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Abstract

This work analyzes the effect of neighborhoods on the performance of PSO
swarms in unknown dynamic environments. In addition to commonly known
topologies, new neighborhoods have been developed on the base of Game
Theory. The goal is to improve the swarms fitness based on the selection of
neighborhoods. Therefore, the effect of well chosen neighborhoods with fitness
based generation in contrast to general neighborhoods is analyzed. Moreover,
the effect of a limited communication radius which is more likely in real
world scenarios is reviewed. For the analysis, two new PSO approaches have
been developed being able to deal with unknown environmental influences.
These influences are wind flows represented as vector fields. The new
algorithms are called Zigzag PSO (Z-PSO) and Power PSO (P-PSO) pursuing
different strategies. Z-PSO reduces the energy consumption by using the
wind disturbance at its current position as a forecast of the wind in the next
iteration. This forecast is used for adapting the particles velocity according to
the wind orientation. In contrast, P-PSO does not predict any wind influence
but always uses a minimal velocity vector in order to overcome possible
wind influences.

This work shows that the difference between the topologies is not significant
in most environments. Though, purposefully created topologies based on
the particles fitness can outperform common topologies in strong vector
fields. P-PSO is a promising approach for dynamic environments if the
minimal velocity vector is adapted to the vector field. Besides, Z-PSO
gains excellent results in all vector fields and is able to reduce the energy
consumption. Analyzing the communication radius, Z-PSO reaches even better
results using a smaller radius. Therefore, it is a good choice for real robotic
applications which may not provide a fully connected swarm and have a limited

energy supply.
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1. Introduction and Motivation

1.1. Motivation

During the last decade, swarm intelligence has become the focus of a high
number of researchers. Swarm intelligence imitates the behaviour of natural
social swarms like schools of fish or flocks of birds. A swarm consists of a
number of individuals who can only perform simple tasks. However, the swarm
as a whole is able to perform complex tasks in cooperation [7].

In the research field of Swarm Robotics (SR), strategies of swarm intelligence
are applied to multirobot systems. SR offers various advantages over
single-robot systems. This includes robustness in the first place. A swarm can
self-organize and easily reorganize the task allocation because it consists of a
number of simple and homogeneous agents. Furthermore, a swarm provides
a high failure tolerance because the breakdown of one individual robot does
not highly affect the task of the whole swarm. Additionally, it can be replaced
effortlessly by a new robot. Another important factor is the decentralization
which prevents one single failure point [28]. Moreover, a swarm of robots is
time saving because it can work in parallel on multiple tasks and it is scalable
to any number of robots |7].

Swarm intelligence techniques have as well been successfully applied to
optimization problems. In 1995, Kennedy and Eberhart introduced a new
optimization technique called Particle Swarm Optimization (PSO), which is
inspired by flocks of birds. The PSO algorithm has also been used in SR
to solve optimization problems. For example Jatmiko et al. used PSO for
an odor source localization by mobile robots [14]. This approach could
also be performed by robots in real-world scenarios. One scenario could be
the detection of a carbon monoxide source. Another scenario could be the
assistance of human fire fighters [25] or other real-world applications for mobile
robot swarms [5].

Some real-world scenarios are solved with the help of aerial robots. However,
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those robots bear a big disadvantage lying in their power supply. Compared
to stationed robots, mobile robots are reliant on a battery and limited power
resources. Therefore, energy consumption plays a major role. Furthermore,
aerial robots have to deal with unknown external influences as, for example,
wind flows. The robots need to be able to keep on performing their
optimization task although they are disturbed by the environment. Thereby,
the energy consumption may not be neglected, otherwise the swarm members
could run out of energy.

To solve problems, the exchange of information between the single swarm
members is of great importance. In recent literature, various topologies for
PSO have been presented. Topologies are highly influencing the performance
of a swarm by changing its diversity. In standard PSO, the swarm uses a fully
connected network which allows all particles to communicate with each other
[31]. However, results have shown that this topology does not always generate
the best results [18|. Furthermore, this topology is based on the assumption
that the swarm members are always close enough to each other guaranteeing
exchange of data. Though, in real world scenarios the communication may be
insufficient, for example, if the individuals are too far apart from each other.

This work shall give an insight about the impact of neighborhood selection
on PSO approaches with a limited communication radius in dynamic
environments. Therefore, various neighborhoods and pso approaches have been
tested under different environmental situations and for varying optimization
problems. The results can provide background information for further practical
applications including real aerial robots.

1.2. Research Goals and Specific Objectives

The goal of this thesis is to investigate the influence of varying information
exchange settings between members of a swarm performing PSO in unknown
dynamic environments. Therefore, different topologies and communication
radiuses are analyzed. In addition to some basic and well-known topologies,
the set of tested topologies as well includes new topologies based on game
theoretic approaches. For the communication radius, there are two extremes
proved. One extreme is a communication radius as large as the search space,
which implies a communication transfer between all swarm members. The
other extreme is a small radius only allowing an inter-individual information
exchange in small distances.




1.2. Research Goals and Specific Objectives

The unknown environment interpreted as wind flow is represented as a vector
field. For further insights on the communication impact of swarms, two
different swarms applying various PSO methods are tested and compared.

Goal

To analyze the impact of topologies and a limited communication
radius on search mechanisms in unknown dynamic environments in
robotic applications.

For accomplishing this goal, several objectives have been defined. The first
objective is the implementation of a model for the general particles movement
in vector fields. Thereby, the proximity to real robotic applications should be
considered. Therefore, collision avoidance and continuous movement of the
particles have been added to the model.

Objective 1
To implement a model for the general particles movement in
dynamic environments.

The second objective observes further preparations for the later analysis. A
main problem is the behaviour of PSO in unknown environments. The particles
are highly disturbed by the wind flow and often not able to reach the optimum.
However, an investigation of the neighborhood and communication radius is
most interesting for swarms which are usually successful to see a difference.
For this reason, two new PSO approaches have been designed, being able to
cope with the vector field and reach the optimum. Besides, new topologies
inspired by Game Theory have been created. Game Theory has been chosen
because it studies the cooperative behaviours in social and biological systems.
The idea is to analyze the difference between basic well-known topologies and
new topologies which are modeled with the purpose of more intelligent and
promising particle cooperation regarding the particles fitness.

Objective 2

To develop different variants of PSO for unknown dynamic
environments and create new topologies based on game theoretic
approaches.

In terms of applicability to real robotic systems, the energy consumption may
not be neglected. Aerial mobile robots often only possess a battery as a power
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supply. Consequently, the reduction of energy usage is an important goal for
those robots. In this work, a simplified energy consumption model has been
developed to provide first assumptions about the energy usage for different
swarms and topologies.

Objective 3
To generate a simplified energy consumption model.

The basis of the analysis is the simulation of the PSO approaches in different
settings. Test scenarios for the simulation have been developed. They include
the application of varying neighborhoods and a limited communication radius.
Moreover, different value functions and vector fields have been tested. The set
of environments contains on the one hand vector fields calculated by functions
and on the other hand real-world vector fields. These can be integrated by an

interface for the input of longitude and latitude values requesting real-world
wind data from NASA!.

Objective 4

To implement test scenarios for simulating the performance of
the new PSO variants with different topologies and a limited
communication radius in varying environments.

The last objective deals with the analysis of the results generated by several
simulations. This includes the evaluation of the two new PSO variants
compared with each other as well as the comparison of each PSO variant
with itself using different neighborhoods and a limited communication radius.
On the one hand, the evaluation regards the fitness and convergence rate of
the approaches. On the other hand, the energy consumption and orientation
in relation to the vector field are reviewed.

Objective 5
To evaluate the PSO variants according to the used topology and
compare the results.

'https://wuw.nasa.gov/
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1.3. Structure Thesis

1.3. Structure Thesis

This section offers an overview over the structure of the thesis. First, Chapter
2 provides knowledge about the main concepts and basic topics of this thesis.
Second, Chapter 3 summarizes related work to this thesis. Afterwards, the
methods and concepts developed in this work are presented and explained in
Chapter 4. Following, Chapter 5 gives an insight about the implementation and
decisions in this regard. Afterwards, the results of the experiments executed in
the scope of this work are analyzed in Chapter 6. At the end, Chapter 7 delivers
a conclusion for the research goal and objectives of this work. Additionally,
further elaboration possibilities for future work are mentioned.







2. Background

This chapter presents the knowledge about the underlying concepts of this
thesis. In Section 2.1, the particle swarm algorithm is introduced and explained
in detail. Furthermore, an asynchronous adaption of this approach is proposed
and another variant including the application in vector fields. Afterwards, in
Section 2.2 well-known topologies are presented generating the base for this
work. Finally, in Section 2.3 game theoretic approaches are presented, which
also inspired the methodical work in Chapter 4.

2.1. Particle Swarm Optimization

In 1995, Kennedy and Eberhart first introduced Particle Swarm Optimization
(PSO). PSO is an approach for the optimization of nonlinear functions on the
basis of biological structures. It imitates the behaviour of fish or bird swarms.
Thereby, its implementation is straightforward due to its simple algorithm
and the computation effort is low. A swarm consists of N individuals who
are in contact with each other and share information. Together, they are able
to develop a collective behaviour and create a self-organized swarm. This
facilitates the search for optima in a search space. The ability to find the
optimum is defined as the swarms fitness. In nature, this search would be,
for example, led by the consideration of the food quality. In the work of
Kennedy and Eberhart the search spaces were nonlinear functions. In the PSO
algorithm, each individual 7 is given a position Z;(t + 1) at time step t + 1.
The movement of each individual is calculated by the velocity vector v;(t+1),
which is described below. This velocity vector is added to the individuals
position to calculate the new position in the following iteration ¢ + 1.
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Ti(t+1) = wBi(t) + C137 (Prest — Tilt)) + Coda (T,(t) — T4(t))  (2.1)

Zi(t+1)=7;(t)+ U;(t+ 1) (2.2)

The velocity vector U;(t+ 1) consists of three components. The first one is the
old velocity vector ¥;(t) from the previous iteration. This vector is weighted
by factor w. The second component is the cognitive or individual component,
defined as ﬁbest. It represents the position of the best found solution of the
individual. Thus, it is the personal optimum of this individual. In contrast,
the last component is the social component @,(¢). This one describes the
position of the best solution of the whole swarm. Therefore, it is also called
global best or gbest component. The impact of each component in the search
behaviour can be controlled by the acceleration coefficients € and Cy. The
vectors o1 and 7’3 define two random vectors in the range of [0, 1], where n
is the number of dimensions. The influence of the previous velocity vector is
weighted by the inertia factor w, where w > 0 [17].

2.1.1. Asynchronous PSO

Asynchronous PSO (APSO) is an adaption of the standard PSO approach in
relation to its update process. In general PSO, the swarm global best value
or fitness is updated after the evaluation of all individuals. Consequently, the
update process is done synchronously. However, this strategy is not useful
for swarm robotics because the individuals can constantly move and gather
information without awaiting the whole swarm to update its fitness. Therefore,
APSO has been developed. In contrast, the update process is performed
asynchronously. That means each individual updates its position and fitness
value immediately after the calculation. As well, the global fitness of the
whole swarm is updated instantly. Then, the individual’s search information
is partial and imperfect, resulting in diversity inside the swarm [1].
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2.1.2. Vector Field Map PSO

The Vector Field Map PSO (VFM-PSO) approach is a variant of the basic PSO
algorithm described before. It was designed for aerial microrobots working
in unknown dynamic environments. These environments may, for example,
be uncharted wind flows which are influencing the robots flight and search
performance. The main ideas behind this approach are two cooperating swarms
performing different tasks. One swarm is called optimizer swarm and tries to
investigate the search space and find the optimum. In contrast, the other
swarm is named explorer population. Its task is to gather information about
the environment and provide it to the optimizer swarm. The explorer swarm
creates a map illustrating, for example, wind flows in direction and intensity.
The optimizer swarm uses this map by adapting its movement to overcome the
disturbance of the environment. The environmental influence is studied in a
two-dimensional search space defined as a Cartesian Grid. It is implemented
as a planar Vector Field (VF). By interpolation, a vector ﬁ(ml, xy) for each
possible point (z1, z3) in the search space can be calculated using Equation 2.3.

—>

V(@) = (1=uw)(1 = w)VFo+ (1 - ug)ui VF o+ 23

ug(l —uy)VFo1+uiusVFE ‘
The explorer swarm collects information about the vector field at every position
it passes. The resulting information map is used by the optimizer swarm to
resist the vector field influence. Its movement is described by the following
equation, where 7;(t) denotes an individuals current position. ¥;(t + 1)
expresses the individuals velocity and 35 ﬁ(pk) describes the interpolated
environment vector [6].

Tt +1) =T + Tt + 1)+ Y VEQRY) (2.4)




2. Background

2.2. Topologies

In PSO, a topology determines which particles are connected with each other
to exchange information. For standard PSO, this network structure defines
that all particles can communicate with all other members of the swarm. This
is a so-called fully connected topology. Since the possibility of information
exchange highly influences the performance of PSO, the neighborhood selection
affects the search results as stated by Toscano-Pulido et al. [30]. In the past
years, a wide range of neighborhoods for PSO has been introduced. This
section offers an overview over the most common and widespread topologies
including their preferences.

2.2.1. GBest

The most popular topology for PSO is the Global Best (GBest) topology. It is
well known since it is used by standard PSO. The structure is fully connected,
which means that each particle is linked to all other members of the swarm.
Consequently, during the updating process of PSO, a particle can determine
the global best value by communicating with the whole swarm. That is why
it is called Global Best because the particle always gets the information of
the whole swarm. The information is passed immediately inside the swarm so
that it quickly finds an optimum. However, the fast convergence speed has
the disadvantage that the chance of stagnation in local optima is high. If all
particles share the same global best, they are all moving towards the same
direction. As a result, the search diversity decreases and a local optimum as
the final result is more probable [30].

Figure 2.1.: GBest Topology
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2.2.2. Ring

The Ring topology or also known as Local Best (LBest) is another common
topology in PSO literature. In contrast to GBest, this network highly decreases
the number of connections within the swarm. The structure arranges the nodes
which are representing the particles in the shape of a circle. Afterwards, each
node is connected to its left and right neighbors. Finally, the edges look like
a ring giving the topology its name. The topology is also called Local Best
because, compared to GBest, the particles can update their global best value
only locally by their direct neighbors instead of the entire swarm. Following
from this, the information transfer is a lot slower and the convergence may take
a longer time. The particles need more iterations to pass the information and
therefore follow the global best of the swarm. Due to the communication
delay, the search diversity increases and the chance for finding the global
optimum [30].

Figure 2.2.: LBest Topology

2.2.3. Von Neumann

The Von Neumann topology was first introduced in cellular automata by John
Von Neumann. In 2002, Kennedy and Mendes first introduced the topology
into PSO. The network structure is designed as a rectangular matrix in which
each node is connected to its neighbors on the left side, on the right side,
below and above itself. Transferring this structure to the nodes arranged in
the circle shape, each node is no longer connected to its direct neighbors but
to those after them [34]. Kennedy and Mendes tested different topologies and
their effects on the performance of PSO. In their summary, they recommended
the Von Neumann network because it performed more consistently than the
other topologies [18].
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Figure 2.3.: Von Neumann Topology

2.2.4, Star

The Star topology or also known as Wheel is highly isolating the particles of
each other. The structure is designed as a Star where the name comes from.
All nodes are connected to one single node. This one node owns as many
edges as other particles exist, but all other particles have only one connection.
This means that all information needs to be passed to this one particle to be
continued sending to the other particles [16]. There exist different variations
of this network structure. The central particle which controls the information
flow can either be the same over the whole process or it can be selected
randomly every iteration as described in [30]. The reduced information passing
through the central node acts as a buffering and therefore reduces the chance
of stagnation at local minima.

Figure 2.4.: Star Topology
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2.3. Game Theory

Game Theory is about decision-making and understanding the occurrences of
two decision-makers collaborate. The focus is driven towards the revealing of
economic, political, and biological phenomena. Some exemplary applications
are the following:

e job applicants competing for a job offer

political candidates competing for votes

jury members choosing a contest winner

animals striving for loot

competitors making bids in an auction

Game Theory includes various models which try to abstract and simplify
real-world scenarios. Whereby, they take into account all important facts
and leave out for the decision process unnecessary details. The goal
of understanding Game Theory and human interactions may open new
possibilities to change the behaviors and improve our own well-being. A wide
range of models cover the theory of rational choice. The theory describes that
a decision-makers choice among all possible actions will be the best action
corresponding to his preferences. This indicates that the decision is depending
on the set of possible actions and not on his likes and dislikes. For each pair
of actions, the decision-maker knows which one he prefers or he wants both
equally likely. To determine the preferences, a payoff function is used. This
function maps a numerical ratio to each action. In the decision process, actions
with higher numbers are preferable.

One game theoretic model is the strategic game. It models the interaction of
multiple decision-makers defined as players. For each player, there are possible
actions including preferences over these actions. An important difference is
that an action has influence on all players and not only the one who is executing
this action [24].
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2.3.1. Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is a well-known strategic game derived from
a situation in which two persons are suspected of a crime. They are both
interrogated in different cells, so none of them knows what the other one will
tell. The police does not have enough evidence to censure one of them for
the major crime, but they could convict both of them of a minor crime. In
this case, both will be arrested for one year. Another possibility is that one of
them whistles blows the other one. In this case, the whistle-blower will not go
to jail and the other one will stay three years in prison. In the case that both
try to cheat on each other, they will both spend two years in prison [24]. The
game is illustrated by a game matrix in Figure 2.1.

Table 2.1.: Prisoner’s Dilemma
Suspect B
Quiet | Cheat
Quiet | 1,1 3,0
Cheat | 0,3 2,2

Suspect A

The interesting point is that they will get the highest payoff if they both
cooperate. However, they do not know whether the other is cooperating or
not. If one of them cooperates but the other one defects, the cooperating
partner will lose and the other one will get a payoff [9)].

The 2-player Iterated Prisoner’s Dilemma (2IPD) is an extension of the PD
with the characteristic that each step is replayed multiple times and the players
hold a memory about the past decisions. One problem of the 2IPD is the fact
that it is not applicable to most of the real-world problems like economics or
social questions. Therefore, the N-Player Iterated Prisoner’s Dilemma (NIPD)
has been developed, which is able to cope better with real-world scenarios.
NIPD works the same as the 2IPD but uses n players instead of two [33].
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2.4. Bound Handling

Bound handling takes an import role in the simulation of swarm behaviour.
Often the search space is limited and an appropriate bound handling technique
is needed. In [13], different mechanisms are presented and compared with
each other in the context of their performance. One of them is the Periodic
Approach which is also applied in this work. The search space is extended by
an infinite number of copies. For evaluation, the individual is mapped to the
original search space with the help of a modulo operation. The individuals
characteristics remain unchanged in this method. The resulting behaviour for
a two-dimensional search space is illustrated in Figure 2.5.

:-o . 2

Figure 2.5.: Periodic Bound Handling
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3. State of the Art

This chapter provides an overview of the literature dealing with topology
in PSO. The chapter is structured as followed. First, static topologies
and their different network structures are presented. Second, a review of
dynamic topologies is given. As against static topologies, these imply a
variation over time because they are, for example, based on probabilistic
parameters. Furthermore, neighborhoods are introduced depending on the
particles fitness. Subsequent, PSO approaches based on game theoretic
approaches are introduced. Finally, approaches designed for asynchronous
PSO are illustrated.

3.1. Static Topologies for PSO

The static topologies for PSO are predefined and fixed topologies. This means
that they are not changing. Three different types of networks exist. The first
type is the regular network like ring and star. These topologies are generated
according to fixed rules and without any probabilistic parameter. The second
type is a completely random network which is based only on a probabilistic
framework and has no fixed properties. The third type is a network in between
the two mentioned before. This means that it has regular features but is also
influenced by probabilistic parameters. This section gives an overview of the
research on static topologies [11].

Disregarding the basic topologies described in Section 2.2, researchers have
revealed a lot of other regular network structures and integrated them into
the process of particle swarm optimization.

In 2014, Li and Guo developed the Regular Network PSO (RN-PSO). In
RN-PSO, a particle communicates with a number R of predefined other
particles for updating the local best position in PSO. If R is equal to one,

17



3. State of the Art

Randomness

Regular Mix Random

Figure 3.1.: Types of Networks

the structure is equivalent to the LBest topology, whereas by increasing R, it
converges to the GBest topology [19].

Mendes et al. introduced other network structures. One of them is the four
clusters topology. Thereby, particles are grouped into clusters. Inside a
cluster, all particles are connected with each other. Additionally, the clusters
are connected with each other over a gateway between single particles of each
cluster. Thereby, the information exchange within a cluster is fast, but the
transfer between clusters shows a delay. Another network structure presented
by Mendes et al. is the pyramid. In this topology, the particles are arranged
as a three-dimensional pyramid [22].

Moreover, Matsushita and Nishio developed the Network-Structured Particle
Swarm Optimizer (NS-PSO), which uses a Small-World Model for the
neighborhood determination. In this model, the particles are first connected
according to the Ring lattice. Second, the connection of each particle is
randomly rewired to another [20].

3.2. Dynamic Topologies for PSO

Apart from static topologies, a lot of authors have investigated dynamic
topologies. Static topologies are fixed and not changing over time, whereas
dynamic topologies are generated by varying parameters whereby the
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neighborhoods are permanently redesigned. A dynamic topology may, for
example, be based on the particles distances. A particle is connected to another
particle if their distance is smaller than a predefined threshold. Consequently,
the connections are changing over time because the particles are moving and
the distance to other particles is unstable. Apart from this approach, there
exist a lot more so that this section shall provide an overview over probabilistic
fitness and selection mechanism based approaches.

3.2.1. Probability

The further concepts are based on probabilistic models like the
Independent-Minded Paricle Swarm Optimization by Matsushita et al..
The particle global best position for the optimum is always influenced by its
neighbors and their best found solutions. Since a fully connected swarm has
a higher chance of stagnation at a local optimum, Matsushita et al. created
independent particles. In each iteration, a random factor determines whether
a particle is connected to the swarm or not. These independent particles
are totally isolated from the swarm and cannot exchange information. As a
result, they do not stop searching for better values even if the swarm might
stagnate at a local minimum [21].

Ni et al. declared three different topologies in their work. One of them is
the Fixed Cycle Based Dynamic Population which creates randomly a new
topology periodically after a number of iterations. The second one is the
Optimum Updating Status Based Dynamic Population Topology which tries
to prevent stagnation at local minima by changing the topology. If the
swarm’s optimum has not changed after some generations, the degree of
creating a new random topology increases. The last network is a combination
of both previously mentioned. Resulting, a new random population topology
is generated after the number of iterations or randomly as the factor is
growing by stagnation [23].

Additionally, Akat and Gazi also presented a probabilistic neighborhood.
In this neighborhood, each particle is the neighbor of another particle by
a chance of 50 percent. Thereby, they stated two variants of his approach.
In the first variant, the connection can be reciprocal so that regarding a
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connection, the particles are neighbors of each other. In the second variant,
only one particle is the neighbor of the other one but not vice versa [2].

An approach presented by Saxena and Vora is based on Small World Theory.
It represents a combination of the Small Network and the Von Neumann
Structure. Each particle can communicate with its four neighbors, but
additionally it can interact with random particles. In contrast to the Von
Neumann Structure, the particle can only exchange information with these
selected particles and not particle across [29].

In addition, another structure based on the Small World Theory is the
Adaptive Small World Particle Swarm Optimization developed by Gong
and Zhang. In contrast to the Small World Particle Swarm Optimization
algorithm, the neighborhood size and disorder probability depend on the
convergence state of the swarm. First, a particle is connected to K successor
particles. Second, the particle is instead connected to other random particles
with a probability p [11].

Besides, new PSO algorithms have been created based on the Barabasi-Albert
Model. One of them is the Scale-Free Network Particle Swarm Optimization,
which is initialized with a small number of fully connected nodes and adds new
nodes in each iteration. However, the new node is not necessarily connected
to all other nodes, but a probabilistic parameter decides on the connection.

Junior et al. also proposed a structure based on the Barabasi-Albert Model.
The basic idea is that the swarm changes its topology if it stagnates and no
longer improves its solution [15].

3.2.2. Fitness-based

Since the particles shall improve their fitness to find the optimum, some
literature deal with the topology generation based on the particles fitness. Akat
and Gazi developed a PSO algorithm with a structure based on the nearest
neighbors in function space. Whether two particles are connected depends
on the difference of their function values. If it is smaller than a predefined
threshold, the particles can interact with each other [2].
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A hybrid approach has been presented by Hamdan using a combination of
Star, Ring, and Von Neumann topology. For each of these three topologies,
the resulting fitness value is calculated and afterwards the one with the
smallest value is selected [12].

Besides, Wang and Xiang used a dynamic ring for the structure determination.
The idea is that particles are ordered in a ring structure but their position
depends on their personal fitness. According to their position in the ring,
particles can only communicate with better or worse particles [32].

Junior et al. used a roulette wheel rank for the particle selection. It regulates
that particles with a higher fitness are more likely to be chosen as neighbors
to improve the optimization results [15].

3.3. Game Theory

A wide range of approaches apply methods of the research field of Game
Theory to Particle Swarm Optimization. The strategic decision making of
game theoretic approaches can facilitate the search process in PSO.

One approach is the Predicted-Velocity Particle Swarm Optimization using a
game theoretic approach created by Cui et al.. In the sense of Game Theory,
particles are treated as players in an artificial evolutionary game playing
mixed strategies. The players strategies are represented by position or velocity
vectors. Each strategy is selected by a specific probability which is set to 0.5
at the beginning. After each move, the probability for the selected strategy
increases or decreases depending on the improvement of the particles fitness [8].

Another game theoretic approach has been presented by Di Chio et al. in
2008. The work is based on the well-known Prisoner’s Dilemma (PD) game in
which two players must choose between cooperation and defection. Di Chio
et al. tried to apply this game scenario of cooperation and defection to Particle
Swarm Optimization. For that matter, they have created two meanings of
the two strategies. In the first version, cooperation means that the social
component of a particle has a higher influence in the calculation. Whereby,
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defection results in a higher impact on the individual component. The second
version distinguishes cooperation and defection in such a way that cooperation
means behaving as a normal PSO particle. Whereas, defection results in four
different behaviours. One of them lets the particle only move towards its own
best position. The second variant creates a movement in the opposite direction
of the best position of the whole swarm. The third variant is similar to the
second one but regards the whole force, so the individual best is also taken
into account. At least, the fourth variant drives the particle towards a random
position. Besides, different mechanisms have been presented for changing the
strategy. One of them is called Flip-Strategy. If the particles fitness has not
improved since the last iteration, it changes its strategy to the opposite one.
Otherwise, it keeps its strategy. The other variant is that a particle always
cooperates if the fitness improves or it always defects if the fitness decreases [9].

In addition to the Prisoner’s Dilemma, many researchers have investigated
the n-player Iterated Prisoner’s Dilemma (NIPD). Since the cooperation in
large populations is challenging, different communication strategies have been
studied. Almanasra has worked on the problem of premature convergence
and as a result a bad cooperative behaviour among the players. Therefore,
he has developed an evolutionary model which is based on PSO. The PSO
particle communication network is based on sub-swarms using a Von Neumann
topology for communication inside the sub-swarm and towards the best
particles of neighboring swarms. Additionally, each particle has a knowledge
base in which the player’s moves and strategies of the sub-swarm and the
whole swarm are stored. Each group of players is represented by a sub-swarm
of particles. Whereby, each sub-swarm tries to find the best particle inside
its neighborhood. For diversity and information exchange between the NIPD
participants, the sub-swarms are connected with each other. PSO is used to
increase the cooperation ratio and create ambitious strategies [3].

3.4. Asynchronous PSO

The particles in Synchronous Particle Swarm Optimization have perfect
information about their neighbors before they update. This means that all
particles are evaluated and afterwards updated. In contrast, in Asynchronous
Particle Swarm Optimization, the particles have imperfect information about
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their neighbors. This is due to the fact that the particles are evaluated and
updated asynchronously and therefore directly change their position after
evaluation [27]. Rada-Vilela et al. stated that synchronous PSO fits best for
small neighborhoods due to its slow convergence. Asynchronous PSO reaches
a faster convergence. However, the bottle neck of this approach is the higher
change of premature convergence. Random Asynchronous Particle Swarm
Optimization shows the fastest convergence and therefore is most applicable
to large neighborhoods. Random Asynchronous PSO is a variant in which the
particles randomly update and evaluate. As a result, some particles do not
update or change at all in some iterations [26].

Fernandes et al. proposed an asynchronous steady-state PSO inspired by
co-evolution. The idea is that in each iteration only the worst particles of a
neighborhood are updated and the other particles remain steady until they
fulfill the update criterion [10].

Furthermore, a Switch Particle Swarm Optimization algorithm has been
developed by Aziz et al.. In this approach, the fitness of the best particle
is observed. If the fitness keeps unchanged for a number of iterations, the
update strategy is changed. If the previous update strategy was synchronous,
it becomes asynchronous and vice versa. This approach showed better results
than Synchronous and Asynchronous PSO [4].
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This chapter describes the methodology for the experiments presented in
Chapter 6. This work shall give an insight on the influence of neighborhoods
on PSO swarms in unknown dynamic environments. Therefore, the
implementation of the environmental impact has been used from the research
about VFM-PSO in Section 2.1.2. Transferring the simulation to real
word scenarios, the environment illustrated by a Vector Field (VF) shall
represent the wind influence affecting the swarms performance. The work
of Bartashevich et al. has shown that a normal PSO swarm is not able to
deal with the wind influence and gain a good fitness [6]. Fitness describes
the ability of a swarm to find the optimum. Due to this fact, two new
PSO approaches for swarms in dynamic environments have been developed in
Section 4.3, which are able to cope with the vector fields disturbance. Since the
effect of neighborhoods shall be regarded, Section 4.4 presents further newly
developed neighborhoods which will extend the already known basic topologies
from Section 2.2. Moreover, an energy model is introduced in Section 4.2
for illustrating the energy consumption of the swarms. In the first Section,
general assumptions and constraints are explained which found the base for
the simulation. This includes especially the individuals collision avoidance
(Section 4.1.1) and laser usage (Section 4.1.2).

4.1. Assumptions and Constraints

This section specifies and explains the assumptions and constraints stated
of the following models and simulations. A well-arranged list can be found
below. First, the Search Space underlies some preliminaries. This includes
the assumption that it is two-dimensional. Additionally, the wind velocity
is limited to a defined threshold. Besides, the wind is constantly affecting
the individuals. This means an individual is always pushed in one or the
other direction due to the wind. Therefore the wind is always affecting the
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individual, whether it is moving or not. Another important part is the bound
handling. As already explained in Section 2.4, the periodic bound handling
technique is applied.

e Search Space
e is two-dimensional
e wind velocity is limited
e wind is constantly affecting individuals

e periodic bound handling

Second, the individuals characteristics need to be defined. In the initialization
phase, the individuals are distributed randomly across the whole search
space. For the PSO calculations, they are using the asynchronous PSO
approach described in Section 2.1.1. Since the experiments shall derive
information about the energy consumption of the individuals, it is based on
the individuals movement and the wind. The concrete calculation is revealed
in Section 4.2. Furthermore, the individuals communication radius is limited
to a predefined value to analyze its impact on the search results and the
neighborhood formation. To make the conditions as similar as possible to
real-world scenarios, the individuals shall not collide as it is common for real
robots. The whole collision avoidance calculation is explained in Section 4.1.1.
As the collision avoidance may downgrade the search results as it is hindering
the search process, the individuals are equipped with a laser (4.1.2). The
laser enables the individuals to search inside a radius instead on being fixed
to their local position. However, the laser usage underlies further preliminaries.

e Individuals Characteristics
e initializes at random start position
e uses asynchronous PSO
e energy computation is based on wind and individuals movement
e communicates inside a limited radius

uses collision avoidance
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e can use lasers for scanning their local area

e have a defined spatial expansion

Third, the individuals movement underlies a few conditions. One of them is the
constraint that, as well as the wind velocity, the individuals velocity is limited.
Additionally, the movement is continuous like for real-world individuals. As
the energy plays a major role in real-world robotic applications, the individual
wastes energy for each movement. Thereby, a movement in the opposite
direction of the wind wastes more energy than going in the same direction as
the wind flows. The individuals power is provided by a battery. Inferring, the
individual can no longer move on its own if it has expended the full energy and
the battery is empty. However, one may not neglect the fact that the wind is
still moving the individual even if its battery is empty. If the individual does
not get information from other individuals, it may only use its own data and
therefore may be mislead.

e Individuals Movement
e moves by limited velocity
e makes continuous movement
e uses energy for movement
e uses battery as energy supply

e only move by wind flow if battery is empty

4.1.1. Collision Avoidance

In real-world scenarios where robots and drones are being used for exploring an
area, collision avoidance plays a major role in performing the task. Therefore,
collision avoidance has also been considered in this work. In this connection,
two main phases have been considered. The first phase is collision detection
illustrated by Figure 4.1. In this phase, the swarm is scanned and possible
collisions between individuals are uncovered. The individuals ¢ and j are
colliding if the distance;;(t) between each others positions po3;(t) and po3;(t)
is smaller than a defined minimum min. This minimum is twice the size s of
an individual plus a defined repulsion distance rep.
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size TEP  size size TEP  size
distance;;(t) distance;;(t) :
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distance;;(t) > min distance;;(t) < min

Figure 4.1.: Collision Detection

1, distance;;(t) < mi

collision;;(t) = istance(t) < min (4.1)
0,else

distance;(t) = | (po3;(t) — po3;(t))] (4.2)

min =2-s+rep (4.3)

Subsequently, the collision resolution phase follows. If a collision has been
detected, the individuals need to be rearranged. The goal is to resolve all
detected conflicts. The new repositioning of individual ¢ which is colliding
with individual j is shown in Figure 4.2.

The new position of individual 7, denoted as po3;(t+1), is calculated by adding
a force to the old position po3;(t). This force creates a repulsion of the collision.
It is generated by a direction vector and a strength factor. The direction vector
determines the path of the repulsion. While the strength factor determines the
length of the repulsion. In order to avoid another collision between individual ¢
and individual 7, individual 7 is pulled into the opposite direction of individual
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Figure 4.2.: Collision Resolution

J, which is displayed in Equation 4.6. The strength factor is based on the
distance between the individuals, which means a weaker pulling for a larger
distance and a stronger pulling if the distance is small. Since the reformation
can result in new collisions, the two phases are repeated until all collisions
are detached.

——

pod;(t + 1) = pos,(t) — force;(t) (4.4)
Force:(t) = strengthi(t) - direction:(t) (4.5)
direction;(t) = || (po3.(t) — oz, (1)) (4.6)
strengthy(t) = < (2 size + rep) — distanceij(t)) (4.7)
distance;(t) = | (po3;(t) — po3;(t))] (4.8)
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4.1.2. Laser

Applying collision avoidance to PSO can result in a decreasing success rate for
the optimization problem. That happens because the PSO swarm is designed
in such way that individuals start accumulating at the global best position.
The velocity vectors become smaller with time and the individuals start
searching in very small areas. In contrast, collision avoidance prevents this
accumulation and searches inside very small spaces because the individuals
are hindering each other. In most cases, one single individual reaches the
best found solution so far and searches for better solutions while the other
individuals are moving around it as they cannot reach the global best
position due to the collision as shown in Figure 4.3. As a result, this single
individual remains the only one improving the search results. However,
the PSO algorithm is based on the search of a collective of individuals and
therefore, the results become worse compared to a PSO swarm without
collision detection.

ndividual;

searchPos;

Optimum

Figure 4.3.: Particle Swarm Without Laser

For the reason that collision avoidance is an important condition in real-world
scenarios, this problem has been solved by the development of a laser presented
in Figure 4.4. The laser works as an artificial antenna for each individual,
increasing its search radius. Until then, an individual could only analyze the
search space at the center of its body. However, with the laser, an individual
can investigate the whole area around its center inside a predefined radius. As
a result, the crowding at the best found solution is no longer a problem because
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the individuals can reach the position of the best solution by its laser even if
they cannot reach it by the center of their body. Consequently, this highly
improves the fitness. The laser shall only be used in the case of crowding
and searching in local areas which the individual cannot reach because of
collisions. Thus, the laser is only activated after a determined threshold of
unimproved iterations. To avoid the individuals from being stuck at local
minima, the laser is also deactivated after a number of iterations in which
the results do not change.

laser Radius; individual;

searchPos;

Optimum

Figure 4.4.: Particle Swarm Using Laser

4.2. Energy Model

As already explained in the assumptions, each individual uses a battery for
energy provision. This indicates that the usable energy is limited to the
maximum of the batteries payload. In each iteration, an individual ¢ wastes
energy denoted as eTotal;(t). This energy is subtracted from the battery
battery;(t) and determines the new battery load battery;(t + 1). The total
energy €Total;(t) is calculated by three factors eMove;(t), eWind;(t) and
eAngle;(t) as shown in Figure 4.5.

battery;(t + 1) = battery;(t) — eTotal;(t) (4.9)
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eTotal;(t) = eMove;(t) - (1 + (eAngle;(t) - (1 4+ Wind,(t))) (4.10)
T A
eWind;(t) VE (7(¢))

Figure 4.5.: Energy Model

One factor is the individual’s velocity eMove;(t) or individuals movement.
This includes the length of an individuals moving vector ¥;(t+1) and generates
a higher energy usage, the greater the vector turns out. The second factor
eWind;(t) considers the wind vector V_F)(E’Z(t)) at the individuals position.
The third factor eAngle;(t) describes the angle between the wind vector
‘/_ﬁ(?z(t)) and the individuals velocity vector @;(t). The resulting value is
inside a range of [—180, 180], whereby the sign indicates if the angle is generated
on the left hand of the wind vector or right-hand. Each factor is normalized
by its maximum value. Consequently, eTotal;(t) is in a range of [0, 3].

eMove;(t) = w (4.11)
. [VE(Z(t))]

Wind;(t) = ————— 4.12

eWind,(t) VE (4.12)

1QengleRatioit) . (gngle;(t) — 150) + 150

eAangie ( ) mam(lOangleRatwi(t) . (anglel(t) — ]_50) + ].50)

(4.13)
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angleRatio;(t) = %‘Z(ﬂ (4.14)
angles(t) — ? - avctan 2(dotty (), cross,(t)) (4.15)
dott;(t) = Ti(t + 1) x VE(Z(t)) (4.16)
cross(t) = Ti(t +1) o VE(Z4(1)) (4.17)

It is supposed that an individual needs the most energy if it is moving in the
opposite direction of the wind vector and the absolute value of the angle is
large. In contrast, the energy is the smallest if the individual is moving in the
same direction as the wind, so the absolute value of the angle is small. The
impact of the angle on the energy is illustrated in Figure 4.6.

1.0 1

0.8 1

0.6

Energy

0.4

0.2 A1

0.0 A1

-150 -100 -50 0 50 100 150
Angle

Figure 4.6.: Energy Plot
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Another presentation is demonstrated by Figure 4.7. This figure refers to
Figure 4.5 showing the size of the energy value by the color selection. Similar
to the last figure, yellow indicates a small and red a high energy value. The
black arrow represents the wind vector V—}%(Yl(t))

45 -45

180

Figure 4.7.: Energy Circle

4.3. Swarm Models

In this work, two different swarm models based on PSO (2.1) will be presented.
The first one is Power PSO (P-PSO) explained in Section 4.3.1 and the second
one is Zigzag PSO (Z-PSO) introduced in Section 4.3.2. The goal of each of
them is to overcome the influence of unknown vector fields and improve the
search results. For this purpose, each model is applying a different strategy.
While P-PSO is trying to reach the optimum as fast as possible and accepting
a higher energy consumption for tackling the wind, Z-PSO takes a different
approach by decreasing the angle between the wind velocity and its own
velocity. The general velocity calculation U;(t + 1) for each particle in a
swarm is shown below.
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4.3. Swarm Models

Ti(t+1) = AV(Zi(t)) + VE(Z4(1)) (4.18)

PSO(#(1)) = witi(t) + Cu01 (Pt — Ti(t)) + ca0a (T, () — F(t))  (4.19)

The particles new velocity v;(t + 1) is generated by the sum of the swarm
specific velocity vector AV ;(t) and the wind vector V_P:(Y,(t)) If a particle
runs out of energy, the velocity vector AV i(t) becomes zero and the velocity is
only determined by the wind vector. As a result, a particle is following the wind
stream. Since both models are established from PSO, they are calculating a
velocity vector 135*‘5(@(75)) precisely as standard PSO, which determines their
movement vector according to the optimization problem. However, this vector
functions only as an input for each model and will be adapted to conform to
their strategy. Consequently, each algorithm generates another velocity vector.

4.3.1. P-PSO

The Power PSO (P-PSO) is a modification of the standard PSO algorithm
purpose-built for the application in unknown vector fields. The main
problem of the standard PSO is that individuals are drifted away by the wind,
especially if the individuals start accumulating at the optimum. That happens
because the velocity vector becomes smaller, the closer the individuals get to
their global best position. Accordingly, their movement vector is small, but
the wind vector is as large as before. On these grounds, the wind is pushing
the individuals away from the optimum. For overcoming this drawback, the
P-PSO algorithm uses another strategy. If the PSO vector 1?5*5(?1(15)) is
smaller than a predefined threshold, it is increased until it reaches a given
length denoted as minPSO(?U’i(t)) and displayed in Figure 4.8. In areas
without wind influence this behaviour would be misleading, but in vector
fields it is very useful for the individuals in fighting the disturbances caused
by the wind.
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4. Methodology

‘PSO(?Z-(t))‘ < min ‘manSO(E"i(t))‘ > min
PSO(74(1)) —»  nPSO(Z.(1))
O S 0O ——0

Figure 4.8.: P-PSO

In Figure 4.9, the complete P-PSO algorithm is illustrated, including three
different cases. For each case, the evaluation of the resulting velocity vector
AV (Z;(t)) is described below.

First, the PSO vector is calculated and its length is verified. The first case is
applied if the length is equal to zero. In this case, an individual would not be
moving at all. However, the P-PSO strategy provides a constant movement
and does not tolerate stagnancy. Therefore, the velocity vector needs to have
a minimum length. This is ensured by using the same velocity vector as in the
last iteration indicated by AV (Z:(t —1)).

In the second case, the PSO vector is larger than zero but still smaller than a
predefined minimal value min. Thus, the existing PSO vector is multiplied by
the factor ten until it reaches the minimum required length. As a result, the
swarm is constantly moving even if it is close to the optimal position. This
strategy would not have worked out for case one because a vector with length
zero cannot be increased by multiplication.

For the last case, the PSO vector already reaches the needed length and no
modification is needed. That means that the velocity vector is exactly equal
to the PSO vector.

Casel : AV (Z,(t)) = AV (Zi(t — 1)) (4.20)
Case2 : W(E’Z(t)) = minPSO(Z;(t)) (4.21)
Case3 : AV (Z:(1)) = PSO(Z4(1)) (4.22)
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Calculate PSO

Case 1 —

Case 2 —

Case 3

Figure 4.9.: P-PSO Algorithm
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4.3.2. Z-PSO

The Zigzag PSO (Z-PSO) algorithm is an adaption of the standard PSO
algorithm with the intention to reduce energy consumption while not
neglecting the fitness. The Z-PSO shall prohibit moving exactly in the opposite
direction of the wind vector and by this wasting a lot of energy. The idea is
based on sailboats which are doing zigzag movements if they are sailing in
the opposite direction of the wind. Similar to sailboats, the Z-PSO algorithm
shall adjust the individuals velocity to the wind vector in a suitable way. Since
the wind is unknown, the individuals need to try to predict the wind force
indicated by V—FP)(E’Z(t)) The forecast is generated by the error of their last
movement. This means in particular, an individual ¢ knows its last position
po3;(t — 1), the last move vector AV (Z;(t — 1)) and its new position po3;(t).
Due to wind interruption, in most cases the individual will not have reached the
lately targeted position tpTos)i(t — 1) which it should have reached by its move
vector AV (Z;(t —1)). As a result, the individual can calculate the difference
between the planned position fpos;(t) and its real position pod;(t). This is
exactly the wind vector ﬁ(?z(t — 1)) distracting at the last position. One
disadvantage of this approach is that the wind prediction for the new position
is based on the wind at the last position, but the wind might be different
at the new position. However, this is insignificant because the wind is very
similar at local positions and is not highly varying in between the range of the
individuals possible movement.

As shown in Figure 4.10, the PSO vector is rotated if the angle « is not inside
the range of [—135, 135] to prevent the individual from moving in the opposite
direction of the wind vector. Thus, the individuals velocity will result in zigzag
movement. For the case that a particle does not have any neighbors, the
particle does not move at all but follows the flow. Because of the assumption
that a single particle without interaction with other particles is not able to find
the optimum. Therefore it reduces its energy to a minimum until it reaches
other particles again.

VFP(Zi(t)) = poki(t) — tposi(t — 1) (4.23)
tposi(t — 1) = pod;(t — 1) + AV (Zi(t — 1)) (4.24)
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180
a;(t) = — - arctan 2 (dott;(t), cross;(t))
T

dott;(t) = VFP(Z.(t)) x PSO(Z,(t))

Figure 4.10.: Z-PSO

(4.25)

(4.26)

(4.27)

An overview of the algorithm is provided by Figure 4.11. The algorithm can
result in three different cases and velocity vectors described below.

In the first case, the algorithm proofs if the individual is connected to any other
particle in the swarm. If this is not the case, the velocity vector is described
as a zero vector. As a result, the particle follows the flow and does not do any
movement itself. Second, the algorithm checks if the particle would move in
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the opposite direction of the predicted wind vector m(i’l(t)) if it follows
the standard PSO vector PSO (Z(t)). Therefore, the individual calculates
the angle o between the two vectors.

A movement in the opposite direction of the wind vector is defined by an angle
between —135° and —180° or, respectively, 135° and 180°. Consequently, if the
angle is inside a range of [—135,135] degree, the individual is not moving in
the contrary direction of the wind vector. Thus, case two is applied and the
standard PSO vector F@(Eﬁ(t)) is set as the new velocity. Additionally, the
predicted wind V—FP)(J_U’l(t)) is subtracted. This increases the chance that the
individual is moving towards the targeted position by the PSO vector and is
less influenced by the wind.

Though, if the angle is not inside this range, the PSO vector needs to be rotated
until the angle fits the scope. The newly generated vector rotated P.S O(?s’l(t))
is as well subtracted by the predicted flow distribution V—F’P)(?Z(t))

Casel : N(E’Z(zﬁ)) = <8) (4.28)
Case2 : AV (Z,(1)) = PSO(Z4(t)) — VEP(Z:(t)) (4.29)
Cases3 : Z‘—?(?Z(t)) = rotatedPSO(Z;(t)) — V—F—]_D)(E)Z(t)) (4.30)
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Case 1 —
No
Calculate PSO
Calculate o
Case 2 T
No
Case 3

Figure 4.11.: Z-PSO Algorithm
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4.4. Neighborhood Models

This section is about the newly developed neighborhood models. The concepts
lying behind these approaches have been inspired by the insights of the research
in Chapter 3. Some of them have been advanced on the basis of game theoretic
approaches like the Payoff Model in Section 4.4.1. In contrast, the Probability
Model in Section 4.4.2 is grown on stochastic parameters. Furthermore, hybrid
approaches have been created by combining both models in Section 4.4.3. In
Section 4.4.4 models are explained performing different, already known models
by applying a switch strategy.

4.4.1. Payoff Model

The Payoff Model is based on the n-player Iterated Prisoner’s Dilemma (NIPD)
[33]. Each individual represents one player who needs to decide whether he
cooperates or defects. Compared to the known NIPD, the individual does
not cooperate with a single other player but with a group of players called
coalition. The strategies of cooperation and defection are interpreted as the
following. If an individual cooperates, it defines a coalition as its neighborhood
and exchanges information. If it defects, there is no information exchange. In
this model, an individual only cooperates with one coalition, which is the one
providing the highest payoff. If two or more coalitions score the same value,
one of them will be selected randomly. The payoff values for each coalition
are stored in each individuals memory. As a result, each individual can hold
different payoff values for the same coalition. At each iteration, the recently
chosen coalition will be rated and the payoff table will be updated accordingly.
If the individuals global best value has improved since the last iteration, the
taken coalition will get a higher payoff, increasing the chance for being picked
again. However, if the fitness did not improve, the payoff will be decreased.
Independent of the shift, the payoff is always between zero and one. After
the update, the possible new coalitions are generated. Therefore, a maximum
of five individuals is selected from the individuals inside the communication
radius. All possible combinations or coalitions are formed from this set of
individuals. Consequently, there are in total 2° coalitions. Without this
limitation, the computation time would be beyond the scope. In the case of
more than five possible individuals inside the radius, it is decided by chance.
Then, all possible subsets of these individuals will be created and the one with
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the highest payoff will be determined. As already explained, this coalition will
be the one with whom the individual will cooperate and exchange information.

Start
Swarm
get individuals in radius Payoff
Memory
Radius List
select random five
update

Reduced Radius List

create subsets @

Updated
All Subsets Payoff Memory

select best subset

Best Subset

set best subset as neighbors

Stop

Figure 4.12.: Payoff Algorithm
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4.4.2. Probability Model

Swarm

get individuals in radius

Radius List

-

Probability
Memory

update

select individuals by probability

Probability List

No

Probability List

set list as neighbors

-

Updated
Probability
Memory

Random List

set list as
neighbors

Figure 4.13.: Probability Algorithm
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The fundamental base for the Probabilistic Model is build on the work of Cui
et al. [8]. They proposed a new PSO variant combined with game theoretic
approaches. The PSO individuals needed to select different strategies based
on a probabilistic value equal to players strategy selection in Game Theory.
After each move, the values were updated according to the individuals fitness
[8]. Analog to this approach does the Probabilistic Model work. An individual
gets a list of individuals inside its communication radius. Afterwards, each
of them is selected according to a probability factor stored in the individuals
memory. The chosen individuals build the new neighborhood in this iteration.
If the probability values are low and no individual is selected, at least one
random individual is defined as a neighbor. This exception is made because
the PSO algorithm does not work well if an individual has no opportunity
to exchange information. It would be the same scenario as if an individuals
decision is only based on its individual component. After each iteration, the
probability values of the neighbors are updated. If the individual’s global
best value has improved during the last iteration, the probabilities of the last
neighbors are increased. In contrast, the probabilities decrease if the value did
not improve. The resulting value is always inside a range of 0.05 and 1. This
guarantees that there always is a chance that an individual is selected.

4.4.3. Payoff Probability Model

The Payoff Probability Model is a hybrid approach adapted from the Payoff
Model (Section 4.4.1) and the Probability Model (Section 4.4.2). At the
beginning, as well as in the Payoff Model, the coalition with the highest payoff
is selected. Though, not all the individuals inside the coalition will be chosen
with certainty. Instead, the Probability Model is applied. Each individual
is added to the resulting neighborhood by the chance of its probability
value. In the case that no individual of the coalition is selected, at least one
random individual will be selected. After each iteration, the payoff memory
and probability memories are updated according to the fitness trend of the
individual which searched for a neighborhood.
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v
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Figure 4.14.: Payoff Probability Algorithm
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4.4.4. Switch Strategy Models

Another approach inspired by Game Theory has been proposed by Di Chio
et al. [9]. In their study, they applied game theoretic approaches to individual
Swarm Optimization. They interpreted the swarm individuals as players
in a Prisoner’s Dilemma Game (Section 2.3.1) who need to decide between
cooperation and defection. For the understanding of cooperation and defection,
they came up with different variants. Furthermore, they introduced different
mechanisms for changing a player’s strategy in a game based on an individual’s
fitness. Consequently, a player can change between cooperation and defection.
In this work, three different models have been developed which use different
strategies. They are listed below. Each model is based on one of the previously
announced models. Since the only difference of the models is the underlying
neighborhood model, they will be explained exemplary by the Payoff Switch
Model.

e Payoff Switch Model
e Probability Switch Model
e Payoff Probability Switch Model

The model is similar to the Payoff Model (Section 4.4.1) but with the
fundamental difference that an individual can change its strategy. In the
context of the Prisoner’s Dilemma (Section 2.3.1), the strategies cooperate and
defect are construed as subsequent. Cooperation is considered as behaving
according to the Payoff Model. Whereas, defection lets the individual use
another neighborhood model. In this work, the other neighborhood model
was selected from the basic and common topologies described in Section 2.2.
The available selections were the neighborhoods GBest, Ring, Von Neumann
and Star. Since GBest is a fully connected network and has been highly
investigated, it is excluded. The Star topology is also not a good selection since
the topology requires that the whole swarm acts in conform to this model since
one individual of the swarm needs to be defined as the master which acts as
the central point of transfer. As a result, only Ring and von Neuman are left.
Several test simulations have shown that a swarm using Ring did slightly better
than a swarm using Von Neumman topology considered in overall simulation
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cases. Therefore, the Ring topology has been chosen as the alternative strategy.
After each iteration, the strategy is changed by a probability value which is
stored in the memory. If the fitness has improved, the value decreases and if
the fitness stagnates, the probability rises. Consequently, stagnation makes it
more likely that a strategy switch is performed.

T

Strategy
Memory

-

orepdn

Updated
Strategy Memory

Ring
Algorithm

Payoft

Algorithm

Figure 4.15.: Switch Algorithm

48



5. Implementation

This chapter offers information about the implementation of the experiments
in Chapter 6. In Section 5.1, the general simulation setting and structure
are introduced. The results of this thesis may provide important insides
especially for real robotic systems. Therefore, it is engaging to consider as
many real-world components in the simulation as possible. Section 5.2 presents
those factors regarding the particle implementation and particle movement.
Additional, Section 5.3 introduces further realistic adaptions in relation to the
implementation of the environment.

5.1. Simulation

The simulation environment was developed using the open-source language

2 programming language. The

Processing! which is based on the Java
advantages of Processing are that it comes with built-in graphical visualization
which is important especially while testing and developing new approaches.
Furthermore, the Java foundation makes it possible to import all other
available Java libraries and therefore to extend the functional scope.

The selected development environment was Atom?®, which is an open-source
integrated development environment (IDE) providing a wide range of
extendable add-ons and plugins also for Processing. This includes for example
auto-completion and syntax highlighting, which are highly facilitating the
implementation process. Additional, the version control system git* can be
integrated as it was done in this work.

For the phase of the methodology development, a graphical user interface
was created. It offers the possibility to easily observe the swarms behaviour.

https://processing.org/
’https://www.java.com/de/
3https://atom.io/
‘https://git-scm.com/
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5. Implementation

Using the GUI, one can effortlessly change the selected vector field, objective
function, neighborhood or swarm.  Figure 5.1 shows a screenshot of
the interface.

Since Processing is designed for graphical output and visualization but not for
statistical computation, the results of the experiments were not evaluate using
Processing. Instead, the results were stored in separate text files for further
processing and analysis.

For the evaluation, the programming language Python® was selected. One of its
advantages is that it allows an easy and fast data processing with low effort.
Moreover, there is an enormous collection of extendable libraries including
plugins for analytical issues.

Play/Pause Swarm Network
™ n - > /

15 it A Iteration: 25
P Y. GBest: 0.2613
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-5 | [ VF2:Rotation MMM Ring N Network ]

. G S

Yy [ VFa:Bi MM Neumann B Battery ]
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1o

o
-15 ki k
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Figure 5.1.: Graphical User Interface

5.2. Particles

Several components have been considered in this work to make the simulation
more realistic.  This also includes the implementation of the particles
movement. Therefore, an important factor is a continuous movement. During
one iteration, a particle is able to change its position inside a defined radius.

Shttps://www.python.org/
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However, this iteration needs to be discretized in respect to real movement.
Otherwise, a particle would create jumps between two iterations. The iteration
has been divided or discretized into sub iterations. Equally, the velocity vector
has been divided allowing a proper movement. This includes that a particle
is also influenced by the vector field on more positions during one iteration,
which is more similar to real world robotic system. In this work, the iterations
have been divided by a value of ten. A higher value possesses the advantage of
more realistic particle behaviour. However, in return, the computational effort
rises due to more calculations.

Apart from a discretized movement, collision avoidance has been considered.
In real-world scenarios, robots will avoid collisions, particularly to prevent
damage but also to not hinder each other. Consequently, collision detection
and resolution are an important factor in realistic simulation development. In
the field of PSO, collision avoidance will highly affect the search process and
fitness value because the particles have less opportunities to find the optimum.
A particle has a body which defines its collision radius. However, in the search
process, a particle can only investigate the point exactly where it is positioned
and not inside its body shape. Though, the other particles cannot search
inside this area because of the collision detection. In this work, the collision
avoidance has been implemented in such a way that particles calculate their
new position and before a new iteration starts, a collision detection is applied
over all particles. If two or more particles are colliding, their new velocities and
positions are generated as explained in Section 4.1. This is an easy and efficient
handling, whereby it leaves some problems unsolved. Real robots would not
be colliding in the first place but preventing such movement and taking into
consideration the positions of the other robots. Nevertheless, an exact and
concrete collision avoidance would have been beyond the scope of this work.
Therefore, this simple but well-working solution has been chosen.

5.3. Real Data Vector Fields

The set of vector fields for the simulations are generated by functions and are
computable. However, this thesis shall provide a basis for real-world scenarios.
Therefore, the list of vector fields has been extend by two real-world vector
fields from ocean wind data to simulate a more realistic environment. NASAS

Shttps://www.nasa.gov/
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offers online access to real-world and time-dependent data about wind flows all
over the world. The data is accessible by OPenDAP7, which is an open-source
framework facilitating scientific data networking over the internet in an easily
processible format. Python provides a specific OPenDAP library for accessing
and downloading this data.

In this thesis, wind flow data from Indian Ocean® was used. The data collection
extends from 1987-07-02 to 31.12.2011. The date for the selected data was
randomly set to 12.01.2010. The chosen area for vector field Reall has been
defined by the longitude values in the range of [60,80] and latitude values in
the range of [0,20]. Vector field Real2 was defined by the longitude values
[70,90] and latitude values [—50,—30]. The selection of the longitude and
latitude values has been made on the divergence of the wind flows inside this
area. One has tried using areas with varying wind directions and strengths.

e Vector Field Reall
e Date: 2010-01-12
e Longitude: [60, 80]
e Latitude: [0,20]

e Vector Field Real?2
e Date: 2010-01-12
e Longitude: [70,90]
e Latitude: [—50, —30]

The data was downloaded and stored in a temporary text file before it was
imported and converted by the simulation program. In contrast to the other
vector fields, the database from real-world flow is not continuous. For this
reason, the search space has been divided into grid cells and one vector has
been assigned to one grid cell. The resulting vector fields are shown in Figure
5.2 and Figure 5.3.

"https://www.opendap.org/
Shttps://thredds. jpl.nasa.gov/thredds/dodsC/ncml _aggregation/OceanWinds/
ccmp/aggregate__CCMP_MEASURES_ATLAS_L4_0W_L3_O_WIND_VECTORS_FLK.ncml.html
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6. Evaluation

The PSO approaches and neighborhoods presented in Chapter 4 are tested and
compared with each other in different scenarios. This includes various dynamic
environments and objective functions. The considered metrics evaluate the
general approaches of fitness, energy consumption, accumulation, and success
rate. Furthermore, the particles trajectory of the PSO approaches is analyzed.
First, the experimental setup is proposed in Section 6.1. Second, the results
are presented in Section 6.2. Finally, the main results and insights derived
from the experiments are presented in Section 6.3.

6.1. Experiments

The search space for the experiments is defined as a two-dimensional grid
with (x1,29) € [—15,15] in which N swarm members are placed randomly
at the beginning. The optimum, which is defined as 0 + 0.01 is placed at
[—10,10]. The parameter settings for the PSO algorithm have been derived
from extensive tests in advance. Thus, the inertia weight is set to 0.6 and the
acceleration coefficients are defined as 1.0. The end of the simulation is reached
after 150 iterations. Each iteration consists of 10 sub iterations resulting in a
more realistic particle movement.

Additionally, velocity constraints and further parameters are set. This includes
the limitation of a particles velocity to v,,., as well as the restriction of the
wind velocity to w,.,. The minimal velocity of the P-PSO particles is 1. For
the collision handling, a particle size of 0.7 and a repulsion value of 0.15 are
used. If an individual does not improve its fitness for 5 iterations, the laser is
activated as described in Section 4.1.2, scanning the area in a radius of 2.5.
Additionally, the communication radius is limited to 2.0.
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Table 6.1.: Parameter Values

Description

Parameter ‘ Value

Search Area

Search Space d 2
Grid Width X [—15, 15]
Grid Length Y [—15,15]
Optimum Value P 0+0.01
Optimum Position Dpos [—10, 10]
PSO
Population Size N 20
Inertia Weight w 0.6
Acceleration Coeflicients C1,Cy 1.0
Iterations I 150
Sub Iterations Lo 10
Simulation
Particle Velocity Limit Urnaz 2.5
Flow Velocity Limit Winaa 2
P-PSO Velocity Minimum | v,,;, 1
Particle Size S 0.7
Repulsion rep 0.15
Laser Counter L. 5
Laser Radius L, 2.5
Communication Radius Crmaz 2
Neighborhoods
Memory Value Initial Mimit 0.5
Memory Value Minimum | m,,,, 0.05
Memory Value Maximum | M4z 1
Memory Update Value Mupdate +0.05

56



6.1. Experiments

The tested neighborhoods are described in Section 4.4. Though, not
all neighborhoods are used in the experiments. For the neighborhoods
which are based on a switching strategy, tests in advance have shown that
Probability Switch topology provided the best results. Therefore, the other
two neighborhoods Payoff Switch and Payoff Probability Switch are neglected.
For the updating process, the memory values are initialized equally for
all neighborhoods by m;,;; and can be in a range of m,,; and Mmy,... For
the updating process, the memory values are increased or decreased by 1mpdate-

The experiments analyze the performance of two PSO swarms introduced in
Section 4.3. P-PSO and Z-PSO have been intentionally designed for aerial
robots dealing with unknown environmental influences. The main focus is
based on a limited communication radius and the impact of varying topologies.
Therefore, three different objective functions are tested in 31 simulations, each
consisting of 150 iterations. The analyzed optimization problems are presented
in the following.

The first objective function is the Sphere Function, which is also the simplest
optimization problem. It can be seen as a general examination of the
approaches and neighborhoods.

IX|
fla) =) (x:)’, z€X (6.1)
i=1
The second optimization problem is Rosenbrock Function which is more
challenging than Sphere because it provides plateaus which may be misleading
and hindering the search process.

|X]-1

fl@) =Y [100(zi1 — 2f)* + (z; = 1)%], z€X (6.2)

=1

Ackley function is the last optimization problem offering multiple local minima.
The challenge is that the particles do not stagnate at these local minima but
find the global optimum.

f(z)=—20 exp<70.2, / ‘71| >4 m?fexp(% >4 cos(%mt,))) +ate, z€X (63)
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6. Evaluation

Each of the objective function is tested in four different vector fields which are
listed below. The vector fields Cross and Fall are generated by functions. In
contrast, vector fields Reall and Real2 are calculated by real data as described
in Section 5.3.

Table 6.2.: Vector Fields

Description | Title | Function

"Cross" VF1 V—F’l(xl, T9) = (X9, 21)

"Fall" VF2 | VFy(z1,25) = (0, —2)

"Reall" VF3 | Longitude: [60,80], Latitude: [0, 20]

"Real2" VF4 | Longitude: [70,90], Latitude: [—50, —30]
6.2. Results

This section presents the results of the analysis. Therefore, the convergence
and fitness of the swarms have been compared in Section 6.2.1. Furthermore,
the results of the neighborhoods have been compared inside the PSO
approaches. The energy analysis in Section 6.2.2 presents the general energy
usage for each swarm and neighborhood during the simulation. Section 6.2.3
accumulation and success rate are analysed. Afterwards, Section 6.2.4 explains
the general particles movement for each approach for two vector fields.

6.2.1. Convergence Analysis

This sections analyzes the convergence rate of the two PSO swarms mentioned
in Section 4.3 with respect to the topologies introduced in Section 4.4. The
convergence rate represents the fitness of a swarm according to the selected
neighborhood. In each iteration, it displays the value of the best solution
found so far by the swarm. In the following, the well-known topologies GBest,
Ring, Star and Von Neumann are compared to the newly developed topologies
based on game theoretic approaches.

P-PSO

First, the convergence rate for P-PSO in Sphere Function is analyzed with the
help of Figure 6.1 and the according tables in the appendix in Section B.1.1.
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6.2. Results

The figure shows the convergence rate at each iteration for all neighborhoods.
The statistical difference between the different topologies is given by the tables
supporting the analysis. For the statistical tests, an interval of 95% was chosen,
which means that two neighborhoods are significantly different if the value is
smaller than 0.05.

The statistical results show that the convergence rate is almost the same
for each neighborhood and there is in most cases not a significant difference
between the results. For most of the vector fields, P-PSO is able to find the
optimum. However, the results show that for vector field Fall the swarm is
struggling in improving its fitness and finding the optimum. In Section 6.2.4
it is shown that the particles struggle for compensating the wind in vector
field Fall and do not have enough strength to move in their desired direction.
Instead, they are blown away by the flow. This behaviour leads to the bad
results in the fitness rate because the particles cannot perform their search
process as usual. The results for the other vector fields show that P-PSO is
able to find the optimum in vector fields with less influence. This leads to the
conclusion that for P-PSO the neighborhood selection does not play a major
role in the process of finding the optimum for simple optimization problems
like Sphere Function. Though, environments with strong wind influence highly
complicate and hinder the search process for P-PSO.
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Figure 6.1.: Convergence P-PSO Sphere Function

59



6. Evaluation

Figure 6.2 shows the convergence rate for P-PSO in Rosenbrock Function.
Similar to Sphere Function, P-PSO is not able to find the optimum. The
swarms fitness is even worse than before. This leads to the assumption
that optimization problems including plateaus like Rosenbrock Function are
more challenging for P-PSO to solve. Though, the results for the different
neighborhoods do not statistically vary much as presented in Section B.1.1.
Consequently, for P-PSO, the neighborhood selection does not affect the
swarms fitness.
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Figure 6.2.: Convergence P-PSO Rosenbrock Function

The results for Ackley Function are presented by Figure 6.3. Finding the
optimum is challenging in vector field Fall and Real2 regardless of the chosen
topology. The results are not significantly different in almost all cases as
shown in Table B.18 and Table B.20. As already written before, Fall generates
the worst results due to the strong wind influence which P-PSO is not able to
cope with. Real2 shows similar results because the vector field and the wind
disturbances are similar to vector field Fall, but the wind is less strong at
some positions. Thus P-PSO can compensate the wind at some positions, but
vector fields including straight wind flows seem to be challenging for P-PSO.
In contrast, the results for Cross and Reall are better for all topologies even
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6.2. Results

if no meaningful difference between them is visible.

Overall, the results show that P-PSO in some cases finds the optimal solution
for problems with multiple local minima like Ackley Function. However,
the results are highly depending on the environmental influence and the
neighborhood does not affect the results. It seems P-PSO performs better in
vector fields with varying wind directions and worth in more or less linear
wind directions.
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Figure 6.3.: Convergence P-PSO Ackley Function
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6. Evaluation

Z-PSO

This section deals with the convergence analysis of Z-PSO for the three
objective functions Sphere, Rosenbrock and Ackley. The statistical analysis
values can be found in the appendix. Figure 6.4 shows excellent search
results in vector field Cross, Reall and Real2 for Sphere Function. Though,
the convergence rate does not significantly vary between the different
neighborhoods (B.1.2). Only the results of Von Neumann and Probability
Switch topology are slightly worse than the others. This is due to the fact that
cooperation inside these topologies is harder to accomplish. The performance
of vector field Fall falls out of line compared to the others, but this vector field
is also the most challenging one with respect to the environmental influence.
Nevertheless, the different topologies generate almost the same results as shown
in Table B.6, with one exception Probability Switch, which is a little worse than
the others. The plots lead to the conclusion that Z-PSO can perform better
than P-PSO and is able to find the optimum even in difficult environments
like Fall. Indeed, the variation of the neighborhoods did not have an impact
on the results in Sphere Function.
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Figure 6.4.: Convergence Z-PSO Sphere Function
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6.2. Results

Similar to Sphere Function, the results for the different neighborhoods are
in most cases not significantly varying (B.2.2). Only Von Neumann and
Probability Switch generate different results compared to the others. In
general, the fitness is worse than for Sphere Function, which is due to the more
complex optimization problem. Though, Z-PSO still performs well in all vector
fields and better than P-PSO. In vector field Fall still the worst convergence
rate is achieved, but the vector field is also the most challenging one. In
summary, Z-PSO is still able to solve also optimization problems including
plateaus. Whereby, the results are getting worse, the stronger the vector field
gets and the selected topology does not highly influence the search results.
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Figure 6.5.: Convergence Z-PSO Rosenbrock Function

The convergence rate for vector field Cross, Reall and Real2 has become even
better in Ackley than in Rosenbrock Function. This leads to the assumption
that optimization problems including multiple local minima are easier to solve
for Z-PSO than problems consisting of plateaus. Though, the statistical
analysis shows that for Cross and Reall most of the neighborhoods are more
or less the same. Whereas, in Real2 especially Von Neumann and Probability
Switch vary compared to the others. As already mentioned, these topologies do
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6. Evaluation

not easily create cooperations between the swarm members and consequently,
the results are worse than the others. In vector field Fall, the swarm performed
worse than in the optimization problems before. However, Payoff Probability
is significantly better than the other topologies and can perform very good.
The conclusion is drawn that Payoff Probability is very suitable for strong
environmental influences like Fall including multiple local minima. In general,
Z-PSO performs better than P-PSO and can generate even for Ackley Function

good results.
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Communication Radius

For further information about the impact of the communication radius on
PSO, the convergence rate was as well analysed for a global communication
radius of 30. This means that all particles may exchange information with all
other particles in the whole search space independent of their distance. This
assumption is commonly used in the research field of PSO. However, it is not
applicable for real-world robot scenarios. In the following, the convergence
rates for radius 2 and radius 30 are compared with each other.

The convergence rates for P-PSO do not significantly vary in most vector fields.
The results of the topologies are almost the same for each communication
radius. Consequently, the communication radius does not highly influence the
fitness of P-PSO. Only plots of vector field Cross show that the convergence
rate is slightly better using a common communication radius. Though, in
vector field Reall, at least for Sphere Function, P-PSO can gain better results
using the limited communication radius.
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Figure 6.7.: Convergence P-PSO Radius 2 and Radius 30
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6. Evaluation

The convergence rate for Z-PSO using a limited communication radius
was in all vector fields at least as good as the rate for the unlimited
communication radius or even better. Especially, in strong vector fields as
Fall, the small communication radius could generate better results for the
uncommon topologies. Consequently, Z-PSO is a promising approach for
applications including a limited communication radius. Furthermore, it shows
that topologies which are created based on the fitness values of the particles
can improve the fitness.

Z-PSO VF: Fall OF: Ackley Z-PSO VF: Fall OF: Ackley
Common NH New NH Common NH New NH
(0] (0]
[&] [&]
c c
[4] [4]
2 2
[} [}
> >
S, - s
010 % o
0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125
Iteration Iteration Iteration Iteration
Fall Radius 2 Fall Radius 30
- e - GBest --v-- Ring ke Star - <« Neumann -» - Payoff --=- Prob -« - PayoffProb --+-- ProbSw

Figure 6.8.: Convergence Z-PSO Radius 2 and Radius 30
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6.2.2. Energy Analysis

This section analyzes the energy consumption for the newly developed
neighborhoods and compares PPSO and ZPSO with each other. The following
plots show the average energy usage of a swarm member in each iteration.
The corresponding energy calculation is described in Section 4.2. It takes into
account the particles velocity and wind force as well as the orientation of the
particle in relation to the wind direction. In this work, the assumption is made
that a particle spends energy for each movement. Thereby, it is irrelevant if
this move is in the same direction of the flow or not. However, the energy
calculation generates higher values for movements in the opposite direction of
the wind vectors and lower values for movements in the same angle.

Since the results for the three objective functions do not significantly vary,
only the results of Sphere Function are regarded in this Section. Nevertheless,
all results can be found in the appendix Section C.2.

The results show that the neighborhood selection for P-PSO does not affect the
energy consumption since it is almost the same for each neighborhood in each
vector field. However, the energy value varies for the vector fields. Vector field
Fall generates the highest energy consumption since it is the most strongest
and challenging vector field. The particles try to reach the optimum. However,
they are not able to compensate the wind though they are spending a lot of
energy. The Vector Field Cross and Real2 show little lower values because the
wind is less strong in some places and so the particles do need less energy in
those areas. Vector field Reall seems to be the most pleasing one of all vector
fields as the particles spend the least energy. Overall, the results show a big
difference compared to Z-PSO. P-PSO does use a lot more energy independent
of the neighborhood selection.

In contrast Z-PSO is able to reduce the energy usage. Whereby, the results
for the neighborhoods do not vary much except for the Probability Switch
topology. The values for this topology are significantly lower than those of
the others because less particles are communicating with each other. As a
consequence, more particles do not have any neighbors and are following the
flow as it is designed by the algorithm. This causes a lower energy usage,
however, the convergence and success rate suffer. In vector field Fall, the
difference between Probability Switch and the other neighborhoods is most
evident. In Probability Switch, nearly no particle has found a neighbor
and therefore follows the flow. In general, Fall shows that less particles are
connected with each other also for the other neighborhoods because the energy
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usage almost stagnates. In the other vector fields, the energy usage increases
over time because more particles get connected with each other and find the
optimum which requires higher energy usage to stay in the area of the best
found solution.
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6.2.3. Accumulation and Success Analysis

This section is about the analysis of the accumulation and success rate of
the different neighborhoods for each swarm. Therefore, the accumulation rate
shall reveal the percentage of particles accumulating at the optimum. It counts
the number of particles of a swarm which are in a radius of two around the
optimum. If the radius is set too small, too less particles are considered since
the collision avoidance hinders the particles of overlapping. However, if the
radius is too big, too many particles may be considered as false positives.
The success rate indicates the percentage of simulations in which the optimum
has been found. Since the results do not differ much between the functions,
only the results for Rosenbrock Function are reviewed exemplary. Though, all
results can be found in Section C.3.

P-PSO

The accumulation rate as well the success rate for P-PSO is a lot lower than
for Z-PSO. The highest success rates could be reached in vector field Reall,
which was already indicated as the most pleasing vector field in the previous
section. In a vector field which has a smaller wind influence, P-PSO is able to
find the optimum. However, environments including strong wind vectors make
it hard for P-PSO to reach the optimum. Especially vector field Fall, which
provides the strongest wind impact, generates the worst results. In Cross,
the results are relatively good, though the vector field is strong as well. This
might be due to the fact that the wind flow at the optimums position is less
than in Real2. Overall, the success rate is higher if the accumulation rate is
higher. This is due to the effect that more particles close to the optimum
have a higher chance of finding it. However, the accumulation rate is not in
direct proportion to the success rate. Comparing the neighborhoods with each
other, there is not a significant difference. In general, the results are highly
depending on the underlying vector field.
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Figure 6.10.: Accumulation P-PSO Rosenbrock Function

Z-PSO

In contrast to P-PSO, Z-PSO reaches excellent success rates for almost all
vector fields. Even for vector field Fall, the results are a lot better and for
nearly all neighborhoods, the approach is successful in more than half of the
simulations. In general, Ring, Neumann and Probability Switch topology show
the worst results of all neighborhoods. A direct relationship between success
and accumulation rate can be seen in each vector field. The differences may be
bigger or smaller, but comparing the neighborhoods with each other the ratio
stays the same. It becomes clear that for Z-PSO the accumulation is directly
influencing the success rate. While for P-PSO it was only a general indicator for
the quality of the results, for Z-PSO it directly maps the difference between the
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neighborhoods. Consequently, the accumulation plays a bigger role for Z-PSO.
In summary, the wind forecast enables Z-PSO on the one hand to accumulate
at the optimum and on the other hand, to reach a high success rate.
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6.2.4. Agents Trajectory Analysis

The PSO approaches presented in Section 4.3 apply different strategies for
compensating the wind influence and trying to reach the global optimum. The
differences become visible by visualizing the agents trajectories. This section
analyzes the trajectories and explains the general particles movement for each
approach. Since the results have shown that overall the neighborhoods do
not highly influence the search results, only GBest topology is used as an
example. In the following, the most divergent trajectories for Sphere Function
are presented. Nevertheless, the swarms behaviour for all objective functions
can be found in the appendix in Chapter D. Sphere Function has been chosen
because P-PSO reached the best success rate in this function. Consequently,
the two approaches can be better compared if both of them can reach the
most successful results. The plots displayed in this section show the agents
trajectories at iterations 10, 25, 50 and 100.

Vector Field Cross

The plots in Figure 6.12 show that P-PSO does not consider the wind
orientation and is moving in the direction that the pso vector pretends.
This also means moving in the opposite direction of the wind vector and
spending more energy. In iteration 25, it is visible that some particles have
found neighbors and are cooperating. Though, there are still small groups of
interacting particles. With time, the particles are able of accumulating near
the global optimum in iteration 50. In iteration 100, nearly all particles have
accumulated. However, the figure shows that the particles are crowding at the
edge of the optimum and it is not in the center of the swarm. This is due to
the fact that the particles are struggling compensating the wind. It seems that
the wind at the optimums position is equivalent to the minimal move vector
of the P-PSO swarm. Consequently, the particles just reach the optimum but
they are at the maximum of their possibilities. Nevertheless, the figure shows
that P-PSO is able to reach the optimum.
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Iter: 10 Iter: 25 Iter: 50 Iter: 100
Figure 6.12.: Trajectory P-PSO OF: Sphere Function VF: Cross NH: GBest

In contrast, Z-PSO follows the approach of reducing the energy usage and
following the flow if a particle does not interact with any other swarm member
(Figure 6.13). In iteration 10, this behaviour becomes obvious since almost
all particles are following the flow. In iteration 25, some particles already
accumulate at the global optimum, which is a lot early than for P-PSO.
Additionally, in iterations 10 and 25, the particles which are not following
the vector field, are doing zigzag movements instead of moving straight in
the opposite direction of the wind vector. In iterations 50 and 100, nearly
all particles have reached the optimum. A main advantage of the vector field
Cross is that the particles which are not compensating the wind influence,
are blown towards the other particles with time. If this is not the case, for
example, in vector field Fall, it may be the case that the particles keep separate
and never find any other neighbors. As a result, the particles keep on following
the flow for ever and never reach the optimum. In comparison to P-PSO, the
optimum is in the center of the swarm in iteration 100. Consequently, the
results are also better than for P-PSO.

Iter: 10 Iter: 25 Iter: 50 Iter: 100
Figure 6.13.: Trajectory Z-PSO OF: Sphere Function VF: Cross NH: GBest
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Vector Field Real2

In Figure 6.14, the P-PSO particles are indeed moving in the opposite direction
of the wind vector. Similar to vector field Cross, the particles are forming small
groups in iteration 25. Those groups are accumulating close to the optimum in
iterations 50 and 100. However, the plots as well show that the swarm is close
to the optimum but it does not reach it. The wind strength at this position
is hard for P-PSO to compensate. Consequently, it is evident that the results
for more challenging objective functions are worse.

Iter: 10 Iter: 25 Iter: 50 Iter: 100
Figure 6.14.: Trajectory P-PSO OF: Sphere Function VF: Real2 NH: GBest

In Figure 6.15, the particles of Z-PSO are mostly following the flow.
However, some particles are already moving in the direction of the optimum.
Though, those particles are doing zigzag movements with respect to the wind
orientation. Moreover, the particles in Z-PSO do not form small groups, but
the particles are again faster accumulating at the optimum. In contrast to
P-PSO, the particles do not have any problems reaching the optimum and
make it the center of the swarm. Consequently, Z-PSO reaches excellent
results in all objective functions.

Iter: 10 Iter: 25 Iter: 50 Iter: 100
Figure 6.15.: Trajectory Z-PSO OF: Sphere Function VF: Real2 NH: GBest
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6.3. Summary

The convergence analysis has shown that for both PSO approaches, the
topologies in most cases did not significantly vary. This reveals that the
topology selection does not highly influence the convergence rate. In Ackley
Function were the biggest differences between the neighborhoods, which brings
up the hypotheses that the topology selection has a bigger influence on complex
optimization problems. A possible reason for the equality of the topologies
may be the fact that the search space was designed too small. In a bigger
search space, the topology selection might have a greater meaning because the
particles are more diffused in the search space and not get into touch so easily.
The comparison of the communication radiuses has shown that the convergence
rate of P-PSO is in most cases not influenced. However, Z-PSO generates a
better rate using a smaller communication radius. Additionally, the results of
the newly developed topologies improve in strong vector fields as Fall and beat
the common neighborhoods. This shows that a targeted neighbor selection
may meaningfully improve the convergence rate.

The analysis has also revealed that the model of Z-PSO is a good approach
for unknown environments since it gained excellent results in all objective
functions and vector fields. Even in the challenging vector field Fall, the
swarm did relatively well in terms of fitness. In general, the convergence
rate of Z-PSO was a lot better than the rate of P-PSO. It was difficult for
P-PSO to compensate the wind in strong vector fields, especially for complex
optimization problems like Rosenbrock and Ackley Function.

The energy analysis revealed that again the neighborhood selection did not
influence the energy consumption. Only for Z-PSO the energy usage varied
by the neighborhood because the Probability Switch topology caused less
connections between the particles. As a consequence, more particles followed
the flow and did not use any energy. In general, P-PSO used approximately
the same energy in each iteration. Though, the energy usage did vary between
the vector fields. It is clearly visible that those vector fields which caused a
worse fitness also caused the highest energy supply. Therefore, it is nearby that
for those vector fields, P-PSO did not overcome the wind influence. For each
vector field, Z-PSO used less energy than P-PSO. If the particles accumulate
at the optimum, the swarm has the highest energy consumption since the
particles try to stay at their position and need to fight the wind disturbances.
The success and accumulation rates for P-PSO were a lot lower than for Z-PSO.
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Nevertheless, in vector field Reall, P-PSO was as good as Z-PSO. This makes
the appearance that P-PSO is able to perform as well as Z-PSO if the vector
field is not too strong. The other way around, the minimal velocity vector of
P-PSO may have been too small in some vector fields. There is the possibility
that the results would have been better, if the velocity vector would have
been set stronger for compensating the vector field. The success rates for the
different neighborhoods vary slightly, which shows that there is a difference
between the neighborhood selection. Whereby, the difference is not big and
could have been more clearly in a bigger search space. Z-PSO reached excellent
results in almost all vector fields. Only vector field Fall has slightly worse
success and accumulation rates. This is due to the fact that the vector field
makes it hard for the particles to meet each other. If they follow the flow at the
beginning of the simulation, because they do not have neighbors, there is only
a small chance that they might come in touch with other swarm members.
Especially neighborhoods like Von Neumann and Probability Switch which
offer a lower probability for connecting with other particles show bad results.
In contrast to P-PSO, Z-PSO shows a direct relation between the accumulation
rate and the success rate. Consequently, the number of particles accumulating
at the optimal solution directly influences the success rate. For P-PSO, such
proportions have not been visible.

The agent trajectory for P-PSO showed that the swarm is first forming
little sub-swarms before accumulating near the optimum. Furthermore, the
optimum does not become the center of the swarm, which causes a worse
fitness especially in complex optimization problems. Nevertheless, the swarm
is able to compensate the wind and reach the optimum. The trajectories
for Z-PSO showed that the particles did follow the flow if they do not have
any neighbor. Additionally, they did zigzag movements as soon as they were
moving in the contrary direction of the wind orientation. Furthermore, the
particles did earlier accumulate at the optimum and the swarm center was at
the position of the optimum. As a result, the swarm did improve its fitness
compared to P-PSO.
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This chapter summarizes the results and insights of this work in Section 7.1.
Furthermore, Section 7.2 provides possibilities and suggestions for future work.

7.1. Conclusion

The goal of this work was to analyze the impact of topologies and a
limited communication radius on search mechanisms in unknown dynamic
environments in robotic applications. First, a model for the particles movement
has been implemented using Processing! including collision avoidance and
continuous movement to generate realistic simulations. Moreover, an energy
model has been created for measuring the energy consumption of a swarm
during the search process. Furthermore, the dynamic environment has been
represented by vector fields. Therefore, two vector fields have been calculated
by functions and two vector fields have been created by real-world data
provided by NASAZ.

For the experiments, two new PSO approaches have been developed, which
are able to handle unknown environmental influences. P-PSO overcomes
the wind disturbances by constantly using a minimal velocity vector. In
contrast, Z-PSO tries to predict the wind vector at its current position for
taking countermeasures. Moreover, Z-PSO tries to reduce the energy usage
by preventing movements in the contrary direction of the wind orientation.
Instead it tries not to move straight against the wind, but do zigzag movements
similar to sail boats. The PSO approaches were analyzed applying a set of
different topologies. This set included the common topologies GBest, Ring,
Star, and Von Neumman and newly developed neighborhoods based on game
theoretic approaches. The goal was to create neighborhoods which are formed

'https://processing.org/
’https://www.nasa.gov/
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on the base of the particles fitness.

Since Z-PSO aims to reduce the energy, a simple energy model was designed
for the analysis. It considers the particles velocity, wind strength, and angle
between the particles velocity vector and wind vector. The PSO approaches
and neighborhoods have been tested in four vector fields and three objective
functions. They included Sphere Function, Rosenbrock Function and Ackley
Function. Furthermore, the communication radius of the particles was limited
to two. The results of the experiments were analysed in terms of convergence
rate, energy consumption, accumulation rate, and success rate. Additionally,
the general particle trajectory has been regarded.

The results of the convergence analysis have shown that the neighborhood
selection in most cases did not significantly influence both swarms. Though,
in vector fields with strong influences, like Fall, Payoff Probability topology
could gain better results than all other neighborhoods. Furthermore, it
turned out that Z-PSO can generate excellent results in almost all vector
fields. Additionally, Z-PSO is a good choice for scenarios including a limited
communication radius because the results improved compared to an unlimited
radius. In contrast, P-PSO sometimes did struggle to compensate the vector
field. Though, a larger minimal velocity vector for P-PSO might solve the
problem. In terms of energy consumption, the neighborhood selection did not
show any relevant difference. Z-PSO outperformed P-PSO in all vector fields
and was able to reduce the average energy usage. The success rates for Z-PSO
support the results from the convergence analysis and show that Z-PSO is an
excellent approach for dealing with unknown environments. Besides, P-PSO
could reach nearly the same success rates as Z-PSO in less challenging vector
fields, which maintains the thesis that a higher minimal velocity vector might
improve the results of challenging vector fields.

In summary, newly developed neighborhoods can gain better results especially
in strong vector fields. This shows that a targeted neighborhood selection
can gain better results. However, in most test scenarios, the neighborhoods
did not significantly vary. The results of the topologies might become more
divergent in a bigger search space. P-PSO is a good approach for dealing
with unknown environments, but the minimal velocity vector needs to be
adapted according to the wind strength. Z-PSO was able to gain excellent
results and additionally reduce the energy consumption. Therefore, it is a
very promising approach for dynamic environments. Both approaches offer
the possibility for real robotic applications since the experiments did consider
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a limited communication radius, collision avoidance and limited energy supply.
Based on the results of this work, Z-PSO is preferable since the convergence
rate improved by limiting the particles interaction.

7.2. Future Work

This work reveals a lot of potential for future research. The further research
possibilities are partitioned into three subcategories. The first category regards
the exploration of the developed PSO approaches. The second category
presents investigations in the neighborhoods and the last category deals with
the general experimental setup.

7.2.1. PSO Approaches

The PSO approaches developed in Section 4.3 offer the opportunity for more
experiments. Especially the Z-PSO approach was tested in this thesis under
ideal circumstances. The individuals location and thereby calculated wind
influence was as exact as possible. However, robotics in real-world scenarios
will probably not be able to determine their location as precisely as in this
computer simulation. Therefore, it would be interesting to add a random
error factor to the location determination to make it more realistic.

Another adaption of the Z-PSO swarm is the behaviour of the particle if
they have found the so far best position. In this simulation, the particles are
starting accumulating at the optimal position and only one particle is able to
search on close distance to this position due to collision avoidance. A new
approach could be that particles reaching the so-far best position or entering
a predefined radius around this position are randomly pushed away from this
optimal position in every second iteration. This would hopefully facilitate
the search since the particles would be still moving around the optimum and
the accumulation would be contained. Moreover, P-PSO could be adapted
by using different minimal velocity values with respect to the vector field
velocity. A hybrid approach which dynamically adapts the vector strength
could be promising.
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Future Work PSO Approaches
e error value for Z-PSO
e random vector at optimum for Z-PSO

e vary minimal velocity vector for P-PSO

7.2.2. Neighborhoods

The neighborhoods presented in this work offer a first insight of the influence
of neighborhoods on PSO in vector fields. Though, there is still a lot of
research left. This includes the testing of further neighborhood topologies.
Additionally, the hybrid approaches from Section 4.4.4 which were based on
switching their strategy could be analyzed in detail. Different neighborhoods
than Ring could be tested and examined.

Furthermore, future work could test other than the selected parameters
of the newly developed topologies. In this work, the parameters have not
been selected by significant test but by best practice. Consequently, the
performance could be still improved by analysing the parameter setting.

Future Work Neighborhoods
e hybrid neighborhood topologies
e vary Ring neighborhood

e vary neighborhood parameters

7.2.3. Experiments

The experiments done in this thesis offer an insight in the performance
of swarms in unknown environments. There is still a high number of
customization options for further researches. The list of potential modifications
is divided into two parts. One is focused on adaption of the search space and
the other one on adjustment of the swarm.

The search space can be further analyzed in the sense of more objective
functions and vector fields both real and calculated. Additionally, different
limitations of the search space can bring new results. Another interesting
adaption would be the modification of the search space into a three-dimensional
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search space, which is more realistic, for example, in respect to wind influences.
The swarm settings can be adapted by a varying number of particles. It will
be interesting to see the difference of smaller or larger swarms particularly in
consideration with the neighborhoods. Moreover, the particle size could be
varied because it is influencing the particles collision and therefore also the
results. Another important factor for the results is the initialization position
of the particles. Depending on this position, the influence of the vector field
dealing on the particles is also different. Further experiments could be run
defining, for example, a spawning area at the bottom of the search space or
at the top. In this work, the periodic bound handling technique was used,
however there exist a lot more techniques. It can generate new results by
varying the technique. At least, the energy calculation can be improved by
real physical equations. This would facilitate the transmission of the results
to real-world scenarios and robots.

Future Work Experiments

e Search Space
e more real world vector fields
e vary limitation of search space
e other objective functions
e three dimensional

e Swarm
e vary particle size
e vary number of particles
e vary initialization area
e other bound handling technique

e realistic energy calculation
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A. Vector Fields
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Figure A.3.: VF3 Reall

Figure A.4.: VF4 Real2
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B.1. Sphere Function

B.1.1. P-PSO

Table B.1.: Convergence P-PSO OF: Sphere Function VF: Cross
| GBest | Ring Star | Neumann | Payoff | Prob | PayoffProb | ProbSw
GBest nan 0.475658 0.978311 0.0482972 0.47986 0.501014 0.300605 0.972295
Ring 0.475658 nan 0.444516 0.0347577 0.163769 0.956021 0.239038 0.366809
Star 0.978311 0.444516 nan 0.0470139 0.441477 0.481567 0.296231 0.944571
Neumann 0.0482972 | 0.0347577 | 0.0470139 nan 0.0728549 | 0.0348372 0.45405 0.0479433
Payoff 0.47986 0.163769 0.441477 0.0728549 nan 0.189479 0.398166 0.458353
Prob 0.501014 0.956021 0.481567 0.0348372 0.189479 nan 0.237727 0.418274
PayoffProb 0.300605 0.239038 0.296231 0.45405 0.398166 0.237727 nan 0.301213
ProbSw 0.972295 0.366809 0.944571 0.0479433 0.458353 0.418274 0.301213 nan

Table B.2.: Convergence P-PSO OF: Sphere Function VF': Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.250471 | 0.174843 0.807516 0.406948 | 0.686875 0.853509 0.563394
Ring 0.250471 nan 0.946876 0.361795 0.09534 0.420568 0.202082 0.459422
Star 0.174843 | 0.946876 nan 0.282341 | 0.0497536 | 0.337347 0.133091 0.36992
Neumann 0.807516 | 0.361795 0.282341 nan 0.345925 0.88771 0.684575 0.783501
Payoff 0.406948 0.09534 0.0497536 0.345925 nan 0.26097 0.514122 0.159372
Prob 0.686875 | 0.420568 0.337347 0.88771 0.26097 nan 0.568486 0.90027
PayoffProb | 0.853509 | 0.202082 0.133091 0.684575 0.514122 0.568486 nan 0.444058
ProbSw 0.563394 | 0.459422 0.36992 0.783501 0.159372 0.90027 0.444058 nan
Table B.3.: Convergence P-PSO OF: Sphere Function VF': Reall
‘ GBest ‘ Ring Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.421785 0.120898 0.0741544 0.392499 0.151146 0.156603 0.126352
Ring 0.421785 nan 0.310656 0.0394217 0.976138 0.389264 0.415608 0.327629
Star 0.120898 0.310656 nan 0.0242361 0.270143 0.980415 0.847509 0.950188
Neumann 0.0741544 | 0.0394217 | 0.0242361 nan 0.0382045 | 0.0250086 0.0261667 0.0246436
Payoff 0.392499 0.976138 0.270143 0.0382045 nan 0.367929 0.386736 0.287132
Prob 0.151146 0.389264 0.980415 0.0250086 0.367929 nan 0.868676 0.946281
PayoffProb 0.156603 0.415608 0.847509 0.0261667 0.386736 0.868676 nan 0.888298
ProbSw 0.126352 0.327629 0.950188 0.0246436 0.287132 0.946281 0.888298 nan
Table B.4.: Convergence P-PSO OF: Sphere Function VF: Real2
‘ GBest ‘ Ring Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.168953 | 0.311527 0.246863 0.775774 0.32851 0.278328 0.402473
Ring 0.168953 nan 0.733796 0.263383 0.171961 | 0.180623 0.198077 0.234072
Star 0.311527 | 0.733796 nan 0.273985 | 0.313686 | 0.319783 0.331218 0.351352
Neumann | 0.246863 | 0.263383 | 0.273985 nan 0.246976 | 0.247293 0.247868 0.248795
Payoff 0.775774 | 0.171961 | 0.313686 | 0.246976 nan 0.474776 0.336778 0.430844
Prob 0.32851 | 0.180623 | 0.319783 | 0.247293 | 0.474776 nan 0.543479 0.517025
PayoffProb | 0.278328 | 0.198077 | 0.331218 0.247868 0.336778 | 0.543479 nan 0.706413
ProbSw 0.402473 | 0.234072 | 0.351352 0.248795 0.430844 | 0.517025 0.706413 nan
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B.1. Sphere Function

B.1.2. Z-PSO

Table B.5.: Convergence Z-PSO OF: Sphere Function VF: Cross

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.278217 | 0.150499 | 0.215307 | 0.270639 | 0.532744 0.153044 0.209375
Ring 0.278217 nan 0.362359 | 0.216075 | 0.528962 | 0.285926 0.243504 0.209376
Star 0.150499 | 0.362359 nan 0.215427 | 0.530972 | 0.196467 0.163937 0.209375
Neumann 0.215307 | 0.216075 | 0.215427 nan 0.2156 0.21532 0.219957 0.21009
Payoff 0.270639 | 0.528962 | 0.530972 0.2156 nan 0.291083 0.181923 0.209375
Prob 0.532744 | 0.285926 | 0.196467 0.21532 0.291083 nan 0.154126 0.209375
PayoffProb | 0.153044 | 0.243504 | 0.163937 0.219957 0.181923 | 0.154126 nan 0.209382
ProbSw 0.209375 | 0.209376 | 0.209375 0.21009 0.209375 | 0.209375 0.209382 nan

Table B.6.: Convergence Z-PSO OF: Sphere Function VF: Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.529535 | 0.367275 | 0.140618 0.402912 | 0.884662 0.284462 0.0265845
Ring 0.529535 nan 0.311398 | 0.0945797 | 0.722296 | 0.488613 0.455112 0.0228787
Star 0.367275 0.311398 nan 0.988981 0.293652 0.388581 0.282099 0.120471
Neumann 0.140618 | 0.0945797 | 0.988981 nan 0.0837034 | 0.162359 | 0.0753931 0.095965
Payoff 0.402912 0.722296 | 0.293652 | 0.0837034 nan 0.385757 0.806823 0.0217517
Prob 0.884662 0.488613 0.388581 0.162359 0.385757 nan 0.295491 0.028077
PayoffProb | 0.284462 0.455112 | 0.282099 | 0.0753931 | 0.806823 | 0.295491 nan 0.0210026
ProbSw 0.0265845 | 0.0228787 | 0.120471 | 0.095965 | 0.0217517 | 0.028077 | 0.0210026 nan
Table B.7.: Convergence Z-PSO OF: Sphere Function VF: Reall
‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.886169 | 0.553127 | 0.0257074 | 0.168086 0.370371 0.11548 0.123131
Ring 0.886169 nan 0.492148 | 0.0248172 | 0.150333 0.31675 0.0967602 | 0.122184
Star 0.553127 0.492148 nan 0.034782 0.360618 0.305975 0.34079 0.131715
Neumann | 0.0257074 | 0.0248172 | 0.034782 nan 0.0739568 | 0.0217623 | 0.0646935 | 0.436681
Payoff 0.168086 0.150333 | 0.360618 | 0.0739568 nan 0.102598 0.916796 0.158537
Prob 0.370371 0.31675 0.305975 | 0.0217623 | 0.102598 nan 0.0552182 | 0.118299
PayoffProb 0.11548 0.0967602 | 0.34079 | 0.0646935 | 0.916796 | 0.0552182 nan 0.154459
ProbSw 0.123131 0.122184 | 0.131715 | 0.436681 0.158537 0.118299 0.154459 nan
Table B.8.: Convergence Z-PSO OF: Sphere Function VF: Real2
‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.72003 0.956963 0.109506 0.424575 0.557416 0.916387 0.0554712
Ring 0.72003 nan 0.598936 0.10896 0.231501 0.81728 0.60065 0.0548114
Star 0.956963 0.598936 nan 0.109581 0.386445 0.349991 0.94493 0.0555562
Neumann 0.109506 0.10896 0.109581 nan 0.111085 0.108733 0.109674 0.526492
Payoff 0.424575 0.231501 0.386445 0.111085 nan 0.142596 0.4486 0.0573946
Prob 0.557416 0.81728 0.349991 0.108733 0.142596 nan 0.40618 0.0545354
PayoffProb 0.916387 0.60065 0.94493 0.109674 0.4486 0.40618 nan 0.0556704
ProbSw 0.0554712 | 0.0548114 | 0.0555562 0.526492 0.0573946 | 0.0545354 0.0556704 nan
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B.2. Rosenbrock Function

B.2.1. P-PSO

Table B.9.: Convergence P-PSO OF: Rosenbrock Function VF: Cross

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.441512 0.517995 0.727991 0.72253 0.540518 0.59044 0.776108
Ring 0.441512 nan 0.853115 | 0.0729094 | 0.405139 | 0.788323 0.595116 0.361123
Star 0.517995 | 0.853115 nan 0.133597 | 0.584949 | 0.945557 0.796299 0.524985
Neumann 0.727991 | 0.0729094 | 0.133597 nan 0.268318 0.1429 0.149941 0.330057
Payoff 0.72253 0.405139 0.584949 0.268318 nan 0.626655 0.719779 0.903666
Prob 0.540518 | 0.788323 | 0.945557 0.1429 0.626655 nan 0.852056 0.561831
PayoffProb 0.59044 0.595116 0.796299 0.149941 0.719779 | 0.852056 nan 0.639497
ProbSw 0.776108 0.361123 0.524985 0.330057 0.903666 | 0.561831 0.639497 nan

Table B.10.: Convergence P-PSO OF: Rosenbrock Function VF: Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.859998 | 0.439288 | 0.0668548 | 0.72875 | 0.363035 0.419649 0.588302
Ring 0.859998 nan 0.32054 | 0.0464579 | 0.584948 | 0.233918 0.306428 0.469886
Star 0.439288 0.32054 nan 0.189757 0.66276 | 0.987832 0.960853 0.875201
Neumann | 0.0668548 | 0.0464579 | 0.189757 nan 0.10705 | 0.166363 0.205675 0.173597
Payoff 0.72875 0.584948 0.66276 0.10705 nan 0.602578 0.633396 0.814351
Prob 0.363035 0.233918 | 0.987832 | 0.166363 | 0.602578 nan 0.967053 0.849906
PayoffProb | 0.419649 0.306428 | 0.960853 | 0.205675 | 0.633396 | 0.967053 nan 0.842179
ProbSw 0.588302 0.469886 | 0.875201 | 0.173597 | 0.814351 | 0.849906 0.842179 nan

Table B.11.: Convergence P-PSO OF: Rosenbrock Function VF: Reall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw

GBest nan 0.411027 | 0.752494 | 0.0526482 | 0.111205 0.855039 0.582581 0.4133

Ring 0.411027 nan 0.512047 0.123763 0.276746 0.454759 0.647506 0.2572
Star 0.752494 | 0.512047 nan 0.0608203 | 0.130903 0.875322 0.781782 0.306744
Neumann | 0.0526482 | 0.123763 | 0.0608203 nan 0.571794 | 0.0561349 | 0.0730199 | 0.0402176
Payoff 0.111205 | 0.276746 | 0.130903 0.571794 nan 0.119565 0.160278 0.0816228
Prob 0.855039 | 0.454759 | 0.875322 | 0.0561349 | 0.119565 nan 0.672164 0.30857
PayoffProb | 0.582581 | 0.647506 | 0.781782 | 0.0730199 | 0.160278 0.672164 nan 0.27133

ProbSw 0.4133 0.2572 0.306744 | 0.0402176 | 0.0816228 0.30857 0.27133 nan

Table B.12.: Convergence P-PSO OF: Rosenbrock Function VF: Real2

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.153836 | 0.857951 | 0.367252 | 0.358895 | 0.510964 0.246623 0.431596
Ring 0.153836 nan 0.153058 | 0.218546 | 0.219507 | 0.151285 0.179978 0.179452
Star 0.857951 | 0.153058 nan 0.359853 | 0.351592 | 0.650387 0.231689 0.415775
Neumann | 0.367252 | 0.218546 | 0.359853 nan 0.992015 | 0.343004 0.655358 0.655852
Payoff 0.358895 | 0.219507 | 0.351592 | 0.992015 nan 0.334959 0.645221 0.646268
Prob 0.510964 | 0.151285 | 0.650387 | 0.343004 | 0.334959 nan 0.197733 0.37974
PayoffProb | 0.246623 | 0.179978 | 0.231689 | 0.655358 | 0.645221 | 0.197733 nan 0.967886
ProbSw 0.431596 | 0.179452 | 0.415775 | 0.655852 | 0.646268 | 0.37974 0.967886 nan
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B.2. Rosenbrock Function

B.2.2. Z-PSO

Table B.13.: Convergence Z-PSO OF: Rosenbrock Function VF: Cross

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoft ‘ Prob ‘ PayoftProb ‘ ProbSw
GBest nan 0.478932 0.798693 0.00687746 | 0.776486 0.103378 0.591168 0.0223244
Ring 0.478932 nan 0.434309 0.108992 0.595456 0.284943 0.390187 0.0225314
Star 0.798693 0.434309 nan 0.00584721 | 0.663585 0.257622 0.810692 0.0223018
Neumann | 0.00687746 | 0.108992 | 0.00584721 nan 0.0144556 | 0.00243842 | 0.00460861 | 0.0232291
Payoff 0.776486 0.595456 0.663585 0.0144556 nan 0.280712 0.549693 0.0223646
Prob 0.103378 0.284943 0.257622 0.00243842 0.280712 nan 0.314328 0.0222257
PayoffProb 0.591168 0.390187 0.810692 0.00460861 0.549693 0.314328 nan 0.0222813
ProbSw 0.0223244 | 0.0225314 | 0.0223018 0.0232291 | 0.0223646 | 0.0222257 0.0222813 nan

Table B.14.: Convergence Z-PSO OF: Rosenbrock Function VF: Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoft ‘ Prob ‘ PayoftfProb ‘ ProbSw
GBest nan 0.0815923 0.32122 0.31632 0.150232 0.302115 0.15354 0.00206383
Ring 0.0815923 nan 0.330053 | 0.318788 0.504914 0.0671865 0.376152 0.0164346
Star 0.32122 0.330053 nan 0.4879 0.326032 0.320793 0.325022 0.369609
Neumann 0.31632 0.318788 0.4879 nan 0.317669 0.316199 0.317387 0.329472
Payoff 0.150232 0.504914 | 0.326032 | 0.317669 nan 0.114892 0.811238 0.00658215
Prob 0.302115 0.0671865 | 0.320793 | 0.316199 0.114892 nan 0.108719 0.00188062
PayoffProb 0.15354 0.376152 | 0.325022 | 0.317387 0.811238 0.108719 nan 0.0050625
ProbSw 0.00206383 | 0.0164346 | 0.369609 | 0.329472 | 0.00658215 | 0.00188062 | 0.0050625 nan

Table B.15.: Convergence Z-PSO OF: Rosenbrock Function VF: Reall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.089569 | 0.299576 | 0.0494901 | 0.586861 | 0.566291 0.251245 0.138395
Ring 0.089569 nan 0.151377 | 0.0269585 0.29646 0.103841 0.429406 0.076616
Star 0.299576 0.151377 nan 0.262446 | 0.625126 | 0.448338 0.183558 0.556059
Neumann | 0.0494901 | 0.0269585 | 0.262446 nan 0.125145 | 0.0754116 | 0.0317599 0.596946
Payoff 0.586861 0.29646 0.625126 0.125145 nan 0.826773 0.362564 0.305596
Prob 0.566291 0.103841 | 0.448338 | 0.0754116 | 0.826773 nan 0.183803 0.203809
PayoffProb | 0.251245 0.429406 | 0.183558 | 0.0317599 | 0.362564 | 0.183803 nan 0.0900784
ProbSw 0.138395 0.076616 0.556059 0.596946 0.305596 0.203809 0.0900784 nan

Table B.16.: Convergence Z-PSO OF: Rosenbrock Function VF: Real2

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.260354 | 0.405731 | 0.0350889 | 0.210441 | 0.100856 0.87011 0.101484
Ring 0.260354 nan 0.30908 0.485805 | 0.626913 | 0.66829 0.256309 0.114294
Star 0.405731 0.30908 nan 0.0460244 | 0.312927 | 0.17925 0.363017 0.102575
Neumann | 0.0350889 | 0.485805 | 0.0460244 nan 0.167152 | 0.177849 | 0.0342825 0.12592
Payoff 0.210441 | 0.626913 | 0.312927 0.167152 nan 0.902853 0.203132 0.107924
Prob 0.100856 0.66829 0.17925 0.177849 | 0.902853 nan 0.096079 0.108724
PayoffProb 0.87011 0.256309 | 0.363017 | 0.0342825 | 0.203132 | 0.096079 nan 0.101383
ProbSw 0.101484 | 0.114294 | 0.102575 0.12592 0.107924 | 0.108724 0.101383 nan

91



B. Statistical Data

B.3. Ackley Function

B.3.1. P-

PSO

Table B.17.: Convergence P-PSO OF: Ackley Function VF: Cross

‘ GBest ‘ Ring Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.131795 | 0.0998283 0.74315 0.0987815 | 0.301138 0.874756 0.778275
Ring 0.131795 nan 0.343125 | 0.0218684 | 0.323787 | 0.480674 0.195749 0.180604
Star 0.0998283 0.343125 nan 0.013602 0.203219 0.326025 0.152209 0.13285
Neumann 0.74315 0.0218684 | 0.013602 nan 0.0133781 | 0.104583 0.61736 0.503637
Payoff 0.0987815 | 0.323787 0.203219 | 0.0133781 nan 0.320982 0.150739 0.131306
Prob 0.301138 0.480674 0.326025 0.104583 0.320982 nan 0.401697 0.424702
PayoffProb | 0.874756 0.195749 0.152209 0.61736 0.150739 | 0.401697 nan 0.91059
ProbSw 0.778275 0.180604 0.13285 0.503637 0.131306 | 0.424702 0.91059 nan

Table B.18.: Convergence P-PSO OF': Ackley Function VF: Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.111938 | 0.194938 | 0.489551 | 0.103729 | 0.307384 0.219446 0.869465
Ring 0.111938 nan 0.704244 | 0.369814 | 0.953561 | 0.548029 0.854572 0.121412
Star 0.194938 | 0.704244 nan 0.573547 | 0.733118 | 0.806945 0.883166 0.21602
Neumann | 0.489551 | 0.369814 | 0.573547 nan 0.374065 | 0.753895 0.536145 0.557877
Payoff 0.103729 | 0.953561 | 0.733118 | 0.374065 nan 0.564896 0.889218 0.110944
Prob 0.307384 | 0.548029 | 0.806945 | 0.753895 | 0.564896 nan 0.726138 0.347169
PayoffProb | 0.219446 | 0.854572 | 0.883166 | 0.536145 | 0.889218 | 0.726138 nan 0.245188
ProbSw 0.869465 | 0.121412 | 0.21602 0.557877 | 0.110944 | 0.347169 0.245188 nan

Table B.19.: Convergence P-PSO OF:

Ackley Function VF: Reall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.623604 | 0.622793 | 0.515977 | 0.912588 | 0.96577 0.869443 0.661403
Ring 0.623604 nan 0.286878 | 0.922212 | 0.506667 | 0.610431 0.49885 0.369234
Star 0.622793 | 0.286878 nan 0.165744 0.647788 | 0.520401 0.743513 0.956421
Neumann 0.515977 | 0.922212 | 0.165744 nan 0.373233 | 0.479106 0.382458 0.277349
Payoff 0.912588 | 0.506667 | 0.647788 | 0.373233 nan 0.857426 0.942082 0.698092
Prob 0.96577 | 0.610431 | 0.520401 | 0.479106 | 0.857426 nan 0.815452 0.598279
PayoffProb | 0.869443 | 0.49885 | 0.743513 | 0.382458 | 0.942082 | 0.815452 nan 0.76248
ProbSw 0.661403 | 0.369234 | 0.956421 | 0.277349 | 0.698092 | 0.598279 0.76248 nan

Table B.20.: Convergence P-PSO OF:

Ackley Function VF: Real2

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.666939 | 0.599546 | 0.195005 | 0.954111 | 0.443795 0.477539 0.650076
Ring 0.666939 nan 0.852334 | 0.372029 | 0.641083 | 0.651655 0.71979 0.948035
Star 0.599546 | 0.852334 nan 0.576807 | 0.579515 | 0.807225 0.887245 0.903582
Neumann | 0.195005 | 0.372029 | 0.576807 nan 0.194559 | 0.799063 0.677806 0.445895
Payoff 0.954111 | 0.641083 | 0.579515 | 0.194559 nan 0.430873 0.462988 0.626252
Prob 0.443795 | 0.651655 | 0.807225 | 0.799063 | 0.430873 nan 0.908283 0.705725
PayoffProb | 0.477539 | 0.71979 | 0.887245 | 0.677806 | 0.462988 | 0.908283 nan 0.779068
ProbSw 0.650076 | 0.948035 | 0.903582 | 0.445895 | 0.626252 | 0.705725 0.779068 nan
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B.3. Ackley Function

B.3.2. Z-PSO

Table B.21.: Convergence Z-PSO OF: Ackley Function VF: Cross

| GBest | Ring | Star | Neumann |  Payoff | Prob | PayoffProb | ProbSw
GBest nan 0.149779 0.147809 0.185892 | 0.0604568 | 0.55194 0.9876 0.131063
Ring 0.149779 nan 0.938967 0.184001 | 0.000949138 | 0.223927 | 0.0698888 | 0.131006
Star 0.147809 0.938967 nan 0.183951 | 0.000998057 | 0.219675 | 0.0718617 | 0.131004
Neumann 0.185892 0.184001 0.183951 nan 0.189775 0.18795 0.185915 0.145008
Payoff 0.0604568 | 0.000949138 | 0.000998057 | 0.189775 nan 0.609861 | 0.0435381 | 0.131179
Prob 0.55194 0.223927 0.219675 0.18795 0.609861 nan 0.545955 | 0.131124
PayoffProb |  0.9876 0.0698888 0.0718617 | 0.185915 | 0.0435381 | 0.545955 nan 0.131064
ProbSw 0.131063 0.131006 0.131004 0.145008 0.131179 | 0.131124 | 0.131064 nan

Table B.22.: Convergence Z-PSO OF': Ackley Function VF: Fall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.628155 0.487485 0.00390334 0.175997 0.834756 0.0236902 0.0111653
Ring 0.628155 nan 0.820311 0.000941905 0.349074 0.498276 0.041552 0.00194326
Star 0.487485 0.820311 nan 0.000553886 0.488769 0.381842 0.0684102 0.000986523
Neumann 0.00390334 | 0.000941905 | 0.000553886 nan 8.2403e-05 0.00778148 8.5173e-06 0.408812
Payoff 0.175997 0.349074 0.488769 8.2403e-05 nan 0.137006 0.0981331 6.41852e-05
Prob 0.834756 0.498276 0.381842 0.00778148 0.137006 nan 0.021634 0.0244431
PayoffProb 0.0236902 0.041552 0.0684102 8.5173e-06 0.0981331 0.021634 nan 1.98095e-06
ProbSw 0.0111653 0.00194326 0.000986523 0.408812 6.41852e-05 0.0244431 1.98095e-06 nan

Table B.23.: Convergence Z-PSO OF': Ackley Function VF: Reall

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.382882 0.502791 0.125504 0.814581 | 0.524807 0.505639 0.343053
Ring 0.382882 nan 0.782928 | 0.00774223 | 0.480367 | 0.874148 0.192011 0.0146996
Star 0.502791 0.782928 nan 0.0147507 | 0.637119 | 0.957883 0.240525 0.035298
Neumann 0.125504 | 0.00774223 | 0.0147507 nan 0.060577 | 0.0248995 0.612355 0.391967
Payoff 0.814581 0.480367 0.637119 0.060577 nan 0.652799 0.389176 0.177397
Prob 0.524807 0.874148 0.957883 0.0248995 | 0.652799 nan 0.254238 0.0688713
PayoftProb | 0.505639 0.192011 0.240525 0.612355 0.389176 | 0.254238 nan 0.948318
ProbSw 0.343053 | 0.0146996 0.035298 0.391967 0.177397 | 0.0688713 0.948318 nan

Table B.24.: Convergence Z-PSO OF': Ackley Function VF: Real2

‘ GBest ‘ Ring ‘ Star ‘ Neumann ‘ Payoff ‘ Prob ‘ PayoffProb ‘ ProbSw
GBest nan 0.71175 0.290531 0.00382975 0.283629 0.221756 0.21333 0.00052941
Ring 0.71175 nan 0.221491 0.00351133 0.67379 0.16077 0.174742 0.000477387
Star 0.290531 0.221491 nan 0.0063359 0.114736 0.910202 0.599315 0.00101588

Neumann 0.00382975 0.00351133 0.0063359 nan 0.00313848 0.00580117 0.0104661 0.826336
Payoff 0.283629 0.67379 0.114736 0.00313848 nan 0.0477323 0.122514 0.000412096
Prob 0.221756 0.16077 0.910202 0.00580117 0.0477323 nan 0.52384 0.000896326
PayoffProb 0.21333 0.174742 0.599315 0.0104661 0.122514 0.52384 nan 0.00200027

ProbSw 0.00052941 | 0.000477387 | 0.00101588 0.826336 0.000412096 | 0.000896326 | 0.00200027 nan
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C. Plots
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C. Plots
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C. Plots
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C.2. Energy Plots

C.2.3. Ackley Function
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C. Plots

C.3. Accumulation and Success Plots

C.3.1. Sphere Function

P-PSO

9% Ul S$800Ng

o

o o o o o

T — — — — <

msqold
%)
> qo.dyoled
<
o1
%] qo.d kel
v o
FS o
) ohed £
© 38
- uuewneN g,
_.Vr K]
=z
o 1e1s
(%)
a Bury
o
1S999
s o © © © o
w [ee} © < N

9% Ul Uole|NWN2dY

9% Ul S$800NG

o
[0
<
(%]
L
(e}
»
17}
o
O
L
>
o
2]
&
o

Neighborhood

9% Ul UolleNWN2dY

9% Ul $$800Ng

P-PSO VF: Real2 OF: Sphere
Neighborhood

s ! s !
o o o o o
@ © < N

9% Ul Uolle|NWN2OY

100

9% Ul $$800NG

Neighborhood

o
9]
<
(]
L
O
=
o]
9]
[h4
w
>
O
()
&
o

9% Ul UONENWNOoY

I Success

HEl Accumulation

104



C.3. Accumulation and Success Plots
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C. Plots

Rosenbrock Function

C.3.2.
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C.3. Accumulation and Success Plots
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C. Plots

C.3.3. Ackley Function
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C.3. Accumulation and Success Plots
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D. Agents Trajectory

D.1. Sphere Function

D.1.1. P-PSO
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Figure D.1.: Trajectory P-PSO OF: Sphere Function VF: Cross NH: GBest
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Figure D.2.: Trajectory P-PSO OF: Sphere Function VF: Fall NH: GBest
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Figure D.3.: Trajectory P-PSO OF: Sphere Function VF: Reall NH: GBest
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Figure D.4.: Trajectory P-PSO OF: Sphere Function VF: Real2 NH: GBest
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D.1. Sphere Function

D.1.2. Z-PSO
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D. Agents Trajectory

Rosenbrock Function
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Figure D.9.: Trajectory P-PSO OF: Rosenbrock Function VF: Cross NH: GBest
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Figure D.10.: Trajectory P-PSO OF: Rosenbrock Function VF: Fall NH: GBest
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Figure D.11.: Trajectory P-PSO OF: Rosenbrock Function VF: Reall NH: GBest
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Rosenbrock Function

D.2.

D.2.2. Z-PSO
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Figure D.13.: Trajectory Z
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Figure D.14.: Trajectory Z
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Figure D.15.: Trajectory Z-PSO OF: Rosenbrock Function VF: Reall NH: GBest
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Figure D.16.: Trajectory Z
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D. Agents Trajectory

D.3. Ackley Function

D.3.1. P-PSO
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Figure D.17.: Trajectory P-PSO OF: Ackley Function VF: Cross NH: GBest
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Figure D.18.: Trajectory P-PSO OF: Ackley Function VF: Fall NH: GBest
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Figure D.19.: Trajectory P-PSO OF: Ackley Function VF: Reall NH: GBest
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Figure D.20.: Trajectory P-PSO OF: Ackley Function VF: Real2 NH: GBest
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D.3. Ackley Function

D.3.2. Z-PSO
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E. Implementation

E.1. Swarms

E.1.1. PSO

Algorithm 1: PSO

coefficientA = Vector( 1, 1)

coefficientB = Vector( 1, 1)

vel = particle.velocity

pos = particle.position

pBest = particle.pBestPosition

gBest = particle.gBestPosition

compl = coefficientA * random( 0, 1 ) * ( pBest - pos )
comp?2 = coefficientB * random( 0, 1 ) * ( gBest - pos )
psoVector = weight * vel + compl + comp2

E.1.2. P-PSO

Algorithm 2: P-PSO

pso < particle.getPSOVector()
if 0 < pso.length < 1 then

‘ pso.mult( 10 )
if pso.length == 0 then

‘ pso <« particle.getOldPSOVector()
pso.limit( maximumVelocity )
particle.velocity = pso
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E.1. Swarms

E.1.3. Z-PSO

Algorithm 3: Z-PSO

if len(neighbors) == 0 then
particle.velocity = (0,0)
return
maxAngle = 135
pso <« particle.getPSOVector()
pso.limit( maximumVelocity )
wind <« particle.getWindPrediction()
angle <— abs( getAngle( pso, wind ) )
if angle > mazrAngle then
rotationAngle = - angle - maxAngle
pso < rotateVector( pso, rotationAngle )
particle.velocity = pso
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E. Implementation

E.2. Neighborhoods

E.2.1. GBest

Algorithm 4: GBest Neighbors

initialization swarm
for particle in swarm do

particle.neighbors < getParticlesInRadius( particle, swarm )
end

E.2.2. Ring

Algorithm 5: Ring Neighbors

initialization swarm

for particle in swarm do
list «— getParticlesInRadius( particle, swarm )
leftNeighbor <« getFirstNextLeftParticle( list )
rightNeighbor < getFirstNextRightParticle( list )
particle.neighbors = | leftNeighbor, rightNeighbor |

end

E.2.3. Star

Algorithm 6: Star Neighbors

initialization swarm
masterParticle = swarm| 0 |
for particle in swarm do
list < getParticlesInRadius( particle, swarm )
if particle 1s masterParticle then
‘ particle.neighbors = list
else if masterParticle is in list then
‘ particle.neighbors = | masterParticle |
else

‘ particle.neighbors = | |
end
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E.2. Neighborhoods

E.2.4. Von Neumann

Algorithm 7: Von Neumann Neighbors

initialization swarm

for particle in swarm do
list «— getParticlesInRadius( particle, swarm )
leftNeighbor < getSecondNextLeftParticle( list )
rightNeighbor < getSecondNextRightParticle( list )
particle.neighbors = [leftNeighbor, rightNeighbor|

end

E.2.5. Payoff

Algorithm 8: Payoff Neighbors

initialization swarm

initialization payoffMemory

for particle in swarm do

particle.update( payoffMemory )

radiusList <— getParticlesInRadius( particle, swarm )

coalitionList < getSubsets( radiusList )

p-neighbors = bestCoalition

end

radiusList < getReducedRandomParticles( radiusList, 5 )

bestCoalition «— getBestCoalition( coalitionList, payoffMemory )
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E. Implementation

E.2.6. Probability

Algorithm 9: Probability Neighbors

initialization swarm

initialization probabilityMemory

for particle in swarm do

particle.update( probabilityMemory )

radiusList <— getParticlesInRadius( particle, swarm )

probList < getProbabilitylist( radiusList )

if probList is empty then
randomParticle «+— getRandomParticle( radiusList )
p.neighbors = | randomParticle |

else

‘ p-neighbors = probList
end

E.2.7. Payoff Probability

Algorithm 10: Payoff Probability Neighbors

initialization swarm

initialization payoffMemory

initialization probabilityMemory

for particle in swarm do

particle.update( payoffMemory )

particle.update( probabilityMemory )

radiusList < getParticlesInRadius( particle, swarm )

coalitionList <— getSubsets( radiusList )

probList <— getProbabilitylist( bestCoalition )

if probList is empty then
randomParticle < getRandomParticle( radiusList )
p.neighbors = | randomParticle |

else

‘ p-neighbors = probList
end
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E.2. Neighborhoods

E.2.8. Payoff Switch

Algorithm 11: Payoff Switch Neighbors

initialization swarm

initialization payoffMemory

initialization strategyMemory

for particle in swarm do

particle.update( payoffMemory )

particle.update( strategyMemory )

if particle.strategy is Cooperate then
‘ p.neighbors «+— getNeighborPayoff()

else

‘ p.neighbors «— getNeighborRing()
end

E.2.9. Probability Switch

Algorithm 12: Probability Switch Neighbors

initialization swarm
initialization probabilityMemory
initialization strategyMemory
for particle in swarm do
particle.update( probabilityMemory )
particle.update( strategyMemory )
if particle.strategy s Cooperate then
‘ p.neighbors «— getNeighborProbability ()
else

‘ p.neighbors «— getNeighborRing|()
end
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E. Implementation

E.2.10. Payoff Probability Switch

Algorithm 13: Payoff Probability Switch Neighbors

initialization swarm

initialize payoffMemory

initialize probabilityMemory

initialize strategyMemory

for particle in swarm do

particle.update( payoffMemory )

particle.update( probabilityMemory )

particle.update( strategyMemory )

if particle.strategy is Cooperate then
‘ p.neighbors <+ getNeighborPayoffProbability ()

else

‘ p.neighbors «— getNeighborRing|()
end
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E.3. Collision Avoidance

E.3. Collision Avoidance

E.3.1. Collision Detection

Algorithm 14: Collision Detection

collisionCount = 1;
while collisionCount > 0 do
collisionCount = 0
for ParticleA in swarm do
for ParticleB in swarm do
aPos = particleA.position
bPos = particleB.position
distance «— getDistance( aPos, bPos )
mindistance = particleRadius / 2 + particleRepulsion
collision = distance < minDistance
if collision ) then
collisionCount += 1
solveCollision( ParticleA, ParticleB )

end

end
end

E.3.2. Collision Resolution

Algorithm 15: Solve Collision

aPos = particleA.position

bPos = particleB.position

radius = (particleSize / 2 + particleRepulsion) )
pullMag < abs( distance - radius )

¢ < substract( bPos, aPos )

c.normalize()

pull.x = pullMag * c.x

pull.y = pullMag * c.y

aPos < substract( aPos, pull )
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