, it is a very
prominent one which will additionally ease the explanation of the algorithm
presented in this thesis [4, Part 2, Chapter 1].

2.2. Evolutionary Algorithms

A common approach to tackle these multi-objective optimization problems is
by using Evolutionary Algorithms (EA) [35] [18, Chapters 2 and 4]. EAs are a
subset of metaheuristic algorithms. Metaheuristics are fairly general computa-
tional techniques that are typically used to solve numerical and combinatorial
optimization problems. When using metaheuristics one attempts to adapt the
probelm onto the various structural components that make up the metaheuris-
tic algorithms. They are usually applied to problems for which no efficient so-
lution algorithm is known, i.e. problems, for which all known algorithms have
an (asymptotic) time complexity that is exponential in the problem size. Due
to the difficult nature of such problems one can only hope to find approximate
solutions to the problem. In this regard, metaheuristics have usually been able
to find sufficiently good solutions for these difficult problems [53, Chapter 11].
Of the broader family of evolutionary algorithms, Genetic Algorithms (GA),
first introduced by J.H. Holland in 1975 seem to be one of the more popular
variants [9]. Other noteworthy concepts include Evolutionary Strategies, in-
troduced by Rechenberg and Schwefel [8][65]. Additionally, significant ideas
also include Evolutionary Programming, introduced by Fogel [26], as well as
Genetic Programming, which gathered great momentum thanks to John Koza
[3]. As the name might imply these algorithms are inspired form the Darwinian
notion of evolution and survival of the fittest. The main idea behind these ap-
proaches is to utilize a population of individuals (solutions in our case) along
with various selection mechanisms in order to obtain the "fittest" solutions to
a problem [22]. Although quite useful, these ideas seem to lack the popularity
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of the more prominent neural networks [12, Chapter 1]. Having shown that
there exist a great deal of variety when it comes to evolutionary algorithms,
certain mutual traits can be observed in many of these approaches. The basic
structure of an evolutionary algorithms consists of:

• A decision on how to model the problem/ encoding,

• A method to create an initial population,

• A fitness function to evaluate the individuals,

• A selection method on the basis of the fitness function,

• A set of genetic operators to modify the individuals,

• A termination criterion for the search, and

• The values for various parameters [53, Chapter 13] .

The aforementioned structure can be better observed in algorithm 1, which
showcases a generic evolutionary algorithm. The biological terms associated
with these algorithms and their properties are displayed in table 2.1 [53,
Chapters 11 and 12]. Given that EAs consist of multiple integral parts a
dedicated detailing of each of them will be provided. This short presentation
of the various underlying mechanisms will focus on the aspects which are
most relevant to the concepts and ideas covered in this thesis.

Algorithm 1: General Evolutionary Algorithm [53, Chapter 13]

1 t← 0 // initialize the generation counter

2 initialize pop(t) // create the initial population

3 evaluate pop(t) // evaluate population (compute fitness)

4 while NOT Termination condition do
5 t ← t+ 1 // count the created generation

6 select pop(t) from pop(t - 1) // select individuals based on fitness

7 alter pop(t) // apply genetic operators

8 evaluate pop(t) // evaluate the new population

9 end
10 return pop // population of evaluated individuals

9



2. Background

Biological term Meaning in context of EA

individual solution
fitness quality of solution
phenotype solution in objective space
genotype solution in decision space (representation)
gene one part of the genotype (attribute)
allele value of a gene
parent individual used to produce new individuals
mutation neighborhood move

crossover
operator used to produce new individuals by combining
information from two or more parents

child/offspring individual created by crossover/mutation
population set of solutions
generation iteration of an EA

Table 2.1.: Biological terms as they relate to ideas and concepts in EA [53,
Chapter 11]

Encoding \Modeling

Encoding or modeling is one of the most crucial elements when approaching a
problem. It refers to how the solutions/individuals of the optimization problem
are represented. An unfavorable encoding may, at worst, lead to no solution/s
being found or, at best, drastically increase the time it takes to arrive at an
acceptable solution [53, Chapter 12]. Although many problems can be encoded
in differing ways, certain encoding have been proven to be superior for specific
types of problems [10]. Generally, one of the most important aspects is the
relationship between the chosen encoding and the genetic operators. If the
encoding has a benefit of reducing the search space but is incompatible with
the genetic operators, the approach would seldom produce acceptable and
desirable results. In cases such as these, having a less efficient encoding that
works well with the genetic operators would result in better results overall.
Having touched upon the dilemmas and difficulties with regards to encoding,
there is no "cookie cutter" solution. However, there are general suggestions
and rules of thumb one could follow:

• Similar phenotypes should be represented by similar genotypes.

10
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• Similarly encoded candidate solutions should have a similar fitness.

• If possible, the search space should be closed under the used genetic
operators [53, Chapter 12].

Initial Population

As one may observe from algorithm 1, initializing a population is the first
step in any EA. Although various population initialization techniques have
been employed in EAs [36], the initialization of the population is usually
done randomly in order to ensure a wider spread of solutions and to mitigate
premature convergence issues [25].

Fitness and Selection

Fitness and how individuals are selected lies at the very heart of EAs. See-
ing as though the fitness values i.e. the objective functions are very problem
specific, here greater emphasis will be given on the purpose of the selection
mechanisms and how they relate to the ideas covered by this thesis. The basic
idea behind selection is that individuals that have better fitness values have
a higher chance of reproduction. How strongly these individuals are preferred
for producing offspring is referred to as selective pressure. Greater selective
pressure means that even small differences in fitness values between solutions
cause differing chances of procreation. A certain level of selection pressure is
needed for the proper use of EAs, seeing that without it, it is more akin to a
random search. Additionally, if the selection pressure is too high, we will have
a fast convergence on certain individuals without having had the opportunity
to explore the search space in a sufficient capacity. A good approach is to start
off with lower selection pressure to cover more areas of the search space and
then focus more on "zeroing in" on the right solution/s [53, Chapter 12].

In the literature there exist a great number of selection mechanisms with vary-
ing degrees of uses, advantages and disadvantages. However, here only Tour-
nament selection [48] will be presented as it is the only selection mechanism
employed in the approach covered in this thesis.

The standard tournament selection randomly samples k individuals with re-
placement from the current population of size n into a tournament of size k.
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2. Background

The idea is that individuals compete in these tournaments, where the individ-
ual who wins gets to be part of the mating pool and is involved in generating
an offspring for the next generation. Given that each tournament selects one
winner, n number of tournaments need to be carried out in order to select all
individuals for the next generation [24]. The size of the tournament k may
be used as mechanism to control the selective pressure. Smaller tournament
sizes means that there is a greater chance for weaker individuals to win out
and participate in the mating pool. Understandably, higher values for k means
that the selective pressure is greater, as the individuals with the best fitness
values will dominate most tournaments [53, Chapter 12]. A implementation
of a binary tournament selection algorithm is presented in algorithm 2.

Algorithm 2: Binary Tournament Selection [48]

Data: The population P = { ~x(1), ..., ~x(k)},
The tournament size S ∈ {1, 2, 3, ..., k}
Result: population after selection P ′

1 P ′ ← ∅ // initialize an empty mating pool

2 for i← k do
3 G← s // randomly chosen individuals from P

4 g ← G′ // select the best individuals from G

5 P ′ ← P ′ ∪ {g} // get set of winning solutions

6 end
7 return P ′ // population of individuals for the mating pool

The tournament selection is perhaps the most widely used selection mecha-
nism. Its popularity is due to many factors including:

• Its selection pressure can be adjusted easily.

• It is simple to code, efficient for both non-parallel and parallel architec-
ture [49].

• It has time complexity O(n) [30].

• It does not require sorting the whole population first [40].

These factors have greatly contributed in the prominence of the tournament
selection as one of the most common selection mechanisms used in EAs [24].
However, one notable issue arises when individuals are sampled with replace-
ment, thus making it possible to have the same individual sampled multiple
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times, i.e. the multi-sampled issue [67]. In the paper Xie et al. [67] endeavored
to get a greater understanding of the multi-sampled issue. In their analysis
they concluded that for common tournament sizes of 4 or less, it is not ex-
pected to see any duplicate individuals in anything except when dealing with
very small populations. Even for tournaments of size 7, it is not expected to
see duplicates when the population size is greater then two hundred. Thus,
one can conclude that the multi-sampled issue rarely occurs and is not of great
concern, should the population size be big enough. Another wider known is-
sue is the notsampled issue, where, due to the random nature of the process
the individuals with the best fitness have a chance to never be sampled and
therefore never participate in the tournaments [32]. This problem has been
addressed by Sokolv and Whitley [58] with their introduction of an unbiased
tournament selection method which forces the sampling of each individual at
least once. This work employees the initial and base approach for its purposes.

Genetic Operators

Genetic operators are applied to a certain part of the individuals in a gener-
ation in the hopes of creating new, more favorable individuals. These genetic
operators can be categorised based on the number of individuals involved, thus
we have:

• Mutation or variation operators, where only one parent is involved.

• Crossover operators, when we have two parents involved.

• Recombination operators, where more than two parents participate.

An important facet of genetic operators is that they preserve the closed search
space recommendation outlined previously. This is especially important to
encoded permutation problems such as the traveling salesman problem [16]
[71], where the genetic operators should be able to preserve this permutation
property of the encoding [53, Chapter 12]. Given the depth of this topic
and the limited scope of this work, a focus on crossover operators will be
given, especially as how they relate to the main ideas of this thesis. The
best known and simplest crossover operator is the one-point crossover. As
defined in Computational Intelligence by Kruse, Mostaghim et al. [53] the
one-point crossover is when "a cut point is chosen at random and the gene
sequences on one side of the cut point are exchanged between the two (parent)
chromosomes". A more general formulation can be a n-point crossover where
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we have n number of cuts. The one-point crossover can be understood in a
visual capacity from figure 2.3. Simulated binary crossover (SBX) is a version

1 7 548

3 6 9 2 7 1 7

54

8

3 6 9

2 7

Figure 2.3.: Simple representation of a one-point crossover

of the one-point crossover for a vector of real numbers, as is the case in this
thesis [20] [2]. The procedure of computing the offspring x(1,t+1)

i and x
(2,t+1)
i

from parents x(1,t)i and x(2,t)i using SBX, as represented in Agrawal and Deb [2]
is:

1. A spread factor βi is defined as the ratio of the absolute difference in
offspring values of the parents:

βi =

∣∣∣∣∣x(2,t+1)
i − x(2,t+1)

i

x
(2,t)
i − x(1,t)i

∣∣∣∣∣ (2.2)

2. A random value u between 0 and 1 is generated.

3. From a specified probability distribution function, βqi is calculated so
that the area under the curve from 0 to βqi matches the number u. The
probability distribution used to create an offspring is:

P (βi) =

0.5(ηc + 1)βηci if βi ≤ 1

0.5(ηc + 1) 1

βηc+2
i

otherwise
(2.3)
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4. The two offspring x(1,t+1)
i and x(2,t+1)

i are generated based on the following
equations:

x
(1,t+1)
i = 0.5[(1 + βqi)x

(1,t)
i + (1− βqi)x(2,t)i ]

x
(2,t+1)
i = 0.5[(1− βqi)x(1,t)i + (1 + βqi)x

(2,t)
i ]

(2.4)

The SBX has two distinct properties:

• The difference between the offspring is in proportion to the parent solu-
tions i.e. closer parents produce closer offspring.

• Near-parent solutions are monotonically more likely to be chosen as off-
spring than solutions distant from the parents [20].

The first property of SBX can be modified using the distribution index ηc.
Greater values of this distribution index gives a higher probability for creating
solutions that are nearer to their parents, while a low value gives a higher
probability for creating solutions that are further away from their parents.
Another interesting characteristic of the SBX is that in the beginning we have
a random search: children are very far from parents, as the parents are far
from each other. However, at the end by achieving a certain convergence, we
would have local search: parents are very close to each other and this leads to
a local search by the children. This is a very interesting property of SBX that
seems to be quite useful [20].

Figure 2.4.: The probability density function for creating offspring under an
SBX [20]
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Apart from the SBX, a mutation operator is also employed. For the purposes of
this work the polynomial mutation operator will be used [19]. The probability
of mutation is based on a small mutation probability pm. Should a variable
mutate, its value is changed to that of a neighbouring value. The selection
of the neighbouring value is based on a polynomial probability distribution,
characterised by having its mean at the current value and its distribution is
based on a distribution index n. To execute a mutation a perturbance factor
δ is also necessitated, such that:

δ =
c− p
4max

, (2.5)

where 4max represents the maximal allowed perturbance, p is the parent value
and c is the mutated value. The mutated value is calculated using the pertur-
bance factor δ:

P (δ) = 0.5(n+ 1)(1− |δ|)n (2.6)

The aforementioned distribution ranges δ ∈ (−1, 1). To create a mutated value
c, one first generates a random number u ∈ (0, 1). This number can then be
used to calculate the perturbance factor δ.

δ̄ =

{
(2u)

1
n+1 − 1 if u < 0.5

1− [2(1− u)]
1

n+1 if u ≥ 0.5
(2.7)

The mutated value is calculated as:

c = p+ δ̄4max (2.8)

Termination conditions

Stopping criteria similar to the encoding have been overshadowed by the more
interesting elements of EAs. However, they are integral parts in the proper
use of EAs. Traditionally, there have been three common stopping criteria:

16



2.3. Multi-Objective Evolutionary Algorithms

Figure 2.5.: Probability distribution for creating a mutated value for continu-
ous variables [19]

• When a specified number of generations is reached.

• When a specified number of evaluations is reached.

• The chance of achieving significant changes in the next generations is
excessively low [54].

An additional stopping criteria that is widely used is the maximal time budget
criteria ,where the algorithm runs for a predetermined amount of time and
returns the final solution/s. [29]. Additional stopping criteria have been used,
based on:

• Derived termination criteria

• Operator-based termination criteria

• Cluster-based termination criteria

• Performance indicator criteria

• Progress indicator criteria [29]

For the purposes of this thesis a more traditional and simple stopping criteria
was used, that of specified number of evaluations.

2.3. Multi-Objective Evolutionary Algorithms

In literature there a certain algorithms which have gained prominence both as
adequate algorithms to solve real world problems and as benchmarks for other
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algorithms. These include the likes of SPEA-II introduced by Zitzler et al.
[68], ε-MOEA introduced by Deb et al. [27], MOAE/D introduced by Zhang
and Li [43]. However, as mentioned in the introduction, this thesis makes
use of another well known algorithm, the NSGA-II algorithm introduced by
Deb et al. [15]. The algorithm served as an improvement of its predecessor,
the NSGA algorithm [60]. NSGA-II has a better time complexity of O(mn2)

compared to NSGA’s O(mn3), where m is the number of objectives and n

the number of individuals. Additionally, the newer version has an improved
mechanism to ensure better diversity. Being the backbone of the approach,
the NSGA-II algorithm will be expanded upon in greater detail.

The basic premise of both NSGA and NSGA-II is the non-dominated sorting
mechanism, where the algorithm derives its name from. This mechanism uses
two simple ideas:

• Divide the population into several fronts.

• Select individuals from the best fronts one after the other i.e. only the
solutions in the best fronts that can fit the defined population can survive
[15] [53, Chapter 13].

Fast non-dominated sorting (FNDS), used in NSGA-II, computes a domination
count np and a set of solutions Sp for each solution ~x(p). The domination count
of a solution refers to the the number of solutions which dominate the solution
~x. The set of solutions Sp contains the solutions are dominated by the solution
. After determining both np and Sp, solutions will with a domination count of
zero are the first one added to the front F1. Afterwards, for each member in
F1, we iterate through its set of solutions Sp and reduce the domination count
for each solution in the set by one. Thus, solutions which were dominated only
by the solutions contained in F1 now themselves have a domination count of
zero and are added to the front F2. This procedure is then executed until all
the solutions are assigned to a front [15] [53, Chapter 13].

Given the limited size of the population and the possible varying size of the
fronts, should a front be unable to entirely fit in the population, a selection
mechanism, called crowding distance, is used in order to determine which solu-
tions should be included. Crowding distance is a measure of the density of the
area (in the objective space) around the objective vector of the solution. The
crowding distance is a rough indicator telling us how crowded the area (in the
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objective space) around the objective vector of the solution is. It is calculated
by computing the normalized distances of each solution to its neighbouring
solutions (in the objective space). This distance for each of the l solutions in F
is stored in D = [d1, ..., dl]. Solutions with higher crowding distances are pre-
ferred as it means they are in less crowded areas and therefore easier for DMs
to differentiate from other solutions. This ease of differentiation from other
salutations is the main driving point behind sufficient diversity metrics and the
desire to have greater diversity in the final set of solutions [15] [53, Chapter 13].

Having covered the underlying mechanisms we can now define the NSGA-II
algorithm proper. NSGA-II combines non-dominated sorting and crowding
distance to rank solutions into one algorithm. The NSGA-II algorithms starts
off by initialising a certain, predetermined number, of solutions. As with
many other EAs, it then uses tournament selection and SBX in order to
generate a number of offspring Q(t). The offspring are combined with the
previous generation of solutions, which always contains the best individuals
found so far. This new combined population R(t) is however double the
intended size. With non-dominated sorting solutions are ranked into different
fronts Fi, The fronts are then added to the mating pool starting from the
best ranked one. Should a front not be able to entirely fit due to a restriction
on the population size, crowding distance is used to sort out which solutions
should be added to the mating pool. The NSGA-II algorithm is shown, in
pseudocode, in algorithm 3 [53, Chapter 13] [15].

The NSGA-II algorithm has, as many approaches, its own advantages and
disadvantages. The introduction of a crowding distance mechanic to have
greater diversity is one of the advantages of this approach, as it aids in
greater differentiation of the solutions and therefore helping DMs make better
decisions. One of the notable downsides is that this very diversity mechanic
could cause the algorithm to lose upon convergence. Namely in later stages
non-dominated and Pareto-optimal solutions could lose its place in the final
population to non-dominated but also non Pareto-optimal solutions, which
boasts better crowding distance. However, NGSA-II still seems to be a
indispensable workhorse in the multi-objective optimization toolkit [15] [18,
Chapter 6].
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Algorithm 3: NSGA-II [15]

1 t← 0 // initialize generation counter

2 initializeP (t) // create population with µ individuals

3 Q(t)← ∅ // create empty offspring set

4 while termination criterion not reached do
5 evaluateP (t) // evaluate population based on fitness functions

6 FP (t) ← FNDS(P (t)) // Sort the population into front using FNDS

7 Q(t)← Offspring(P (t), FP (t)) // produce offspring based on front

evaluation, tournament selection, SBX and polynomial mutation

8 evaluateQ(t) // evaluate the offspring based on fitness functions

9 R(t)← Q(t) ∪ P (t) // combine parent and offspring population

10 F ← FNDS(R(t)) // sort the joint population into fronts using

FNDS F = {F1, F2, ..., Fi}
11 P (t+ 1)← ∅ and i← 1

12 while |P (t)|+ |Fi| ≤ µ // do this until parent population is filled

13 do
14 P (t+ 1)← P (t) ∪ F [i] // add the sorted solutions to the parent

population starting with the best front and continuing from

there

15 i← i+ 1 // increase i to attempt to add the next front to the

population

16 end
17 CD(Fi) // calculate crowding distance of solutions in the front Fi

18 Sort(Fi, CD) // sort Fi using crowding distance

19 P (t+ 1)← P (t) ∪ Fi[1 : (µ− |P (t+ 1)|)] // add the sorted solutions

to the parent population

20 t← t+ 1 // increment generation counter counter by 1

21 end
22 return non-dominated individuals from P (t)
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2.4. Evaluation Metrics for Multi-Objective
Evolutionary Algorithms

In more general terms the approaches devised to tackle multi-objective opti-
mization problems are broadly evaluated based on:

• How close the discovered non-dominated solutions are in terms of the
Pareto front

• How diverse are the discovered non-dominated solutions

These two criteria are more commonly refered to as convergence and diversity
[15, Chapter 9]. These two criteria are the main evaluation concepts concern-
ing multi-objective evolutionary algorithms and ideally are both satisfied to a
sufficient extent [42]. To evaluate these two characteristics many evaluation
metrics have been established, measuring convergence, diversity or both. Here
for the purposes of this thesis, we will be making use of all three.

Convergence based metric

In terms of convergence, Generational distance (GD) metric will be employed
[64]. The premise behind this metric is to measure the average distance from
the final set of non-dominated solutions to a previously known and established
true Pareto front. Mathematically, GD can be defined:

GD =
(
∑|S|

i=1 d
p
i )

1
ρ

|S|
, (2.9)

where |S| is the number of non-dominated solutions and dpi is the euclidean
distance from the ith non-dominated solution to the closest solution from
the true Pareto front; typically the variable ρ is taken as 2. Understandably,
the goal is to minimize the distance i.e. lower values for the metrics are
preferred. The problem with this method is that it requires knowing the true
Pareto front in advance. This issue has been tackled wit the 7-point method
where generating equidistantly spaced points along each objective between
the minimum and maximum possible values are generated and subsequently
used to approximate the GD values [57].
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Diversity based metric

For the diversity metric, a metric similar to GD will be used, namely, Inverted
Generation Distance (IGD). IGD measures the average distance from the true
Pareto front to the set of non-dominated solutions [13]. Mathematically, IGD
is defined:

IGD =
(
∑|P |

i=1 d
p
i )

1
ρ

|P |
, (2.10)

where P is the true Pareto front and dpi is the euclidean distance from the
ith solution from the true Pareto front to the closest non-dominated solution.
Here as well, ρ is commonly defined as 2. Like the GD metric, smaller values
mean better diversity. The difference between GD and IGD can be visually
seen on figure 2.6

Figure 2.6.: GD and IGD metric

Convergence and Diversity based metrics

For the metric that combines both convergence and diversity the Hypervolume
(HV) will be used [70]. It calculates the volume (in the objective space) covered
by members of the found non-dominated set of solutions S. For each solution
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i ∈ S, a hypercube is constructed with reference point W and the solution i
as the diagonal corners of the hypercube [18, Chapter 9] [70]. Thereafter, a
union of all HVs is calculated as follows:

HV =

|S|⋃
i=1

vi (2.11)

The reference point W can usually be found by constructing a vector of worst
objective function values. However, attention should be placed on the place-
ment of this point as it can greatly affect the behaviour of the metric. This is
one of the disadvantages associated with HV [18, Chapter 9]. For HV, unlike
aforementioned GD and IGD metrics, higher values are desirable. A visual
rendition of HV can be observed on image 2.7. Computing the HV, especially

Figure 2.7.: HV metric

for higher dimensional problems can be quite difficult, due to its high com-
putational complexity, which was proven by Bringmann and Friedric to be
#P -hard [28]. Given its complexity there have been a number of algorithms
devised in order to more efficiently calculate this metric. For the purposes of
this thesis the method of faster HV-based search using Monte Carlo sampling
will be employed. The main idea behind this approach is based on the as-
sumption that the exact HV indicator values are not vital. What is of greater
importance is whether the contribution towards the HV metric of one individ-
ual is larger than that of another individual. To this end, samples of objective
vectors are randomly drawn and the proportion of objective vectors that are
solely dominated by a specific individual represents an estimate for the HV
contribution of this individual. In their paper Ehrgott at al. show that a
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considerable amount of computational resources can be saved with the new
approach in comparison to using algorithms for exact HV computation [21].

2.5. Fairness and Gain

The concept of fairness and gain and their use in a upper additional layer or
"level" of a problem, as described by the 2020 Dagstuhl report [63], is the
main theoretical idea that the approach in this thesis builds upon. The key
concepts of the report is to employ the idea of PfPs, mainly inspired from
Risto et al[55], as well as employ the two new additional objectives of fairness
and gain, based on similarity [63].

Within the report certain established conditions are stipulated in order to use
the proposed methods. As stated before the DMs put forward PfPs, consisting
of their preferred values, within objective space. How the DMs initially for-
mulate the preference point was attempted to be answered within the confines
of this thesis, however the approaches and concepts examined proved of little
universal use. The report outlines certain brainstorming methods but for the
purposes of this thesis the assumption will be that the DMs can more or less
ascertain their preference and formulate it as a vector of values [63].

At the heart of the report is the concept of this upper level with the two
objectives fairness and gain. The basis of modeling gain and fairness is the
notion of losses with respect to the ideal preferred solution a DM may obtain,
termed Pareto regret [39]. In the case that we define the loss by means of the
euclidean distance to preference vectors, the Pareto regret can be computed
as:

PRj(x) =
m∑
i=1

(fi(x)− rj), (2.12)

where j is the index of the DM, j = 1, .., d, m is the number of objectives, x
is the solution selected and r is the preference point of DM j. Following, we
will introduce concepts derived from the notion of Pareto regret with respect
to the DMs PfPs. The average Pareto regret of a solution x is defined as the
average of the Pareto regrets of all DM:

APR(x) =
1

d

d∑
i=1

(PRi(x)) (2.13)
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Inequality in Pareto Regret of a solution x is defined as:

IPR(x) =
d∑
i=1

|PRi(x)− APR(x)| (2.14)

The aforementioned APR is defined as gain and IPR as fairness. Given the
formulation of these objectives, we wish to minimize both of these objectives
[63]. Thus, the intent is to use the upper level objectives in order to modify the
behaviour of the overall optimization process. For the purposes of this thesis
this will involve a systematic removal of the dominated solutions with regards
to the this fairness and gain level, from the population.

2.6. Scalable Test Problems for Evolutionary
Multi-Objective Optimization

Given that the focus of this work is more towards the understanding how the
gain and fairness concepts from the 2020 Dagstuhl report [63] behave, the
underlying problem used for the testing will be a scalable test problem, widely
used in the literature, namely DTLZ2. DTLZ2 is described in the paper by
Deb et al. [1] and is an already established problem, especially as it relates to
the NSGA-II algorithm. DTLZ2 mathematically is described as follows:

min(f1(~x)) = (1 + g(xm))(cos(x1π/2)... cos(xm2π/2) cos(xm1π/2),

min(f2(~x)) = (1 + g(xm))(cos(x1π/2)... cos(xm−22π/2) sin(xm−11π/2),

min(f3(~x)) = (1 + g(xm))(cos(x1π/2)... cos(xm−22π/2),

...

min(fm(~x)) = (1 + g(xm))(sin(x1π/2),

with

g(xm) =
∑
xi∈xm

(xi − 0.5)2,

0 ≤ xi ≤ 1, for i = 1, 2, ..., n

Where ~x is a vector constructed with k = n −m + 1 variables. The Pareto-
optimal solutions correspond to xi = 0.5 for all xi ∈ xm and all objective
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function values must satisfy
∑m

i=1 f
2
i = 1. The DTLZ2 as tackeld by the

NSGA-II algorithm, for 3 objectives is represented visualy on figure 2.8

Figure 2.8.: The NSGA-II Population on Test Problem DTLZ2 [1]
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The concept of fairness has always been relevant, however, one can notice a
trend in recent years in how this ideal has been woven into certain computa-
tional intelligence concepts. The majority of scholarly works which make use
of fairness have predominantly been focused on fairness in terms of accurate
representation or in terms of underlying biases against certain segments of the
population. Such works include the likes of the Amazon recruiting AI that
turned out to heavily favor male applicants [14], racial discrimination debate
about the COMPAS recidivism risk assessment tool used by U.S. courts [23]
as well as exploring biases in training data [46] [7]. However noble and note-
worthy, this type of fairness is not really in the same vein as the fairness that
serves as a driving mechanism in this thesis i.e. although same in spirit, quite
different in many other aspects. Indeed, when one examines the directions
and the nature of the proposed approach it is inevitably linked to the more
established uses of evolutionary multi-objective optimisation, that of optimal
resource allocation and more reasonable and fair decision making. These two
concepts could be defined as the most tangible and understandable aspects of
fairness which shape our daily lives to a considerable extent [34].

This promptly brings us to a very interesting and somewhat controversial claim
that, at the time of writing, there really exists no other concept or idea that
is comparable to the one outlined in the 2020 Dagstuhl [63] report and sub-
sequently explored in the thesis. However, the nature and mechanisms of the
approach also do not exist in a vacuum and various other aspects of it can
be seen in differing methods and approaches. Of these, some employ multi-
objective optimisation with a more generalized concept of fairness, other make
use of fairness with regard to solving a specific problem and others still em-
ploy certain aspects of group decision making or a use of preference/reference
points, in varying capacities.
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3.1. Multi-Objective Optimisation and Fairness

In the work of Tia et al [62], a framework is designed to solve a negotiation
problem with multiple objectives and multiple DMs. The approach is divided
into two stages, where initially every DM attempts to optimize the objectives
on their own. Afterwards, the fair allocation approach is employed based on
Sperner’s lemma [59], where every DM chooses his/her gain from the given
resource allocation scheme based on his/her own preference, subject to the
total quantity of the resources available and by the agreement of all other
DMs [62].

In the paper by Limmer et al [44]. the authors tackle the problem of how to
regulate the price of electricity at electric vehicle charging stations in a way
that most people do not experience too much of a price difference within a
certain time frame i.e. they defined the unfairness as the difference in price in
time interval i and all of the previous intervals. Based on their experimental
findings they concluded that too much difference in price in a certain time
frame caused a great deal of unfairness in terms of the price the consumer
pays and resulted in declining and unhappy customer base. Additionally, a
focus just on fairness, understandably, had a detrimental effect on the profit.
The paper makes use of a multi-objective approach using a modified version of
NSGA-II, such that one of the objectives is fairness, while the other is profit.
They have ascertained that by considering the fairness as a second objective,
besides the profit and selecting the solution with the highest expected profit,
the fairness can be significantly increased without too much of an impact on
the profit. [44].

A search based approach to fairness analysis in requirement assignments to
aid negotiation, mediation and decision making by Finkelstein et al. [69], the
idea revolves around balancing requirements for certain features between the
customers. Thus, contrary to the proposed approach that uses real values and
can deal with continuous objective functions, the primary focus is on whether
or not a specific feature is present i.e. it deals with a binary encoding. In the
paper the authors make use of the NSGA-II algorithm in order to optimise a
multi-criteria problem where the objective functions are derived based on the
number, the value and the cost of the requirements fulfilled for each customer
[69]. This work is particularly interesting and of note seeing as it could be
modified and adapted to further expand the concept in this thesis and enable
it to also tackle problems which are better modeled with a binary encoding.
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In Illustration of fairness in evolutionary multi-objective optimization by
Friedrich, Horoba and Neumann fairness is defined based on the concept in-
troduced by Laumanns et al.[41]. They based it on the number of offspring a
solution has created. In the paper by Laumanns et al.[41] they have claimed
that having a more equalised balance between the number of offspring from
all of the individuals of the population can lead to favorable results [52]. They
conclude in their work that algorithms typically favor certain regions which are
problematic for simple plateau functions which cannot be optimized without
fairness or with fairness in the objective space, but with an approach which
tackles fairness in the decision space. The approach in this work is based on
establishing a certain area of interest with the use of PfPs, however, the paper
by Friedrich, Horoba and Neumann [52] alludes that a restrictive nature can
be detrimental when dealing with some optimisation functions.

3.2. Multi-Objective Optimisation and
Preference Points

In large part the use of scalarization functions have been employed in order
to convert a multi-objective optimisation problem into a single objective one.
However, Kaisa Miettinen and Marko M. Mäkelä present in their paper on
scalarizing functions in multi-objective optimization present fifteen scalariza-
tion function which could be implemented in various multi-objective optimisa-
tion problems [51]. Their work focus on reference point-based scalarizing func-
tions which additionally expand the opportunities for DMs to express their
preferences. It is easily seen that this paper influenced the main ideas be-
hind the ones in the 2020 Dagstuhl report. In the paper however, Miettinen
and Mäkelä additionally marry these preference based concepts with certain
classification and weighted ideas. Although the concepts are similar, the one
of pure preference of the DMs as one Preference point (PfP) is interestingly
absent from the paper in favor of more complex scalarizing preference based
concepts.

In terms of PfPs Lahdelma, Miettinen and Salminen [55] introduced the Ref-
SMAA method for supporting discrete multi-objective decision making involv-
ing many DMs. Here, the aspirational goals of the DMs are represented as
reference points in the reference point space and the preferences are repre-
sented by achievement functions. Additionally, they argue that that these
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reference points are easier for DMs to conceive and understand and that they
are superior to weight vectors, given it is really difficult to give a more ob-
jective and accurate information on the weights themselves. Their presented
method additionally can also easily handle problems where the criteria values
are not precisely known. In this case the uncertain criteria are represented
by stochastic distributions. The approach makes use of a PfP space and on
the computation of a reference acceptability index in this space. It also uses
a central reference point for each alternative, corresponding to the typical ref-
erence point of a DM preferring that alternative. Thus, it is able to identify
good compromising solutions in a situation with multiple conflicting DMs [55].
Within the confines of this work we see again very similar concepts and ideas
as in this thesis. The use of preference/reference points and a separate space
where these points are additionally employed. However here we have addition-
ally complexities in terms of the reference point space which are different to
the ones from the 2020 Dagstuhl report. Based on the concept in the paper,
one can generate new PfPs and then use them along with the DMs original
references to devise new reference points and calculate the aforementioned
index and central reference point. This novel idea of possible changing the
beginning reference points in an attempt to better the overall process has been
additionally incorporated into this thesis.

Mohammadi, N. Omidvar and Li [50] proposed an approach of using user-
preference based points in tandem with an EA, that relies on decomposition
strategies to convert a multi-objective problem into a set of single-objective
problems. They also implement the PfPs in a way to focus on key areas of
interest. They show that by using their approach they are able to achieve
adequate solutions in a computationally more effective fashion and overcome
additional drawbacks caused by domination. The algorithm R-MEAD was
evaluated using two decomposition approaches, namely the weighted-sum and
the Tchebychef approach [47]. Specifically, their proposed algorithm has a
faster convergence as compared to MOEAD [43], especially when the number
of objectives was higher. Here, we see PfPs mixed with additional scalarising
functions in an effort to both combat the problems of domination and give
greater importance to a specific area of interest.

Concerning reference points and their uses, the paper by Deb and Sundar [17],
offers very interesting use cases. Specifically, Deb and Sundar use PfPs to
isolate areas of interest, thus making it easier for the DM to reach a conclusion
based on preferences. They additionally specify that a DM may specify more
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then one preference and finding solutions within these preferences is of greater
importance to the DM. Furthermore, Deb and Sundar also show how these
methods might be used in order to tackle problems with a great number of
objectives (ten in the case of the paper) [17]. This scholarly work has striking
similarity on the proposed approach, from its use of PfPs to its focus on areas
of interests. Interestingly, it also specifies in its conclusion that future attempts
should be made in the direction of focusing and defining these areas of interests
and possibly employing an interactive process to fine tune them, so that the
DMs can obtain better and satisfactory solutions in a faster and more efficient
manner. Ideas one can find within the confines of this thesis.

The work of Branke and Deb [33] proposed a modified and controllable biases
sharing approach, where by specifying a reference direction (or a linear utility
function), a set of Pareto-optimal solutions near the best solution of the utility
function could be ascertained. The implementation consisted of projecting all
solutions on to the linear hyper-plane, where crowding distance values were
calculated based on the ratio of the distances of neighbouring solutions in
the original objective space as well as the projected hyper-plane. Therefore,
solutions which lie on a plane parallel to the specified hyper-plane would have
a comparatively large crowding distance and therefore would be preferred. It
was shown that when employing this approach it converged near to the optimal
solution to the utility function for some two and three-objective optimization
problems. The approach required the users to specify the reference direction
and a parameter which influenced the desired degree of diversity. In this
approach we again see PfPs as well as a mention of an external plane, similar
in some regards to the fairness and gain level discussed in the 2020 Dagstuhl
report [63]. Indeed it also presented an interesting way of tackling the problem
of diversity. A diversity approach based on this was additionally considered for
the concept within this thesis, however it was difficult to adapt and therefore
left out.

In a similar work by Branke et al. [56] we are introduced to the guided multi-
objective EA (G-MOEA). This approach makes use of user preferences which
were then used to modify the definition of dominance. Specifically, it allowed
the DMs to specify for each pair of objectives acceptable trade-offs. Thus, one
DM could specify that certain gains in one objectives were worth sacrifices in
another. Although the idea works well for two objectives and was well utilized
for distributed computing uses, having to provide all pair-wise information in
a problem with a higher number of objectives seems difficult. One can notice
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that Branke and Deb have had a significant impact on this aspect of multi-
objective optimisation, especially since the former was a part of the authors
behind the 2020 Dagstuhl report [63]. However in this paper we are again
confronted with very worthwhile concepts bottlenecked by the human DMs
and their limitations. In this thesis attempts were therefore made to somewhat
minimize the effect of this drawback.

3.3. Multi-Objective Optimisation and Many
Decision Makers

The work of Bechikh et al. [6] focuses on a complete system of decision making
with multiple DMs. Although not uncommon to see similar approaches of this
nature, this one employs an interesting set of ideas in its own right. In the paper
we are presented with an agent-based negotiation support system to aggregate
the conflicting preferences of the DMs before the beginning of a optimisation
process. This negotiation approach aids the DMs to adjust and amend their
preferences through a number of negotiation rounds. The system output is a
set of social preferences which will be used subsequently in a preference-based
evolutionary multi-objective optimisation algorithm, such as the one presented
in this work. The paper by Bechikh et al. [6] is presented as it offers some
additional ways in order to come up with the intended preferences of the DMs
in the initial step of the approach. What is also interesting in this approach
is that it implements elements of "fuzziness" where the DMs can also specify
additional regions of acceptance. In their paper Bechikh et al. [6] also bring up
once again the question of areas of interest and also prioritize the optimisation
and solution seeking within these areas. In short, this paper has interesting
ideas that could be implemented together with the ideas presented in this
thesis as a way to initially have a truly fair and reasonable set of points in
order to facilitate better results.

In conclusion, there are many noteworthy works beyond the confines of these,
which, for time and size considerations, were not presented. The assortment
of related works here aims to shed light on the various interesting aspects
embodied in the ideas covered by this work and to explore various fields in the
realm of multi-objective optimisation. It also helps demonstrate the unique
nature of this approach and the difficulty in finding a suitable alternative for
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comparison, a great testament to the creative minds behind the 2020 Dagstuhl
report [63].
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4. Methodology and Approach

Within the confines of this chapter are the main ideas of this thesis, along
with additional details with regards to their exact structure. The concepts of
fairness and gain along with their exact implementation are defined, followed
by the introduction of a adaptive mechanism to overcome some of the draw-
backs from the initial approach. The chapter concludes with a presentation on
a concept to capture the power dynamics of the DMs as well as a primer on
how one may apply these ideas in a practical decision making scenario.

4.1. NSGA-II for Teams

Understandably the exact structural details of the concept underlined of the
2020 Dagstuhl report [63] will be presented first, specifically how one deter-
mines the fairness and gain values for a solution. As in section 2.5 the fairness
and gain are derived from the Pareto Regret:

PRj(x) =
m∑
i=1

d(fi(x), rj), (4.1)

where j is the index of the DM, j = 1, .., d, m is the number of objectives,
x is the solution selected, r is the PfP of DM j and d is an euclidean simi-
larity function. Following, the two objectives of Average Pareto Regret and
Inequality in Pareto Regret are computed as:

APR(x) =
1

d

d∑
i=1

(PRi(x)) (4.2)

Inequality in Pareto Regret of a solution x is defined as:

IPR(x) =
d∑
i=1

|PRi(x)− APR(x)| (4.3)
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The aforementioned APR is defined as Gain and IPR as Fairness. Given the
formulation of these objectives, we wish to minimize both of these objectives
[63]. Having again specified the new objective functions concerning fairness,
what will follow is a presentation of the steps and working mechanisms behind
the modified NSGA-II for Teams Algorithm.

The basic premise is to have a initial multi-objective problem along with addi-
tional user preferences, combined into a Pm×n matrix, where m is the number
of DMs involved or their preferences and n is the number of objectives of the
base problem. This initial problem, is considered to be solved by the NSGA-II
algorithm [15]. On top of this, in a sense, is another algorithm, which uses fast
non-dominated sorting on the newly calculated fairness and gain objectives for
each solution. Afterwards, inspired by the nature of the NSGA-II algorithms,
solutions are added to a fair population Fp. The fair population is created by
adding all the solutions of a front, starting from the best front, until Fp has
at least as many solutions as the initial population in the algorithm, an idea
similar to that of NSGA-II and their front by front inclusion into the mating
pool. The fair population Fp is then the one passed onto the initial problem
solving algorithm so that it may continue solving the original problem with
a population based on these, fairer solutions. This filtering process is done
each generation, so the solutions get modified in an alternating fashion, being
modified by both the attempt to solve the underlying optimisation problem
as well as the fairness and gain objectives. The pseudocode for this specific
filtering in terms of fairness is shown in algorithm 4 and the newly defined
NSGA-II for Teams is presented in algorithm 5, with the changes marked in
red.
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Algorithm 4: Fairness Filter
Data: F = {~f(~x(1)), ..., ~f(~x(l))} the objective vectors for all l individuals,

Pm×n matrix, representing the DMs preferences, inital population
size N

Result: Fair population Fp
1 Fp ← ∅ // initialize the filtered population as an empty set

2 PRl×m ← zeros(l,m) // initialize an empty l ×m matrix to hold all the

Pareto regret values

3 GAINl×1 ← zeros(l, 1) // initialize an empty vector for the Gain values

4 FAIRNESSl×1 ← zeros(l, 1) // initialize an empty vector for the

Fairness values

5 foreach objective vector i do
6 foreach preference j // this refers to the number of PfPs or DMs, m

7 do
8 PRij = Pregret(F [i], Pj∗) // calculate the Pareto regret for a

objective vector in terms of the specified preference,

according to equation 2.12.

9 end
10 GAINi ← APR(PRi∗,m)// calculate the Average Pareto regret for

a objective vector, according to equation 4.2.

11 FAIRNESSi ← IPR(PRi∗, GAINi)// calculate the Inequality in

Pareto Regret for a objective vector, according to equation 4.3.

12 end
13 Fobj ← {~f (1)

obj ,
~f
(2)
obj ...,

~f
(l)
obj} // ~f

(i)
obj = {GAIN(f(~x(i)), FAIRNESS(~x(i))}.

14 F ← FNDS(F,Fobj) // Use FNDS to sort the set of objective vectors F

based on their corresponding fairness and gain objectives from Fobj.

F is the set of fronts, which consist of the objective vectors,

F = {F1,F2,F3...Fl}
15 i← 1

16 while |Fp| ≤ N do
17 Fp ← Fp

⋃
F [i] // add the sorted solutions to the fair population

starting with the best front and continuing from there

18 i← i+ 1 // increment i

19 end
20 return Fp
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Algorithm 5: NSGA-II for Teams
1 t← 0 // initialize generation counter

2 initialiseP (t) // create population with µ individuals

3 Q(t)← ∅ // create empty offspring set

4 while termination criterion not reached do
5 evaluateP (t) // evaluate population based on fitness functions

6 P (t)← Fairness filter(P (t)) // filter the population in terms of

fairness

7 FP (t) ← FNDS(P (t)) // Sort the population into front using FNDS

8 Q(t)← Offspring(P (t), FP (t)) // produce offspring based on front

evaluation, tournament selection, SBX and polynomial mutation

9 evaluateQ(t) // evaluate the offspring based on fitness functions

10 R(t)← Q(t) ∪ P (t) // combine parent and offspring population

11 F ← FNDS(R(t)) // sort the joint population into fronts using

FNDS F = {F1, F2, ..., Fi}
12 P (t+ 1)← ∅ and i← 1

13 while |P (t)|+ |Fi| ≤ µ // do this until parent population is filled

14 do
15 P (t+ 1)← P (t) ∪ F [i] // add the sorted solutions to the parent

population starting with the best front and continuing from

there

16 i← i+ 1 // increase i to attempt to add the next front to the

population

17 end
18 CD(Fi) // calculate crowding distance of solutions in the front Fi

19 Sort(Fi, CD) // sort Fi using crowding distance

20 P (t+ 1)← P (t) ∪ Fi[1 : (µ− |P (t+ 1)|)] // add the sorted solutions

to the parent population

21 t← t+ 1 // increment generation counter counter by 1

22 end
23 return non-dominated individuals from P (t)
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Due to the nature of the approach and its dependence on the initial preferences
of the DMs as well as the added element of fairness, it seems necessary to create
a metric that will enable us to better understand the various nuances within the
examined concept and to have a single value in order to evaluate the fairness
of otherwise hard to understand situations. To that end, a metric of fairness
was devised which draws its basis on the already established concepts behind
the GD and IGD metrics. This metric measures the average distances in the
second level, between the final population and the origin [0,0]. Given that the
origin is the ideal point for the objectives of the second level, that the front is
unknown to us as well as the fact that we are not concerned with the diversity
in terms of fairness and gain, this seems like an adequate measure of how "fair"
a given set of final solutions are. Thus the fairness value of a solution in the
final population can be defined as:

FV (x) = d(O, x), (4.4)

where d(O, x) is an euclidean distance similarity function between the coordi-
nate origin [0,0] and the fairness and gain values of the solution x . Following
from this, the average of all the fairness values from the final population can
be defined as:

AFV =
1

m

m∑
i=1

FVi, (4.5)

where m is the size of the final population i.e. the number of solutions and
FVi is the fairness value for the ith solution. Given the nature of the metric
and that it is based on the idea behind the GD and IGD metrics, it is only
fitting that this is a metric which we wish to minimize.
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4. Methodology and Approach

4.2. Adaptive NSGA-II for Teams

Upon preliminary testing certain shortcomings of the initial concept were ob-
served. Specifically, should the placement of the preferences be further distant
from the front (in a negative sense) and the number of preferences sufficiently
large, the effect from the fairness level will cause issues in terms of convergence.

Figure 4.1.: Illustration of a Problematic Scenario Regarding the NSGA-II for
Teams Algorithm

This can be visually observed in image 4.1. Although the solutions are close
to the front, due to the nature of the approach and the positioning of the
DMs these solutions will not move towards the front any further. This is
problematic as the goal is still optimisation of the initial base problem and
having the possibility of this occurring seems like a undesirable downside that
must be addressed.

To this end a additional step of repositioning or moving the PfPs was included.
The repositioning of the PfPs can be done at anytime, however as we will see
certain times appear to be better then others. Additionally, the repositioning
can be either sanctioned by the DM or be left parley to the algorithm, thus
making this a interactive algorithm that can be automated in a way. The
repositioning of the PfPs follows a simple idea. At a certain time we calculate
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4.2. Adaptive NSGA-II for Teams

the distances from the non-dominated solutions to the PfP of every DM. We
then find the closest non-dominated solution to each of the PfPs. Should
the closest solution be dominating the DMs PfP, it becomes that DMs new
PfP. This simple idea will enable the PfPs to be pushed towards the front,
thus helping with the convergence and enabling a better set of solutions to be
presented to the DMs. Moreover, this should also have a positive effect on the
fairness metric as DMs that are further away due to domination will inevitably
get closer to the front and each other. A more detailed representation in
pseudocode is given in algorithm 6 and the exact implementation within the
new algorithm is given in algorithm 7.
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Algorithm 6: Preference Repositioning
Data: F = {~f(~x(1)), ..., ~f(~x(l))} the objective vectors for all l individuals,

Pm×n matrix, representing the DMs preferences, nv evaluation
number, can also be a list of numbers

Result: Reference point matrix Pm×n
1 Dk×m ← zeros(l,m)

2 Fnd ← FNDS(F ) // Using FNDS, get the non-dominated solutions

3 Fnd ← Fnd[F1 : Fm] // Incorporate more then the first front to avoid

convergence to a single point, should one solution be non-dominating

4 if evaluationnumber = nv then
5 foreach objective vector i do
6 foreach preference j // this refers to the number of PfPs or DMs,

m

7 do
8 Di,j ← d(Fnd[i], Pj∗) // calculate the distances from the ith

non-dominated solution vector ~x(i) to every PfPs, with the

use of euclidean distance similarity function d

9 end
10 end
11 foreach preference j // this refers to the number of PfPs or DMs, m

12 do
13 rnewj ← F [min(D∗j)]// identify the new possible PfPs based on

the shortest distance

14 if rnewj ≺ Pj∗ // check the found solutions whether they dominate

the previous PfPs

15 then
16 Pj∗ ← rnewj // change the PfPs to the newfound one

17 end
18 end
19 end
20 return updated Pm×n matrix
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Algorithm 7: Adaptive NSGA-II for Teams
1 t← 0 // initialize generation counter

2 initialiseP (t) // create population with µ individuals

3 Q(t)← ∅ // create empty offspring set

4 while termination criterion not reached do
5 Pm×n ← Preference repositioning(Pm×n) // check if there exist

better reference points

6 evaluateP (t) // evaluate population based on fitness functions

7 P (t)← Fairness filter(P (t), Pm×n) // filter the population in terms

of fairness

8 FP (t) ← FNDS(P (t)) // Sort the population into front using FNDS

9 Q(t)← Offspring(P (t), FP (t)) // produce offspring based on front

evaluation, tournament selection, SBX and polynomial mutation

10 evaluateQ(t) // evaluate the offspring based on fitness functions

11 R(t)← Q(t) ∪ P (t) // combine parent and offspring population

12 F ← FNDS(R(t)) // sort the joint population into fronts using

FNDS F = {F1, F2, ..., Fi}
13 P (t+ 1)← ∅ and i← 1

14 while |P (t)|+ |Fi| ≤ µ // do this until parent population is filled

15 do
16 P (t+ 1)← P (t) ∪ F [i] // add the sorted solutions to the parent

population starting with the best front and continuing from

there

17 i← i+ 1 // increase i to attempt to add the next front to the

population

18 end
19 CD(Fi) // calculate crowding distance of solutions in the front Fi

20 Sort(Fi, CD) // sort Fi using crowding distance

21 P (t+ 1)← P (t) ∪ Fi[1 : (µ− |P (t+ 1)|)] // add the sorted solutions

to the parent population

22 t← t+ 1 // increment generation counter counter by 1

23 end
24 return non-dominated individuals from P (t)
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4.3. Some Decision Makers are Fairer than
Others

Given the very nature of fairness and keeping in mind the situations that this
approach may be used to tackle, a way to show the various influences and
power dynamics of the DMs, seems warranted. In this regard several different
approaches were tried and tested. These ideas focused on attempting to have
weights attached to each DM. The naive approach was to weight the distances
according to the DMs influence. It was assumed that greater weights would
cause greater Pareto regret values and thus the solutions would need to move
closer to the more influential DM in order to minimize this. This along with a
great number of variants provided disappointing results, often overemphasizing
even a slightly more influential DM or barely having any effect. Therefore, a
filtering approach was developed that seems to give more satisfactory results.

The approach is based on creating a weighted centroid from all of the PfPs and
their respective weights (when dealing with the improved approach, the final
PfPs are used). Afterwards, the distance from all solutions to this centroid is
calculated. Subsequently, based on the predefined number of solutions, agreed
upon by the DMs, the solutions furthest away are removed until the desired
number of solutions remains. In this regard the solutions remaining will be
skewed more towards the more influential DMs. A visual illustration of this is
given in figure 4.3. With regards to the actual weight for the preferences/DMs
certain ideas were examined, however the works such as that of Baek and
Prabhu [5] along with other works in the literature provide more information
on the matter. Therefore, the actual weight assignment will be let up to the
discretion of the DMs. Although not necessarily complex the pseudocode is
provided in algorithm 8

This additional filter applied at the end enables control of the number of al-
ternatives needed to be discussed, when all DMs are equal. Subsequently, it
also is able to capture the power dynamics of the decision makes in a very
elementary way. Should the alternative be far from the most influential of
DMs it is promptly eliminated and not even put up for discussion. The idea
is inspired from the organisation of the Roman senate during the time of the
Roman republic where speaking order and topic selection was decided upon
power and seniority within the political structure [11].
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Figure 4.2.: Illustration of Weighted Filtering

With regards to the actual weights themselves, although left up to the discre-
tion of the DMs it is nevertheless recommended that they be defined as such
that their sum adds up to 1. Should the weights be derived in terms of other
means that use a differing numbers scale, normalisation is advised.
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Algorithm 8: Modified Influences
Data: F = {~f(~x(1)), ..., ~f(~x(l))} the objective vectors for all l individuals,

Pm×n matrix , representing the DMs preferences, ns number of
solutions to remain, W weight matrix with the corresponding
influence weights

Result: updated set of solutions F = {(~x(1)), ..., (~x(l))}
1 Fnew ← ∅ // initialize the new set of solutions as an empty set

2 C1×n ← zeros(1, n) // initialize an empty vector for the centroid

3 D1×n ← zeros(l, 1) // initialize an empty vector for the distances

4 C1×n ← the sum of all rows of (Pm×n ◦ W ) // Following element wise

matrix multiplication the resulting matrix is then summed up in terms

of its rows so we end up with a single PfPs

5 foreach objective i do
6 Di ← d(~x(i), C1×n) // calculate the euclidean distance for each

objective to the weighted centroid C1×n

7 end
8 Fs ← sort(F,Di) // sort the objective vectors according to the distance

to the centroid

9 i← 1

10 while |F| < ns do
11 Fnew ← Fnew

⋃
F [i] // add the closest solutions

12 i← i+ 1 // increment i

13 end
14 return updated set of solutions Fnew = {(~x(1)), ..., (~x(l))}
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4.4. On Real World Application

The mechanisms described in the previous sections were envisioned to be com-
ponents of a broader concept in order to support multiple DMs. This section
will present how these ideas can be combined into a unified approach.

As can be observed on figure 4.3 the decision support process consist of several
steps which are simple and easily explainable to the DMs. The process starts
by submission of PfPs by the DMs. How these PfPs were derived is left up
to the DMs and although some methods were explored in order to help the
DMs come up with PfPs, this is beyond the scope of this thesis. Additionally,
it is assumed that every DM submits only one PfP, however, a DM also may
submit more multiple. This is a more advanced version and the DMs therefore
need to additionally agree on how the influence weights would then be derived,
should they be needed.

Furthermore, the DMs may specify if the preferences should be known to the
other DMs or not. The obfuscation of the preferences may be useful when the
DMs are leaders of different countries and wish to protect strategic information.
The public display of PfPs may be useful in democracies as a way to show
transparency and have more insight into the objectives of each of the political
parties. Given the state of politics, should this method be used, the PfPs
would still most likely remain hidden from public view.

After the preferences are given the algorithm may begin its process of searching
for the optimal solutions. At a certain number of iterations or after every
iteration, a change of the PfP can be attempted. Should new and better
points be found the DM can be prompted if they wish to make the change.
However, the DMs or some of them may also specify that they wish to accept
all changes and automate this step. In this regard the concept can be either
an interactive approach or it can be a priori approach, which grants greater
flexibility. As soon as the algorithm finishes and delivers the final set of non-
dominated solutions found, they can be filtered either in accordance with the
influence of the DMs or to simply reduce the number of options discussed.
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5. Implementation and
Experiment Design

This chapter serves to specify the implementation details of the proposed ap-
proach as well as to describe the structure and reasoning behind the experi-
ments.

5.1. Implementation

The implementation was carried out in MATLAB R2018 version 9.4.0.813654
[45], specifically with the use of the PlatEMO platform for Evolutionary Multi-
Objective Optimization version 2.6 [61].PlatEmo is a comprehensive software
platform for researchers to properly benchmark existing algorithms and for
practitioners to apply selected algorithms to solve real-world problems [61].
The basic sequence diagram of running a general multi-objective optimization
algorithm by PlatEMO is given in figure 5.1.

Using the intuitive Graphical user interface (GUI) (shown in figure 5.2) users
can additionally specify which performance indicator to calculate. The result-
ing mean and the standard deviation of the performance indicator value are
shown. Furthermore, the best result in each row is shown in blue, and the
Wilcoxon Rank-Sum test [66](with 5% significance level) result is labeled by
the signs ‘+’, ‘–’ and ‘=’, which indicate that the result is significantly better,
significantly worst and statistically similar to the result in the control column,
respectively. This way of presenting the data will also be shown throughout
the result analysis as it is an efficient and convenient way to view the results
of the experiments.

Although very versatile, the platform had to be additionally modified to serve
the purposes of this thesis. To implement the necessary alterations, the al-
ready present NSGA-II algorithm included in PlatEmo, was augmented with
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the additional function in a similar vain to what is shown in the pseudocode
examples in sections 4.1 and 4.2. Further alterations were made to the prob-
lem classes objects where an additional public property was added, that of the
PfPs.

Figure 5.1.: PlatEMO Sequence Diagram of Running a General Multi-
Objective Optimization Algorithm [61]

Figure 5.2.: PlatEMO GUI
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5.2. Experiment Design

Given the strong relationship between the positioning of a PfP and the final
outcome, it proves only prudent to try to provide answers and clarity on the
relationship between the two. Specifically, greater understating of how the
various positions of the PfPs to one another influence the final population of
solutions is needed. To that end three general categories of experiments were
conducted :

• Exploration of the behaviour of the NSGA-II for Teams algorithm.

• Comparison between the NSGA-II for Teams and Adaptive NSGA-II for
Teams algorithms.

• Examining the behaviour of the Adaptive NSGA-II for Teams algorithm
when faced with complex cases.

In all of these experiments, the building blocks consist of individual cases. A
case is a specific arrangement of points, in an attempt to replicate specific
cases that may arise during real-world implementation. These cases corre-
spond to a single problem with regards to the PlatEMO platform. Most cases
will be examined by conducting a set of 50 runs with 10,000 Evaluations per
run (FEs) and an initial Population size (N) of 100. The cases that deviate
from this will be promptly noted. The Number of objectives (M), Number
of decision variables (D) and DMs will be specified on a case by case basis.A
group of these cases that is called a scenario and it is used in order to compare
the results of similar cases. In order to focus on the most important aspects
the exact numerical values of the PfPs will be presented in the annex.

Exploration of the Behaviour of the NSGA-II for Teams
Algorithm

The exploration of the various intricacies of the initially proposed concept will
consist of examining the effects, as they relate to distances between the PfPs
of the DMs, as well as their relative positioning with regards to domination.
In order to simplify the analysis and not be overwhelmed by the many various
cases that can occur, attention will be placed on problems with only two ob-
jectives. This allows for an easier visualisation of the PfPs and thus a better
understanding of their influence on the final results. To that end five scenarios
will be showcased, consisting of multiple different cases:
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Figure 5.3.: Scenarios 1 and 2

• Scenario 1: 3 cases of 2 PfPs with varying levels of distance between
them, with all the PfPs on the Pareto front.

• Scenario 2: 2 cases of 5 PfPs all on the Pareto front with different dis-
tances between the PfPs.

• Scenario 3: 3 cases of 2 PfPs with varying levels of distance between
them, with 1 PfP on the Pareto front and the other one being dominated.

• Scenario 4: 2 cases of 5 PfPs, split into a case with 3 dominated PfPs
and 2 dominated PfPs. The other PfPs lie on the Pareto front.

• Scenario 5: cases of 5 PfPs, split into a case with 4 dominated PfPs and
1 dominated PfP. The other PfPs are on the Pareto front.

The number of DMs has been arbitrarily capped at five DMs, as its seems
like a reasonable number of DMs and a realistic number of people who could
effectively negotiate and discuss without too much strain. The cases will be
compared to the initial NSGA-II algorithm executed on a DTLZ2 problem
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Figure 5.4.: Scenarios 3, 4 and 5

consisting of two objectives (M = 2) and two decisions variables (D = 2).
The metrics employed will be the GD, IGD, HV (with a reference point at
[1,1]) and the fairness metric (only applicable for the NSGA-II for Teams
algorithm).

Comparison Between the NSGA-II for Teams and Adaptive
NSGA-II for Teams Algorithms

Having discovered the possible negative effects on some cases and in attempt to
rectify this a improved approach was suggested where the DMs could update
their preferences in a logical manner. This set of experiments will only be con-
ducted on the scenarios consisting of points that do not lie on the Pareto front
and will be compared against the initial concept. The five times a repositioning
attempted PfP would be made is represented in table 5.1. The scenarios will
be compared to the initial algorithm executed on a the same testing scenarios.
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The metrics employed will be the GD, IGD, HV (with a reference point at
[1,1]), as well as the fairness metric. Given the experimental nature as well as
the objectively beneficial decision to reposition ones PfPs it is assumed that
all the DMs will accept the repostioning, even though they may choose not to
do so when practically using the approach.

Notation Meaning

F1 NSGA-II for Teams
FF1 Adaptive NSGA-II for Teams, move at 5000 evaluations
FF2 Adaptive NSGA-II for Teams, move at 5000 and 7500 evaluations
FF3 Adaptive NSGA-II for Teams, move at 5000, 7500 and 9370 evaluations
FFF Adaptive NSGA-II for Teams, move after each generation

Table 5.1.: Variants for an attempted move

Examining the Behaviour of the Adaptive NSGA-II for
Teams Algorithm when Faced with Complex Cases

Inspired by the paper by Deb and Sundar [17] the following experiments will
be conducted by examining the effects that the new Adaptive NSGA-II for
Teams algorithm when confronted with a considerable number of objectives
and decision variables. The problem will again be DTLZ2 and can be organized
into a broad group of two scenarios. The first one will serve as an exploration
into the well known limits in terms of the concept of domination. It will thus
be defined by various cases which all have six objective (M = 6) and 6 decision
variables (D = 6). The cases have been organized in the following manner:

1. 5 PfPs, 4 on the Pareto front and 1 being dominated - M6DM5D1ND4.

2. 5 PfPs, 1 on the Pareto front and 4 being dominated - M6DM5D4ND1.

3. 5 PfPs, 3 on the Pareto front and 2 being dominated - M6DM5D2ND3.

4. 5 PfPs, 2 on the Pareto front and 3 being dominated - M6DM5D3ND2.

These second scenario is meant to push the algorithm to its limits. Examining
the effects when we have ten objectives (M = 10) and ten decision variables
(D = 10). This scenario will consist of two cases:

1. 5 PfPs, all on the front - M10DM5F.
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2. 5 PfPs, randomly generated, where the value for each objective falls
between [0,1] - M10DM5.

The metrics employed will be GD, IGD, HV (with a reference point at [1,1]).
The goal here is to see whether the algorithm will exhibit the same behaviour,
given more complex circumstances.
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This chapter covers the results from the experiments carried out as well as
offering specific explanations to the outcomes observed.

6.1. Results Analysis of NSGA-II for Teams

Untangling the relationship between the placement of the reference points and
the endmost results requires a detailed examinations into various different
reference point scenarios. As stated before we will examine problems with two
objectives in the initial level. This will enable us to visualise the reference point
placement and thus draw better conclusions on the nature of their relationship
to the behaviour of the algorithm as a whole.

What will follow is an examination of various differently defined scenarios that
were constructed in ordered to get a better understanding of the approach. The
examination will encompass the five scenarios mentioned in the previous chap-
ter. The analysis will consist of two plots, the first showcasing the positioning
of the PfPs and one randomly chosen set of solutions from the 50 iterations
carried out to showcase what the resulting set of solutions may look like. The
second plot will consist of solutions, approximating the Pareto front of the
fairness and gain level. This front was obtained by amalgamating all of the
50 runs carried out and by using FNDS, only showcasing the non-dominated
solutions. This was done in an attempt to have a better understanding and
to more easily showcase the Pareto front of the fairness and gain level. These
plots will additionally be supplemented by a table containing the results as
they relate to the GD, IGD, HV and fariness metrics. The data in the table
will follow the same principle of data presentation outlined in the PlatEMO
platform [61] i.e. the best result in each row is shown in blue, and the Wilcoxon
Rank-Sum test (with 5% significance level) result is labeled by the signs ‘+’,
‘–’ and ‘=’, which indicate that the result is significantly better, significantly
worst and statistically similar to the result in the control column, respectively.
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6.1.1. Examining the Effect that Distances Between the
Preference Points has on the Final Solutions

The first two scenarios examined hope to shed light on the effect that distance
between the reference points has. Drawing our attention on scenario 1 and
examining the figure 6.1 one can see that the solutions tend to be concen-
trated between the PfPs, as expected. Examining the gain and fairness level,
a peculiar shape of the fronts can be noted. This shape could be caused to
the fact that we have two PfPs on the front which seems to be causing the
solutions to gravitate in a narrower space, towards a central point between
the PfPs. The accompanying table for scenario 1, depicts that the approach
has a positive impact on GD values, surpassing those of the base NSGA-II
algorithm, most likely caused by enabling the algorithm to focus more on a
specific area of interest. An interesting observation is that the closest points do
not have the best convergence values, implying that some amount of distance
between the PfPs influences the convergence in a positive way. The reason
behind this seems unclear, however, it might be caused by the very restrictive
space coupled with the crowding distance mechanism, inherent to the NSGA-II
algorithm. The diversity, showcased by IGD, seems to be greatly diminished,
compared to the initial NSGA-II algorithm, an anticipated result, given the
more restrictive nature of the approach. The IGD values seem to also be pos-
itively influenced by greater distances between the points, most likely due to
the greater space made available to the solutions to spread over. In terms of
HV values, it points that in terms of overall quality, the points furthest away
from each other seem to be the best. Here, the modified algorithm, expect-
edly does worse then the NSGA-II algorithm. It would seem that the superior
gain in terms of convergence does not really make up the shortcomings from
diversity. Observing the fairness aspect of scenario 1, it seems that the fairness
values of the cases where the DMs were closer translated to a better fairness
value as opposed to the case where they were further apart.

Moving on to scenario 2 and focusing our attention on figure 6.2, we can again
observe that the solutions tend to be gravitating towards a space enclosed by
the PfPs. The two differing cases showcase that the solutions, as expected, try
to find a central space between all of the PfPs. This is again illustrated in the
gain and fairness levels, where a more crescent shape of the front can be seen.
This shape is likely indicative of the greater area which the solutions could
occupy and still be non-dominated in terms of fairness and gain. The table for
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scenario 2, shows that, once again, we have a positive impact on GD values,
compared to the NSGA-II algorithm. Here the effects are again most likely
caused by the algorithm’s proclivity to focus on a constrained area of interest.
The IGD values are once more inferior to the base algorithm, favoring the
case with greater distance between the PfPs. The HV, as expected, is worse
off than the initial algorithm, again favoring points further away from one
another. Here, the fairness values, line up better with expectations, showing
that the more closely positioned points have the best values.

In conclusion, the algorithm tends to restrict the solutions within an area
outlined by the PfPs, as intended. The shape of the gain and fairness front
seems largely indicative of the number of PfPs and the area they enclose as
it relates to the true Pareto front. The fairness values seem to indicate that
they are largely dependent on the position of the PfPs i.e. their distances to
each other, with some minor influences by their relative position to the front
and the size of the restricted area. In terms of convergence and diversity, the
restrictiveness of the points, noticeably improves the GD values but causes
expected worsening of the IGD values. This lack of diversity is also reflected
in the HV values, which are underwhelming compared to those of the NSGA-II
algorithm.
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(a) PfPs, scenario 1 (b) Gain and fairness, scenario 1

Figure 6.1.: Scenario 1

Problem N M D FEs F1 NSGAII
GD

DM2FC 100 2 2 10000 9.7563e-6 (1.20e-5) + 8.9649e-5 (2.28e-5)
DM2FF 100 2 2 10000 1.1216e-5 (3.32e-6) + 9.5135e-5 (2.61e-5)
DM2FM 100 2 2 10000 5.9847e-6 (3.92e-7) + 8.9380e-5 (2.78e-5)

+/-/= 3/0/0
IGD

DM2FC 100 2 2 10000 3.2848e-1 (1.07e-1) - 5.2856e-3 (2.22e-4)
DM2FF 100 2 2 10000 8.0060e-2 (1.31e-4) - 5.2254e-3 (2.06e-4)
DM2FM 100 2 2 10000 2.3820e-1 (3.25e-4) - 5.3091e-3 (2.38e-4)

+/-/= 0/3/0
HV

DM2FC 100 2 2 10000 1.7799e-1 (5.43e-2) - 3.4648e-1 (2.50e-4)
DM2FF 100 2 2 10000 2.9158e-1 (9.13e-5) - 3.4648e-1 (1.82e-4)
DM2FM 100 2 2 10000 2.1890e-1 (1.51e-4) - 3.4644e-1 (2.28e-4)

+/-/= 0/3/0
Fairness

DM2FC 100 2 2 10000 1.24408e-1 (4.1e-3)
DM2FF 100 2 2 10000 7.052e-1 (1.23e-2)
DM2FM 100 2 2 10000 3.6490e-1 (5.291e-3)

Table 6.1.: Metrics for scenario 1
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(a) PfPs, scenario 2 (b) Gain and fairness, scenario 2

Figure 6.2.: Scenario 2

Problem N M D FEs F1 NSGAII
GD

DM5FF 100 2 2 10000 7.0966e-6 (7.23e-7) + 9.2121e-5 (2.40e-5)
DM5FC 100 2 2 10000 5.6058e-6 (2.04e-7) + 9.0107e-5 (1.74e-5)

+/-/= 2/0/0
IGD

DM5FF 100 2 2 10000 4.1148e-1 (8.69e-6) - 5.2146e-3 (2.38e-4)
DM5FC 100 2 2 10000 4.4516e-1 (1.15e-5) - 5.3157e-3 (2.45e-4)

+/-/= 0/2/0
HV

DM5FF 100 2 2 10000 1.3779e-1 (4.02e-6) - 3.4648e-1 (2.16e-4)
DM5FC 100 2 2 10000 1.2293e-1 (5.77e-6) - 3.4643e-1 (2.09e-4)

+/-/= 0/2/0
Fairness

DM5FC 100 2 2 10000 3.6321e-1 (6.817e-4)
DM5FF 100 2 2 10000 5.9613e-1 (1.284e-4)

Table 6.2.: Metrics for scenario 2
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6.1.2. Examining the Effects that Differences in Terms of
Domination has on the Final Solutions

Moving on from merely examining what effects distance has here we wish to
also incorporate the fact that certain PfPs could also be dominating others.
Beginning this analysis with scenario 3, we draw our attention to figure 6.3.
This scenario serves as a transitional one, encapsulating both the influence of
distance and domination. One aspect is immediately evident when examining
the solutions they are noticeably further away from the front. This seems to
be additionally compounded by the distance between the PfPs on and away
from the Pareto front. This behavior was anticipated, as the points attempt
to occupy an area between all PfPs. An interesting observation can be made
whilst examining the case DM2D1ND1M, where the solutions seem to be closer
to the front, than to the middle point between the points. This effect is likely
caused by the influence of the base NSGA-II algorithm and its attempt to push
the points towards the Pareto front of the initial problem. Observing the gain
and fairness level, it seems that this front shape embodies both the crescent
shape, similar to when we have multiple PfPs on the front, and the expected
constrained shape, as seen by cases consisting of two PfPs. The resulting shape
seems to be the result of the conflict between the push and pull from the base
as well as the fairness and gain level. Examining the corresponding table 6.3 we
can see that this unfavorable distancing from the Pareto front has negatively
impacted the GD values in all the cases. The values are drastically worse than
the ones from the NSGA-II algorithm, losing one of the favorable advantages
that the approach had. The reduced values are in line with the observation
from figure 6.3, where as the distances widen the GD values plummet more
and more. The IGD values also exhibit the usual trend: growing better as
the distances between PfP grow larger. This additionally confirms that the
area available to the solutions by the PfPs is a key influencing factor to the
diversity. The HV values, marred by the lack of convergence are significantly
inferior to those of the NSGA-II algorithm. Finally the fairness values shows a
well anticipated result, growing worse as the distances between the PfPs grows
larger.

Continuing to scenario 4, we again begin by studying figure 6.4 to gain a
more intuitive understanding of the scenario at hand. The solutions appear
again negatively effected by the dominated PfPs. This undesirable effect seems
to be additionally influenced by the ratio between the non-dominated and
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dominated PfPs. Drawing our attention to the gain and fairness front, we
notice that the fronts have the more crescent shape, indicative of the greater
area available to the solutions where they can be non-dominated in terms of
gain and fairness. Continuing to the metrics presented in table 6.4, we see that
the GD values have worsened compared to the NSGA-II algorithm, with the
case DM5D2ND3 barely winning out. Concerning the diversity, it seems that
again we have a worse result compared to the NSGA-II algorithm, with the case
with less dominated PfPs having better values. The HV values as anticipated,
again pail in comparison to the unaltered algorithm, where the case with fewer
dominated points seems to be fairing better. The reason for this may be found
in its noticeably better diversity values. A very interesting observation can be
made whilst examining the fairness values. Here it is evident that the case
DM5D3ND2 is fairer, a claim additionally backed up by examining the gain
and fairness fronts. The cause can be found in the smaller overall area enclosed
by the corresponding PfPs.

The final scenario, scenario 5, is intended to display the more extreme ratio
between dominated and non-dominated PfPs, as can be seen in image 6.5.
The drastic difference in convergence, due to the greater number of dominated
PfPs, can also be evidenced by the GD values from table 6.5. The case with
almost all points on the front seems to be exhibiting behaviors similar to
those when all PfPs are on the Pareto front, besting the NSGA-II algorithm.
Turning to the IGD values the DM5D4ND1 case is again better, most likely
due to the greater distances between the PfPs. The same result can also be
viewed in the HV values, where the better diversity and convergence values
have translated to reasonable HV values. However, the NSGA-II algorithm
seems to still be superior with regards to both IGD and HV values. Turning
our attention towards the fairness values as well as the gain and fairness fronts,
we can clearly see that the more close-knit case DM5D4ND1 has better values.

In summary the position of the PfPs, as it relates to domination, seems to
greatly influence the convergence. The severity of this influence additionally
seems to be dependent on the ratio between dominated and non-dominated
points as well as the distance between them. In terms of fairness, this seems to
have no effect as the values and fronts continue to reflect the distances between
the PfPs, regardless of their relative positioning in terms of domination. In
the examined scenarios it is eminently clear that the prescience of dominated
points and their negative influence on the convergence must be addressed,
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given that the goal of this work is to provide solutions which are both fair and
optimal.
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(a) PfPs, scenario 3 (b) Gain and fairness, scenario 3

Figure 6.3.: Scenario 3

Problem N M D FEs F1 NSGAII
GD

DM2D1ND1C 100 2 2 10000 2.4251e-3 (3.04e-3) - 9.0013e-5 (1.99e-5)
DM2D1ND1F 100 2 2 10000 2.0630e-2 (1.20e-3) - 9.1934e-5 (2.74e-5)
DM2D1ND1M 100 2 2 10000 4.7796e-3 (1.34e-3) - 8.8846e-5 (2.21e-5)

+/-/= 0/3/0
IGD

DM2D1ND1C 100 2 2 10000 3.6162e-1 (8.66e-2) - 5.2552e-3 (2.36e-4)
DM2D1ND1F 100 2 2 10000 3.9429e-1 (4.49e-2) - 5.2699e-3 (2.34e-4)
DM2D1ND1M 100 2 2 10000 3.1424e-1 (4.47e-2) - 5.3077e-3 (2.14e-4)

+/-/= 0/3/0
HV

DM2D1ND1C 100 2 2 10000 1.5676e-1 (2.98e-2) - 3.4651e-1 (1.93e-4)
DM2D1ND1F 100 2 2 10000 1.1568e-1 (2.61e-2) - 3.4649e-1 (2.08e-4)
DM2D1ND1M 100 2 2 10000 1.6403e-1 (1.40e-2) - 3.4649e-1 (2.09e-4)

+/-/= 0/3/0
Fairness

DM2D1ND1C 100 2 2 10000 2.99e-2 (2.65e-2)
DM2D1ND1F 100 2 2 10000 1.884e-1 (3.452e-2)
DM2D1ND1M 100 2 2 10000 8.8652e-2 (5.8753e-2)

Table 6.3.: Metrics for scenario 3
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(a) PfPs, scenario 4 (b) Gain and fairness, scenario 4

Figure 6.4.: Scenario 4

Problem N M D FEs F1 NSGAII
GD

DM5D2ND3 100 2 2 10000 1.7115e+0 (1.08e-1) - 3.0568e-1 (2.88e-2)
DM5D3ND2 100 2 2 10000 1.7284e+0 (9.56e-2) - 3.1265e-1 (3.53e-2)

+/-/= 0/2/0
IGD

DM5D2ND3 100 2 2 10000 3.9277e-1 (2.07e-4) - 5.2322e-3 (2.09e-4)
DM5D3ND2 100 2 2 10000 4.3448e-1 (3.58e-3) - 5.3645e-3 (2.17e-4)

+/-/= 0/2/0
HV

DM5D2ND3 100 2 2 10000 1.4313e-1 (4.12e-4) - 3.4646e-1 (2.07e-4)
DM5D3ND2 100 2 2 10000 1.0717e-1 (2.44e-3) - 3.4642e-1 (2.69e-4)

+/-/= 0/2/0
Fairness

DM5D3ND2 100 2 2 10000 3.2835e-1 (1.752e-2)
DM5D2ND3 100 2 2 10000 3.42184e-1 (4.544e-2)

Table 6.4.: Metrics for scenario 4
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(a) PfPs, scenario 5 (b) Gain and fairness, scenario 5

Figure 6.5.: Scenario 5

Problem N M D FEs F1 NSGAII
GD

DM5D1ND4 100 2 2 10000 3.0589e-5 (2.48e-5) + 9.4539e-5 (2.19e-5)
DM5D4ND1 100 2 2 10000 1.1479e-2 (5.67e-3) - 8.6382e-5 (2.70e-5)

+/-/= 1/1/0
IGD

DM5D1ND4 100 2 2 10000 3.0900e-1 (1.55e-4) - 5.2740e-3 (2.38e-4)
DM5D4ND1 100 2 2 10000 4.4944e-1 (9.55e-3) - 5.2372e-3 (1.82e-4)

+/-/= 0/2/0
HV

DM5D1ND4 100 2 2 10000 1.8523e-1 (1.21e-4) - 3.4645e-1 (2.35e-4)
DM5D4ND1 100 2 2 10000 9.4016e-2 (6.71e-3) - 3.4647e-1 (2.38e-4)

+/-/= 0/2/0
Fairness

DM5D1ND4 100 2 2 10000 8.5296e-1 (2.251e-3)
DM5D4ND1 100 2 2 10000 1.59454e-1 (3.603e-2)

Table 6.5.: Metrics for scenario 5
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6.2. Results Analysis for the Adaptive NSGA-II
for Teams Algorithm

In an effort to overcome the shortcomings of the initially concept an improve-
ment was need. Namely, the problematic issue stemming from the positioning
of the DMs and their influence on the convergence needs to be resolved. To
this end an additional step of repositioning or moving the PfPs was included.
Unlike the initial concept, the analysis will be focused on the GD and fairness
metrics and how they behave. Here, we run the algorithm again for 10,000
evaluations just as we had before with the initial concept. The analysis con-
sists of five different ways that the preference move can be accomplished (see
chapter 5.2 for more details).

Examining table 6.6, which depicts the GD values for all the variants, one can
see that the proposed augmentation seems to be working as expected. Addi-
tionally, out of all the variants, it would appear that attempting to change the
PfP every generation is the best option. This is in accordance to initial expec-
tations. It was speculated that attempting a change at specific intervals could
be greatly influenced by plain luck. Furthermore, given that the changes were
attempted after the half way point it is possible that the algorithm would have
trouble with the convergence, given the more limited time. The attempted
move after every generation seems like the best way as it should provide con-
stant movement towards the front, which results in reaching the front sooner
and having more chance to converge on the Pareto front. Observing table 6.7
shows us how the new algorithm reacts against the old NSGA-II algorithm.
Here, it seems as though the improved approach is preforming as expected,
beating out the original NSGA-II algorithm in every case.

Moving on to the examination of table 6.8 and examining the impact on the
fairness, one can still observe improvement in all variants. Here, the the variant
which attempts a change every generation, again seems to give the best results.
The results of these experiments are likely due to the fact that the movement
towards the front undoubtedly brings some of the PfPs together. However, as
can be observed in the table, the consistency of this can be quite unpredictable
as it depends greatly on random chance. Hence most variants have one or two
cases where they preform poorly in comparison to the initial concept.
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Problem FFF FF3 FF2 FF1 F1
DM2D1ND1C 4.3212e-5 (7.29e-5) + 1.0540e-4 (1.21e-4) + 9.4423e-5 (1.11e-4) + 1.3824e-4 (1.06e-4) + 2.4251e-3 (3.04e-3)
DM2D1ND1F 4.2100e-5 (1.16e-4) + 2.4770e-3 (1.66e-3) + 2.3748e-3 (1.49e-3) + 4.0100e-3 (2.70e-3) + 2.0630e-2 (1.20e-3)
DM2D1ND1M 3.1542e-5 (5.01e-5) + 4.1097e-4 (3.93e-4) + 6.5560e-4 (1.09e-3) + 1.3498e-3 (1.57e-3) + 4.7796e-3 (1.34e-3)
DM5D1ND4 1.5383e-5 (4.12e-6) + 1.4991e-5 (3.40e-6) + 1.4567e-5 (2.48e-6) + 1.5107e-5 (2.39e-6) = 3.0589e-5 (2.48e-5)
DM5D2ND3 2.7279e-5 (1.05e-4) + 1.2981e-5 (2.61e-6) + 1.2938e-5 (2.37e-6) + 7.7549e-5 (2.85e-4) + 6.5081e-4 (1.41e-4)
DM5D3ND2 1.1859e-5 (4.52e-6) + 9.7058e-3 (4.23e-3) = 9.6763e-3 (4.01e-3) = 9.8559e-3 (4.16e-3) = 9.8357e-3 (2.57e-3)
DM5D4ND1 2.2392e-5 (5.91e-5) + 5.2107e-3 (5.45e-3) + 4.3825e-3 (7.92e-3) + 8.2624e-3 (4.91e-3) + 1.1479e-2 (5.67e-3)

+/-/= 7/0/0 6/0/1 6/0/1 5/0/2

Table 6.6.: GD values in comparison with initial concept

Problem FFF NSGAII
DM2D1ND1C 4.3212e-5 (7.29e-5) + 9.0013e-5 (1.99e-5)
DM2D1ND1F 4.2100e-5 (1.16e-4) + 9.1934e-5 (2.74e-5)
DM2D1ND1M 3.1542e-5 (5.01e-5) + 8.8846e-5 (2.21e-5)
DM5D1ND4 1.5383e-5 (4.12e-6) + 9.4539e-5 (2.19e-5)
DM5D2ND3 2.7279e-5 (1.05e-4) + 9.0621e-5 (2.50e-5)
DM5D3ND2 1.1859e-5 (4.52e-6) + 9.6757e-5 (2.51e-5)
DM5D4ND1 2.2392e-5 (5.91e-5) + 8.6382e-5 (2.70e-5)

+/-/= 7/0/0

Table 6.7.: GD values in comparison with NSGA-II algorithm
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Problem FFF FF3 FF2 FF1 F1
DM2D1ND1C 3.9764e-2 (1757e-1) - 1.094e-2 (5.631e-3) + 9.23532e-3 (6.691e-3) + 1.797e-2 (6.66712e-3) + 2.99e-2 (2.65e-2)
DM2D1ND1F 6.356e-2 (4.232e-2) + 7.4498e-2 (7.561e-2) + 8.3916e-2 (3.4343e-2) + 1.7407e-1 (4.3396-2) + 1.884e-1 (3.452e-2)
DM2D1ND1M 2.378e-2 (2.206e-2) + 2.9896e-2 (1.543e-2) + 3.4855e-2 (3.224e-2) + 6.7469e-2 (4.234e-2) + 8.8652e-2 (5.8753e-2)
DM5D1ND4 8.4155e-1 (1.6673e-2) + 8.527e-1 (3.106e-3) = 8.5343e-1 (4.182e-3) = 8.5161e-1 (2.0949e-3) = 8.5296e-1 (2.251e-3)
DM5D2ND3 3.377e-1 (2.406e-2) + 3.364e-1 (6.6475e-3) + 3.3438e-1 (6.246e-1) + 3.3303e-1 (1.8711e-2) + 3.42184e-1 (4.544e-2)
DM5D3ND2 3,0634e-1 (2.477e-2) + 3.8379e-1 (3.880e-2) - 3.7112e-1 (5.377e-2) - 3.383e-1 (3.9785e-2) - 3.2835e-1 (1.752e-2)
DM5D4ND1 2.070e-1 (3.9507e-2) - 9.6079e-2 (26569e-2) + 1.0039e-1 (2.8037e-2) + 1.6135e-1 (4.8035e-2) - 1.59454e-1 (3603e-2)

+/-/= 5/2/0 5/1/1 5/1/1 4/2/1

Table 6.8.: Fairness values for the variations of the improved concept
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(a) PfPs centroids DM2D1ND1C (b) Distances DM2D1ND1C

(c) PfPs centroids DM2D1ND1F (d) Distances DM2D1ND1F

(e) PfPs centroids DM2D1ND1M (f) Distances DM2D1ND1M

Figure 6.6.: Preference points repositioning, scenario 3
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(a) PfPs centroids DM5D2ND3 (b) Distances DM5D2ND3

(c) PfPs centroids DM5D3ND2 (d) Distances DM5D3ND2

Figure 6.7.: Preference points repositioning, scenario 4

In an effort to have a better understanding of the effects of the PfPs repo-
sitioning, the difference between the newly determined PfPs and the original
ones was investigated. The analysis consists of aggregating the final points of
each variant, for each case, into a single centroid. These resulting centroids
from each run were then again amalgamated into a final centroid in an at-
tempt to have a more accurate idea of its true location. The distance from
these centroids and the centroid representing the initial PfPs is calculated, to
better understand the extent of the repositioning.
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(a) PfPs centroids DM5D1ND4 (b) Distances DM5D1ND4

(c) PfPs centroids DM5D4ND1 (d) Distances DM5D4ND1

Figure 6.8.: Preference points repositioning, scenario 5

The end positions of the repositioned PfPs, represented by a centroid, along
with their distances (euclidean) from the centroid of the original PfPs can be
seen on figures 6.6, 6.7 and 6.8. Analysing the PfPs repositioning on scenario 3,
we can notice that increasing the frequency of attempted repositionings, seems
to correlate with further distances towards the front and better convergence,
with the final variant exhibiting the best results. Moving on to scenario 4 and
its PfPs changes, we can observe a similar result, which can also be noticed
when examining scenario 5. What can be interesting to note specifically is
the repositioing seems to make the biggest jumps initially with consecutive
repositioning moving the points less and less. This can be seen especially well
in figure 6.6 for case DM2D1ND1M. The biggest extreme between the variants
is showcased in 6.8 for case DM5D4ND1. Here, we can clearly observe that
when dealing with many dominated PfPs the proposed improvement seems to
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be able to bring the PfPs very close to the front, which can be also seen when
examining table 6.6. However, an interesting observation can also be made
from table 6.8, which shows that although the PfPs have moved to the front
in a significant capacity from the FFF variant, the fairness favors the FF3
variant. With this we can conclude that although it is likely that some of the
PfP will move closer when moving continuously towards the front, they also
have a chance to drift further apart in an attempt to secure a better final set
of solutions.

6.3. Examining the Behaviour when Faced with
Complex Cases

Given the great likelihood that the concept employed would be tasked to solve
more complex cases then that of only two objectives, what will follow is the
examination of its behavior in more complex scenarios in terms of objectives
and decision variables. The exact details concerned the cases showcased can
be found in section 5.2.

Studying table 6.9 we can see that when confronted with a reasonable number
of objectives, in terms of how many the concept of domination can tackle (six
in this case), the results match what has been previously ascertained. The
convergence values are once again better compared to the NSGA-II algorithm.
In terms of IGD and HV we again see a familiar pattern, where the lack of
diversity is evident, due to the more constrained nature of the approach. This
would indicate that the approach seems to be operating as intended even when
the number of objectives is on the higher side, for algorithms that make use of
domination.

The table 6.10 on the other hand depicts extreme cases, which are hard to
tackle for any algorithms that are focused around the concept of domination.
We can see that should the DMs specify their PfPs to be on the front, the
algorithm again behaves in an expected manner. However, should the points
be more scattered and be further away from the front, the PfP repositioning
seems unable to produce the same level of results as before. This is likely due to
the fact that the repositioing step also uses domination. Given that domination
fails to be an effective method once we have seven or more objectives it would
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Problem N M D FEs FFF NSGAII
GD

M6DM5D1ND4 100 6 6 10000 1.3878e-2 (1.06e-3) + 1.6429e-2 (8.51e-4)
M6DM5D2ND3 100 6 6 10000 1.3644e-2 (9.91e-4) + 1.6409e-2 (9.53e-4)
M6DM5D3ND2 100 6 6 10000 1.3486e-2 (1.35e-3) + 1.6356e-2 (7.79e-4)
M6DM5D4ND1 100 6 6 10000 1.3495e-2 (1.35e-3) + 1.6259e-2 (8.46e-4)

+/-/= 4/0/0
IGD

M6DM5D1ND4 100 6 6 10000 7.5976e-1 (2.18e-2) - 2.6249e-1 (1.24e-2)
M6DM5D2ND3 100 6 6 10000 7.4974e-1 (1.84e-2) - 2.6684e-1 (1.82e-2)
M6DM5D3ND2 100 6 6 10000 7.3586e-1 (2.57e-2) - 2.6333e-1 (1.25e-2)
M6DM5D4ND1 100 6 6 10000 7.7739e-1 (3.30e-2) - 2.6473e-1 (1.49e-2)

+/-/= 0/4/0
HV

M6DM5D1ND4 100 6 6 10000 1.0007e-1 (1.95e-2) - 5.8952e-1 (2.07e-2)
M6DM5D2ND3 100 6 6 10000 1.1031e-1 (1.49e-2) - 5.9121e-1 (2.78e-2)
M6DM5D3ND2 100 6 6 10000 1.2272e-1 (2.15e-2) - 5.8770e-1 (2.50e-2)
M6DM5D4ND1 100 6 6 10000 1.0763e-1 (2.35e-2) - 5.8854e-1 (2.48e-2)

+/-/= 0/4/0

Table 6.9.: Metrics, scenario 6

Problem N M D FEs FFF NSGAII
GD

M10DM5F 100 10 10 10000 2.8930e-2 (4.85e-4) + 3.0075e-2 (2.59e-3)
M10DM5 100 10 10 10000 4.1683e-2 (2.24e-3) - 3.0591e-2 (2.62e-3)

+/-/= 1/1/0
IGD

M10DM5F 100 10 10 10000 8.1252e-1 (1.57e-2) - 4.3070e-1 (5.90e-2)
M10DM5 100 10 10 10000 9.2685e-1 (2.34e-2) - 4.5651e-1 (4.43e-2)

+/-/= 0/2/0
HV

M10DM5F 100 10 10 10000 9.5114e-2 (1.22e-2) - 5.6950e-1 (6.36e-2)
M10DM5 100 10 10 10000 4.5974e-2 (9.31e-3) - 5.4545e-1 (6.23e-2)

+/-/= 0/2/0

Table 6.10.: Metrics, scenario 7

seem as though the repositioing can not effectively move the PfPs closer to the
front, resulting in a worsened convergence.
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Given the fact that it is based on the concept of domination and the key
ideas behind NSGA-II the proposed approach seems to be able to handle cases
with a reasonable number of objectives in a satisfiable manner, inline with the
expectations.

6.4. Summary of Analysis

The proposed NSGA-II for Teams algorithms along with its improved variant
Adaptive NSGA-II for Teams seem to be behaving in an anticipated manner
and capable of providing certain benefits when dealing with multi-objective
optimisation with many differing DMs. The approaches exhibit greater con-
vergence then that of the base NSGA-II algorithmdue to focusing on a specific
are of interest. The specific disadvantages, caused by dominated PfPs and
their tendency to pull solutions away from the front, were addressed by the
reference repositioning incorporated in the adaptive version of the algorithm.
With regards to fairness although the adaptive algorithm may be able to in-
crease it in certain case, it is ultimately dependent on the similarity of the
DMs preferences.

Although, excelling in convergence, the algorithm exhibits worsened results
when it comes to diversity, a decline that is also evident in the HV metric.
One might argue, that the bad diversity metrics could be considered a prob-
lem, however, greater diversity in this context may not be better. Diversity is
needed so that the DMs are not overwhelmed from the many options presented
to them and that the options can in fact appear distinct enough, to warranty
the DMs consideration. But if one would consider a high stakes resource allo-
cation problem (2020 Corona crisis is an excellent example), multiple differing
groups might have different ideas how the resources should be used. This
negotiation needs greater nuance then that of a business or manufacturing
problem as each percent of difference from their positions could have a dras-
tic influence on a number of human lives and can alleviate or worsen human
suffering. Thus, when dealing with fairness and moral issues, especially when
one needs to present practical solutions, it is important that greater nuances
be available for discussion and negotiation. The problem with diversity is also
partly addressed by the the ability of the DMs to specify how many solutions
they want to end up with, which can enable them to keep the strong critical
nuances while not being overwhelmed with alternatives.
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Venturing further from fairness and many DMs it would seem that the pro-
posed approach could also have additional uses, not necessarily bound to the
initial expectations. Interestingly, it would appear that one may use the PfPs
with one DM in an attempt to simply specify an area of interest of various
shape and size in an effort to focus the attention of an EA. Additionally, given
the modular nature of the approach it would seem rather simple to attach the
fairness and gain level to an existing algorithm, different to that of NSGA-
II. The approach, along with its adaptive nature may also be employed to
tackle problems which seem to be difficult for other algorithms built around
the concept of domination. Overall, the examined experiments and their re-
sult suggest that the NSGA-II for Teams algorithm can be used to tackle
multi-objective optimisation problems with many DMs as well as other more
interesting problems where focusing on an area of interest is desired.
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Given the ever growing complexity of the modern world, as well as the ten-
dency towards fairness in a number of differing ways, methods which incorpo-
rate multiple different DMs with various perspectives and expertise are needed.
Additionally, the consideration of many objectives when tackling difficult prob-
lems seems to be necessitated as such problems can rarely be transformed to a
single objective problem without significant decline in the quality of the final
outcome. The accurate capture of nuances in both the problems and their re-
spective objectives is especially important when approaching problems which
have a moral component.

The approach proposed in this thesis is aimed at aiding DMs when tackling
these multi-criteria optimisation problems, whilst also providing mechanisms
to alleviate the processes of compromise and negotiation. The process was
envisioned to be as straightforward as possible, requiring only the preferences
of DMs (PfPs) for each objective, their mutual agreement on the problem
formulation as well as possible categorisation based on their level of influence.
At the heart of the concept is the idea of a second level to the initial problem.
This additional component is an accompanying multi-objective problem where
the goals are that of fairness and gain. These new objectives operate on the
similarity or dissimilarity of the solutions to the aforementioned preferences
from the DMs. The incorporated fairness and gain level serves as an additional
mechanism to influence the search for alternatives with the best possible trade-
offs for the initial problem, which are also acceptable to all the participants in
the decision making process.

The realisation of the ideas was executed by using the NSGA-II algorithm in
order to solve the base problem, while its crucial element, fast non-dominated
sorting, was fashioned to tackle the fairness and gain level. The resulting
algorithm, titled NSGA-II for Teams, was then submitted to a variety of tests
using the well established DTLZ2 problem, which was envisioned to replicate
various possible real world scenarios, consisting of up to five DMs. In order
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to also have a better understanding of various situations, in terms of PfPs
placement, a fairness metric was devised that focused on the fairness and
gain level. This metric served as a way to gauge the fairness of certain PfPs
placements, enabling us to distinguish between them with a single numerical
value.

The algorithm displayed the tendency to confine solutions within an area de-
fined by the PfPs of the DMs but also retained the influence of the initial
NSGA-II algorithm to move closer to better and non-dominated solutions.
Specifically the conclusion from the experiments were:

• The NSGA-II for Teams algorithm showed greater convergence capabil-
ities, due to the focus on a smaller are of interest.

• The more confined region greatly worsened the diversity of the algorithm.

• The distances between the PfPs were the key factor with regards to the
overall fairness.

• The relative positioning of the PfPs in terms of domination can greatly
affect convergence, as non-dominated preference pull the solutions away
from the front.

Given the negative impact on the convergence a improvement on the initial
idea was devised. The new upgraded Adaptive NSGA-II for Teams implements
an additional element of PfP repositioning. This repositioning can be both
automated or approved by the corresponding DM. The crux of the idea was
to implement a change in the PfP, swapping it for the closest non-dominated
solutions, which was dominating the PfP. The logically superior new position
of the DM would make it advantageous to switch whilst also moving the region
of interest closer to the Pareto front, improving convergence. The examination
of this adaptive version of the algorithm seems to have mitigated the problem
of convergence, whilst also having a positive effect on fairness. The likely cause
for the improvement in fairness is due to the repositioning bringing the points
closer to the front and likely closer to one another.

The algorithm was additionally examined as how it relates when confounded
with a greater number of both decision variables and objectives of the initial
problem. The examined situation, consisting of six objectives and decision
variables, showcased that the algorithm was still behaving in a predictable
manner. However, when confronted with ten decision and objective variables,
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the algorithm outperformed its NSGA-II counterpart only when the PfPs were
at the Pareto front. This is likely caused by the fact that the repositioning
mechanism, which uses the concept of domination, was unable to effectively
function due to the higher number of objectives.

The Adaptive NSGA-II algorithm was envisioned to be a centerpiece of an
overall concept for many DMs. Apart from the PfPs as well as the algorithm
itself the overall concepts also employs an additional filter in order to provide
the DMs with the opportunity to incorporate hierarchies as well as other power
dynamics in the decision making process.

This thesis only encompassed an initial examination of the original idea be-
hind the 2020 Dagstuhl report [63], focusing on understanding its behaviour
with regards to a simpler "toy" problem, which was well established in the
literature. Thus, it seems only sensible to define more benchmark problems as
well as attempt the use of the concept on a practical one. Furthermore, the
concept could be additionally expanded to handle binary and mixed encod-
ings, increasing the problems it can effectively solve. Conducting experiments
involving live human DMs and observing their behaviour would also be an
interesting avenue to explore. To better capture the psychology of humans
and their various power and status dynamics game theory concepts could also
be examined, as they relate to the proposed ideas of fairness and gain. The
validity of the method to help individual DMs, focusing on specific areas of
interest, could also be further researched. Moreover, a new method to help
with the problem of diversity would also be a welcomed addition to the overall
approach.

In closing, the conceived approach for multi-objective optimisation for many
DMs, with the Adaptive NSGA-II algorithm at its core appears like a worth-
while and promising tool to help future DMs tackle ever increasingly difficult
problems.
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A. Crowding Distance
Assignment

Algorithm 9: Crowding Distance Assignment [15]

Data: F = {~f(~x(1)), ..., ~f(~x(l))} the objective vectors for all l individuals
in a non-dominated front F .

Result: Crowding Distance Measure
1 l← |F | // number of solutions in F.

2 D ← ∅
3 for i to l do
4 D ← D ∪ {0} // initialize distances to each objective to 0.

5 end
6 foreach objective i do
7 F = sort(F,m) // sort using objective value.

8 D[1] = D[l]←∞ // give high value so boundary points are always

selected.

9 for i = 2 to (l − 1) // for all other points

10 do
11 D[i]← D[i] + (F [i+ 1]m − F [i+ 1]m/) // F [i]mrefers to the m-th

objective function value of the i-th individual in the current

non-dominated front F.

12 end
13 end
14 return D
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B. Fast Non-Dominated Sorting

Algorithm 10: Fast Non-dominated Sorting [15]
Data: The population P .
Result: The population sorted into multiple non-dominated fronts.

1 foreach ~x(p) ∈ P do
2 SP ← ∅
3 nP = 0

4 foreach ~x(q) ∈ P do
5 if ~x(p) ≺ ~x(q) // if ~x(p) dominates ~x(q)

6 . then

7 Sp = Sp ∪ {~x(q)} // Add ~x(q) to the solutions dominated by ~x(p).

8 else if ~x(q) ≺ ~x(p) then
9 ηp = ηp + 1 // Increment domination count of ~x(p).

10 end
11 if ηp = 0 then

12 end
13 ~x(p) belongs in the first front. ~x

(p)
rank = 1

14 F1 = F1 ∪ {~x(p)}
15 end
16 i = 1 // Initialize the front counter

17 while Fi 6= ∅ do
18 Q 6= ∅ // Used to store the members of the next front.

19

20 foreach ~x(p) ∈ Fi do
21 foreach ~x(q) ∈ Si do
22 ηq = ηq + 1 if ηq = 0 // ~x(q) belongs to the next front.

23 then
24 ~x

(q)
rank = i+ 1

25 Q = Q ∩ ~x(q)

26 end
27 end
28 end
29 i = i+ 1

30 Fi = Q

31 end
32 return {F1...Fi}
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C. Global variables of the
algorithm

Parameter Value
Tournament size 2
Probability of doing crossover 1
Distribution index of SBX 20
Expectation of number of bits doing mutation 1
Distribution index of polynomial mutation 20

Table C.1.: Global variables of the algorithm
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D. Preference Points Values for
Showcased Situations
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D. Preference Points Values for Showcased Situations

Situation PfPs
Objectives

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

DM2D1ND1C
PfP1 0.3 0.9539
PfP2 0.33 1

DM2D1ND1F
PfP1 0.7141 0.7
PfP2 0.95 1.1

DM2D1ND1M
PfP1 0.45 0.893
PfP2 0.55 1

DM5D1ND4

PfP1 0.7141 0.7
PfP2 0.3 0.9539
PfP3 0.9539 0.3
PfP4 0.45 0.893
PfP5 0.8 1

DM5D2ND3

PfP1 0.6 0.8
PfP2 0.8 0.6
PfP3 0.52 0.8542
PfP4 0.62 1
PfP5 0.78 0.85

DM5D3ND2

PfP1 0.7141 0.7
PfP2 0.45 0.893
PfP3 0.52 1.1
PfP4 0.59 1.05
PfP5 0.66 0.98

DM5D4ND1

PfP1 0.6 0.8
PfP2 0.52 1.1
PfP3 0.59 1.05
PfP4 0.66 0.98
PfP5 0.71 0.9

M6DM5D1ND4

PfP1 0.3162 0.2 0.3 0.4 0.5 0.6
PfP2 0.6 0.5 0.4 0.3 0.2 0.3162
PfP3 0.2 0.3162 0.5 0.6 0.3 0.4
PfP4 0.4 0.5 0.6 0.3162 0.2 0.3
PfP5 0.9 0.95 0.9 0.95 0.9 0.95

M6DM5D2ND3

PfP1 0.3162 0.2 0.3 0.4 0.5 0.6
PfP2 0.6 0.5 0.4 0.3 0.2 0.3162
PfP3 0.2 0.3162 0.5 0.6 0.3 0.4
PfP4 0.9 0.95 0.9 0.95 0.9 0.95
PfP5 0.95 0.9 0.95 0.9 0.95 0.9

M6DM5D3ND2

PfP1 0.3162 0.2 0.3 0.4 0.5 0.6
PfP2 0.6 0.5 0.4 0.3 0.2 0.3162
PfP3 0.9 0.95 0.9 0.95 0.9 0.95
PfP4 0.95 0.9 0.95 0.9 0.95 0.9
PfP5 0.85 0.85 0.85 0.85 0.85 0.85

M6DM5D4ND1

PfP1 0.3162 0.2 0.3 0.4 0.5 0.6
PfP2 0.9 0.95 0.9 0.95 0.9 0.95
PfP3 0.95 0.9 0.95 0.9 0.95 0.9
PfP4 0.85 0.85 0.85 0.85 0.85 0.85
PfP5 0.99 0.99 0.99 0.99 0.99 0.99

M10DM5F

PfP1 0.1 0.135 0.145 0.42 0.32 0.65 0.21 0.12 0.35 0.5
PfP2 0.5 0.35 0.12 0.21 0.65 0.32 0.42 0.145 0.135 0.1
PfP3 0.35 0.12 0.21 0.65 0.32 0.42 0.145 0.135 0.1 0.5
PfP4 0.145 0.135 0.1 0.5 0.21 0.65 0.32 0.42 0.35 0.12
PfP5 0.145 0.135 0.5 0.21 0.32 0.42 0.12 0.35 0.1 0.65

M10DM5

PfP1 0.3162 0.2 0.3 0.4 0.5 0.6 0.6 0.5 0.4 0.3
PfP2 0.2 0.3162 0.2 0.3162 0.5 0.6 0.3 0.4 0.4 0.5
PfP3 0.5 0.6 0.3162 0.2 0.3 0.3 0.6 0.5 0.4 0.3162
PfP4 0.7 0.2 0.3 0.6 0.3 0.8 0.415 0.378 0.543 0.32
PfP5 0.1 0.9 0.9 0.43 0.2 0.3162 0.5 0.6 0.3 0.4

Table D.1.: Preference Point Values
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