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Abstract

Multi-objective route planning is a prominent but computationally expensive
optimisation problem in everyday life. Reusing knowledge from similar route
planning problems could enhance performance and sustainability of routing
algorithms. The innovization methodology [18] attempts to extract knowledge
from Pareto-optimal solutions of optimisation problems for this purpose. How-
ever, applying this methodology to route planning problems leads to some
challenges. Therefore, we propose an innovization for route planning which
is an adapted version of the original innovization. To this end, we design a
multi-objective evolutionary algorithm for routing. Moreover, we introduce
a novel local search method for routing problems called Perimeter Mutation
Local Search. Lastly, we integrate a detailed analysis step with decision space
clustering and correlations between objectives and route characteristics. We
evaluate our proposed approach on multi-objective time-dependent routing
problems to see what knowledge can be gained and whether this knowledge can
improve a multi-objective evolutionary algorithm. Our results show that we are
able to extract knowledge using the introduced innovization for route planning.
Furthermore, this knowledge is used to improve a multi-objective evolutionary
algorithm by reducing computational effort. With about a third of previously
necessary function evaluations, we manage to produce similar optimisation
results. This is particularly beneficial for mobile applications where limited
computational resources are available.
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“A straight line may be the shortest distance between two points,
but it is by no means the most interesting.”

– The Third Doctor, The Time Warrior
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1. Introduction

Route planning is a prominent optimisation problem of everyday life, affecting
many people and various industries. In the past, front-seat passengers were
often the ones to provide direction. Nowadays, this task is mostly performed
by routing algorithms of Intelligent Transport Systems (ITSs). Nonetheless,
optimising multiple objectives for routes remains a challenging and compu-
tationally expensive problem. Ideally, we could reuse knowledge from similar
route planning problems to enhance the performance of routing algorithms.
The innovization methodology [18] gives instructions for extracting knowledge
from optimisation problems for this purpose. The identified, reusable principles
could save computation time of routing algorithms which would make the use
of multi-objective algorithms for routing more viable in everyday life. This
could result in an improvement of quality of life for drivers since they would
have additional decision-making support. Moreover, drivers would be able to
personalise routes to better suit their needs. In addition, reusing knowledge
to accelerate routing algorithms increases the sustainability of algorithms and
therefore decreases energy consumption.
However, innovization cannot simply be applied to routing problems because
this kind of problems has complex decision variables and constraints, and of-
ten non-differentiable objective functions. Coello Coello et al. [12] employed
innovization for a related problem, a bi-objective travelling salesman problem.
However, their extracted knowledge was too problem-specific. To the best of
our knowledge, there are no previous works attempting to use innovization on
path or route planning problems. Therefore, we propose an innovization for
route planning which is an adapted version of the original innovization. We
construct a multi-objective evolutionary algorithm (MOEA) for routing and
develop a novel local search method for routing problems called Perimeter Mu-
tation Local Search (PMM-LS). PMM-LS defines a route’s neighbourhood and
systematically searches for improvements within neighbourhoods. Furthermore,
we cluster in decision spaces instead of objective spaces and include an analysis
of correlations between objectives and route characteristics.
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1. Introduction

The main goal of this thesis and its primary contribution is the development of
an innovization for route planning. In addition, we evaluate what knowledge
can be gained using our new methodology and whether an improvement of a
routing evolutionary algorithm can be achieved. For our experiments, we define
multi-objective time-dependent routing problems which optimise travel time,
travel time variability and ease of driving. Travel times change throughout the
day and the week. They are based on an Uber Movement Speeds dataset [62]
which contains average hourly speeds recorded for Berlin in January of 2020.
The rest of this thesis is structured as follows. First, we explain all necessary
concepts in chapter 2. In chapter 3, we define our research questions and corre-
sponding metrics and give the problem statement. We continue by relating this
thesis to other work in chapter 4 before presenting our innovization for route
planning methodology in chapter 5. The evaluation of the knowledge extraction
and algorithm improvement using our proposed approach follows in chapter 6.
Finally, chapter 7 concludes our work and presents ideas for future work.
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2. Background

This thesis introduces a methodology for applying innovization to multi-
objective path and route planning problems. The concepts of multi-objective
path planning problems, multi-objective optimisation and innovization needed
for this methodology are explained in this chapter.

2.1. Multi-objective path planning problems

Multi-objective optimisation problems like the route planning problem in this
thesis are optimisation problems that minimise or maximise multiple, conflicting
objective functions simultaneously. Formally, it is defined as follows [14]:

min /max fm(x) m = 1, 2, . . . ,M

s.t. gj(x) ≥ 0 j = 1, 2, . . . , J

hk(x) = 0 k = 1, 2, . . . , K

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n

(2.1)

Equation 2.1 allows us to define constraints for a multi-objective problem. They
can be inequality constraints gj, equality constraints hk, lower variable bounds
x
(L)
i or upper variable bounds x(U)

i . An example for bounds of a route planning
problem are a restriction of values to node indices in a road network. The
variable bounds define a decision space X. In the example of route planning,
X consist of all possible routes within a defined road network. The set of
solutions within the decision space that also satisfy all other constraints are
called a feasible region S. The space that is bound by the objective functions is
named objective space Z. The relation of decision and objective space is further
illustrated in Figure 2.1.
A solution x of a multi-objective problem is a vector of values for each of
the n decision variables. The objective functions are conflicting. This means
we cannot simultaneously improve all functions. Therefore, the result of a
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objective space

f(x)

Z

f1

f2

x2

decision space

S

x

X

x1

x3

Figure 2.1.: Relation of decision space X with feasible region S to objective
space Z. Figure adapted from [14]

multi-objective optimisation is not one single optimal solution but a set of
Pareto-optimal solutions. This set of solutions, the Pareto front, contains trade-
off solutions where one is not better than the other. For each Pareto-optimal
solution, we cannot improve one objective without worsening another. Formally,
the globally Pareto-optimal set is the non-dominated set of the entire feasible
search space S. A solution is called non-dominated if it is not dominated by any
other solution. For minimisation problems, a solution xA dominates another
solution xB if both condition 2.2 and 2.3 hold [14].

∀m ∈ {1, 2, . . . ,M} fm(xA) ≤ fm(xB) (2.2)

∃m ∈ {1, 2, . . . ,M} fm(xA) < fm(xB) (2.3)

Solutions are non-dominated if there exists no other solution which is at least
equally as good for all objectives and strictly better for at least one objective.
Using a resulting Pareto front from a multi-objective optimisation, we can
determine the nadir point znad. This reference point is often estimated as the
vector of worst objective values found in a Pareto front per objective [14]. The
ideal point z∗ is another reference point. It is defined independently of any
Pareto front as the vector of optimal solutions from optimising each objective
individually.
This thesis deals with a particular family of optimisation problems, namely
multi-objective route planning problems. A specific route planning problem can
be identified by a 6-tuple

(
{f1, . . . , fM}, G, nO, nD, w0, t0

)
. The goal is to find

a set of optimal paths in a road network. Road networks are often represented
as graphs G = (V,E) with a set of vertices, or nodes, V and a set of edges E
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2.2. Multi-objective optimisation

linking vertices. A path (n0, . . . , nl) is a sequence of nodes that connects a
given start point nO and a destination nD. A path’s optimality is evaluated
according to multiple objective functions fm. Moreover, our route planning
problems are time-dependent. This means that the travel times in our road
network are determined by a departure time t0 during the week (w0 = 0) or on
weekends (w0 = 1) [19]. A 6-tuple

(
{f1, . . . , fM}, G, nO, nD, w0, t0

)
represents

a routing problem of the following form:

min (f1, . . . , fM)

s.t. x ∈
{

(n0, . . . , nl) | l ∈ Z≥1;
n0, . . . , nl ∈ V ;

∀ i ∈ {0, . . . , l − 1} (ni, ni+1) ∈ E;

n0 = nO;nl = nD

}
w0 ∈ {0, 1}
t0 ∈ {hh : mm : ss | hh ∈ [0, 23];mm, ss ∈ [0, 59]}

(2.4)

Notably, route planning problems have some similarities with vehicle routing
problems (VRPs). A VRP is a logistical problem where tours for delivering
products from depot to customer have to be found [38]. However, start and
destination in a route planning problem are distinct and we do not have to
visit certain locations on our way to the destination. Moreover, VRPs usually
deal with a fleet of vehicles except for single VRP variants which only consider
one vehicle like our route planning problems [38].

2.2. Multi-objective optimisation

Solving multi-objective problems a posteriori, meaning without transforming
the problem into a single-objective one, can be time-consuming. Nonetheless,
it has the advantage that users do not need to specify preferences before the
optimisation and can instead choose a solution from multiple alternatives. Es-
pecially exact methods are computationally expensive [51] and are not efficient
enough for applications such as multi-objective route planning where users
expect good results within seconds. This is why we us a metaheuristic to solve
our route planning problem. While metaheuristics cannot guarantee finding the
global optimal solution, they can generate good-quality solutions in a reasonable
amount of time [51]. There are many different metaheuristic algorithms such as
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2. Background

Figure 2.2.: General procedure of an EA

Tabu Search [30] or Simulated Annealing [60]. Evolutionary algorithms (EAs)
are the only metaheuristic that can find multiple solutions with one simulation
run [14]. For this reason, we employed an EA in our innovization for route
planning approach.
EAs are inspired by nature. Their general procedure is depicted in Figure 2.2.
EAs work iteratively on a set of individuals, a population. Each individual has
a chromosome, which encodes relevant information. Moreover, individuals are
assigned a quality measure based on objectives, called fitness. In each iteration,
also called generation, offspring is created by applying crossover and mutation
to chosen individuals until some termination criterion is reached. After the
creation of an initial population, only selected, good individuals are allowed to
reproduce and survive as a next generation [14].
Since it cannot be said that one metaheuristic approach is clearly better than
another [37], we choose one of the most popular multi-objective EAs for solving
our route planning problem. We use Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [17] and a variant of it with controlled elitism [16]. In
principle, both algorithms follow the procedure of an EA as described above.
However, for the selection of surviving individuals fast non-dominated sorting,
crowding distance sorting and, for NSGA-II with controlled elitism, the geomet-
ric distribution from Equation 2.5 is used. The environmental selection of both
algorithms is visualised in Figure 2.3. In the standard, elitist NSGA-II, only
the best individuals according to the first two sorting methods survive. That
means only the individuals from the best fronts in the least crowded areas are
kept. This results in a loss of lateral diversity across different fronts which in
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2.2. Multi-objective optimisation

Figure 2.3.: Environmental selection of NSGA-II and NSGA-II with controlled
elitism. NSGA-II keeps only the best individuals according to fast
non-dominated sorting and crowding distance. With controlled
elitism, a geometric distribution is additionally used to select indi-
viduals from all fronts. Figure adapted from [16]

turn leads to the algorithm getting stuck in a local Pareto front more easily [16].
NSGA-II with controlled elitism mitigates the loss of lateral diversity by keeping
individuals from all fronts. Thereby, this variant of NSGA-II achieves a good
diversity as well as a good convergence for the Pareto front it produces. For
NSGA-II with controlled elitism, surviving individuals are selected according
to three criteria. First, fast non-dominated sorting iteratively finds fronts of
non-dominated individuals. From each front i, only ηi individuals are added to
the next generation as per the following geometric distribution:

ηi = N
1− r

1− r|F |
ri−1 (2.5)

N refers to the number of individuals that are allowed to survive until the
next generation. |F | is the total number of fronts found by fast non-dominated
sorting. The reduction rate r < 1 determines how much less individuals are
kept from the best front. Nevertheless, most of the surviving individuals are
from the best front. For r = 0, all individuals from the first front survive like
in elitist NSGA-II. This would result in little exploration. From each following
front increasingly less individuals survive. If not all individuals of a front can
be kept, the survivors are chosen in descending order of crowding distance as it
is done in elitist NSGA-II [16]. The crowding distance dx of an individual x is

7



2. Background

computed as the sum of absolute normalised differences in objective function
values of its two neighbouring solutions xm+1 and xm−1 per objective m in the
same front [17]:

dx =
M∑

m=1

|fm(xm+1)− fm(xm−1)|
fmax
m − fmin

m

(2.6)

fmax
m and fmin

m are maximum and minimum value of objective function fm for
the entire population [14]. Boundary solutions are assigned a crowding distance
of ∞. In case ηi is larger than the amount of individuals in front i, the rest of
survivors is filled up from front i+ 1 [16]. The other steps of NSGA-II and our
implementation of them are described in section 5.1 in detail.

2.3. Innovization

To aid the optimisation process, Deb and Srinivasan proposed an innovization
methodology [18] which extracts knowledge about a problem from Pareto-
optimal solutions. The similarities, properties of variables or their relation,
which were found to ensure the Pareto-optimality of solutions, can be reused
when solving similar optimisation problems. This reused knowledge may even
speed up the process. The authors introduce the following six step method:

1. Find optimal solutions for each objective separately using a single-
objective optimisation technique and note down the ideal point z∗.

2. Compute a Pareto front using NSGA-II and define the nadir point znad

using this front.

3. Normalise all objectives using the ideal point z∗ and znad and cluster a
few solutions.

4. Apply a local search to obtain a modified front.

5. Perform the normal constraint method (NCM) [50] with a few different
starting points for verification of the found Pareto-optimal solutions.

6. Analyse the solutions for any commonality principles as plausible innovized
relationships.

The authors used Benson’s method [3] as a local search in step 4.
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2.4. Further concepts

travel times for different departure delays

path +0 +5 +10+15+20+25+30+35+40+45 skewness mean SD SSD

A 7 7 2 7 7 2 7 7 7 7 -1.78 6 2 0.89

B 6 8 6 4 2 6 6 6 10 6 0 6 2 1.41

C 5 5 5 10 5 5 10 5 5 5 1.78 6 2 1.79

Table 2.1.: Example of three paths with various travel time distributions over
different departure delays in minutes. Mean and standard devia-
tion (SD) fail to distinguish between these paths. The SSD is the
only measure which recognizes path A as the most reliable. Example
adapted from [69]

2.4. Further concepts

For our innovization variant and the route planning problems, some additional
concepts are needed. Therefore, we explain the semi-standard deviation, the
discrete Fréchet distance and the Ordering Points To Identify the Clustering
Structure technique in this chapter.

Semi-standard deviation (SSD) To define one of our objective functions,
we need to define SSD first. The SSD σsemi for a discrete random variable with
n observations oi is computed using Equation 2.7 [69].

σsemi =

√√√√ 1

n

n∑
i=1

(
max(oi − µ, 0)

)2 (2.7)

The SSD is computed in the same manner as a standard deviation with the
exception that it only takes observations greater than the mean µ into account.
This is preferable in an objective function, for example for travel time variability,
since most drivers only care about minimising the risk of arriving too late at their
destination. Compared to the standard deviation, the SSD has the additional
advantage that it can differentiate between normal and skewed distributions [69].
Consider the example with three paths from Table 2.1. Path B has a normal
distribution of travel times over different departure time delays, path A has a
negatively skewed distribution and path C’s distribution is positively skewed.
Standard deviation and mean are the same for all three paths. The SSD, however,

9



2. Background

recognizes that path A with a negatively skewed travel time distribution is the
most reliable option and path C with a positively skewed distribution is the
most unreliable. Both of these paths mostly exhibit travel times close to their
mean but travel time outliers for path A are small values while outliers for
path C are high values.

Discrete Fréchet distance The Fréchet distance [25] measures the similarity
between two curves. It can be explained intuitively by the example of a person
walking their dog on a leash [22]. The person and the dog take different curved
paths. Their walking speeds may vary but they cannot backtrack. The Fréchet
distance is the shortest possible leash that allows both to walk along their
respective path. Since we define paths for routing problems as a sequence of
nodes instead of continuously, we can use the discrete Fréchet distance δdF [22].
It is also referred to as coupling distance. Let P = (np1, . . . , npl) and
Q = (nq1, . . . , nql) be two paths which can be mapped to a metric space (Σ, d)

such as a coordinate reference system with Euclidean distance. Let Γ be a
coupling between P and Q as defined by Equation 2.8 [22].

Γ(P,Q) =
(
(u1, v1), . . . , (up, vq)

)
s.t. u1 = np1, v1 = nq1, up = npl, vq = nql

ui+1 = npi ∨ ui+1 = npi+1 ∀ i ∈ 1, . . . , pl

vj+1 = nqj ∨ vj+1 = nqj+1 ∀ j ∈ 1, . . . , ql

(2.8)

A coupling is a sequence of distinct node pairs from P and Q which honours
the order of nodes. The length of a coupling ||Γ|| = max

k=1,...,p
d(uk, vk) is the

length of the longest link in Γ. The discrete Fréchet distance δdF is defined by
Equation 2.9 [22].

δdF (P,Q) = min{||Γ|| | Γ is a coupling between P and Q} (2.9)

Ordering Points To Identify the Clustering Structure (OPTICS) For
the purpose of cluster analysis, Ankerst et al. [2] designed OPTICS. It creates
an augmented ordering of the input data which represents its density-based
clustering structure. The produced ordering is equivalent to density-based
clusterings with various parameter settings. OPTICS takes two input param-
eters ε and MinPts. Based on core-distance and best reachability-distance
of each point, an ordering is computed. The algorithm defines core points

10
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which have at least MinPts data points, including themselves, in a neighbour-
hood with radius ε. Based on this, each point is assigned a core-distance
which is the distance to the closest of the MinPts neighbours inside an
ε-neighbourhood. The reachability distance from point p to another point o
is defined as max(core-distance(o), distance(o, p)) with respect to some prede-
fined distance function. Core-distance and reachability-distance of a point are
undefined if no adequately dense cluster with respect to ε is available. For
the ordering, OPTICS starts at a random data point and creates a priority
queue sorted by smallest possible reachability-distance of each data point in
the ε-neighbourhood of the starting point [2].
The authors also present a method to automatically extract a clustering. The
produced ordering can be visualised in a reachability plot which plots ordering
against reachability-distance. Since points in a cluster have low reachability-
distances, they show up as valleys in the plot [2]. By detecting these valleys,
clusters can be extracted automatically. Any points which are not part of a
cluster are labelled as noise.
OPTICS has the advantage that ε, which is especially hard to determine for
real-world data, does not need to be set by the user. ε can simply be fixed to
infinity. However, lower ε values can be used to limit runtime of the algorithm.
Furthermore, since OPTICS can extract a density-based clustering, it has the
benefit that it can handle noise and arbitrarily shaped clusters with different
densities [2].
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3. Problem statement

In this chapter, we specify our research questions in section 3.1 and the problems
we are working on in sections 3.2 and 3.3. The goal of this thesis is to develop
a method for applying innovization to multi-objective routing problems. The
difficulties, that arise when trying to use the original innovization to route
planning problems, are detailed in section 3.2. Because of this, we examine
how we can adapt the innovization method for route planning problems. The
success of our proposed variant is tested on route planning problems as defined
in section 3.3.

3.1. Research questions

We aim to explore the following three research questions (RQs) to develop and
test an innovization for route planning methodology:

RQ1 How can the innovization methodology [18] be applied to route planning
problems?

RQ2 What knowledge is gained from the Berlin Uber Movement dataset when
applying RQ1’s innovization for route planning?

RQ3 Can the knowledge from RQ2 improve efficiency or results of an MOEA?

An answer to RQ1 is proposed in chapter 5. We apply the method proposed in
RQ1 to exemplary routing problems and do a qualitative analysis of the results
for RQ2. To evaluate the last research question, we select a metric which is
independent of any hardware unlike, for example, runtime. Since we aim to test
our method on real-world problems, we additionally cannot use any metric for
which the optimal Pareto front has to be known. Therefore, one of the metrics
we use for RQ3 is efficiency. Our definition for efficiency is based on the one from
Gupta, Ong and Feng [28]. We define efficiency of an optimisation algorithm on
problem instance P as Qt(P ) which represents the quality of solutions achieved

13



3. Problem statement

with regard to multiple objective functions in t time-steps on a designated
computer. To compare the efficiency of two multi-objective algorithms, we
use normalized hypervolume as a quality measure. We normalize all function
values fm for each objective m with Equation 3.1 using ideal point z∗ and nadir
point znad [14].

f norm
m =

fm − z∗m
znadm − z∗m

(3.1)

Given a set of normalized function values F norm ⊂ [0, 1]M from a set of non-
dominated solutions, the hypervolume (HV) with regard to reference point zref

is computed using Equation 3.2 [27].

HV (F norm, zref ) = Λ

 ⋃
f∈F norm

f≤zref

[f, zref ]

 (3.2)

Λ refers to the Lebesgue measure and [f, zref ] defines a rectangle delimited by
function value f and reference point zref . We normalize hypervolumes since we
test our algorithms on different route planning problems which can return highly
different fronts. To calculate hypervolumes, a reference point has to be defined
which is not a trivial task. Ishibuchi et al. [34] recommend that the reference
point should be worse than nadir point znad to include extreme solutions in
the hypervolume. However, they do not identify how much worse is good for
comparison. We estimate znad as the vector of the worst objective function
values for each objective in the Pareto front. Since we normalize our objective
values for hypervolume calculations, the nadir point always is 1 in each objective.
As per the recommendation, we multiply this nadir point by 1.05 to use as a
reference point. The algorithms we compare are two MOEAs. That means to
determine their efficiencies, we stop both algorithms after t generations and
compare their hypervolume. A larger hypervolume after t iterations indicates
better efficiency. Furthermore, we want to compare the final results obtained
by running both algorithms with the same stopping criterion. To this end, we
analyse the total number of function evaluations and the hypervolumes of final
Pareto fronts for each run.
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f(x0)

f(x∗)

l1

l2

Z

f1

f2

Figure 3.1.: Example of Benson’s method on a bi-objective problem. The true
Pareto front is indicated by the bold line. Figure adapted from [21]

3.2. Challenges of route planning innovization

The innovization method by Deb and Srinivasan [18] computes a Pareto front
for a specific problem. Since this Pareto front should be used to gain insights
about the problem, which shall be reused for similar problems, there should be
relatively high confidence in the results. Hence, the authors use a local search
on a few well-distributed solutions and apply the NCM [50] at several different
starting points. When trying to apply innovization to route planning problems,
some difficulties arise.
In the fourth step of the innovization, Benson’s method is employed as a local
search. The goal is to find dominating solutions for a few select individuals
or rather to verify that there are no dominating individuals. As we can see in
Figure 3.1, Benson performs the search by maximising distances lm for each
objective m between an initial solution x0 and some efficient, meaning optimal,
solution x∗ within feasible region S [21]. Mathematically, the local search for
an M -objective problem with feasible region S of the decision space is the
optimisation of the auxiliary problem in Equation 3.3.

max
M∑

m=1

lm

s.t. fm(x0)− lm − fm(x) = 0 m = 1, . . . ,M

lm ≥ 0 m = 1, . . . ,M

x ∈ S

(3.3)
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Utopia
line

f1

f2
Reduced feasible
objective space

z∗1

z∗2

~ν

Figure 3.2.: Illustration of the NCM approach on a bi-objective example. Figure
adapted from [50]

This auxiliary problem can also be defined for route planning problems. However,
route planning problems have extremely complex constraints such as road
networks where node indices in possible encodings do not follow a clear system.
These types of constraints lead to disconnected feasible regions. Therefore,
methods such as algorithms for Integer Programs or gradient-based methods
are not applicable to the auxiliary problem for route planning. Moreover,
exact methods would not produce efficient solutions within a reasonable time
frame. In conclusion, solving Benson’s auxiliary problem for route planning is
similarly complex as solving the original routing problem which means that it
makes sense to use a metaheuristic for the solve. As a result, the guarantees
from Benson’s method would no longer apply. That means, we cannot assure
finding a dominating solution for an initial solution if there is one. Therefore,
we propose a new local search for finding dominating solutions that is more
suitable for routing use cases. We call our local search Perimeter Mutation
Local Search (PMM-LS) and define it in section 5.2.
In the fifth step of the innovization, NCM [50] is used for verifying the obtained
Pareto front. The difficulties for route planning problems are similar to those
in the fourth step. NCM also defines single-objective auxiliary problems to
generate Pareto points. These points are then compared to the solutions in
the Pareto front obtained through innovization. A visualisation of how the
auxiliary problems from NCM work can be found in Figure 3.2. Each auxiliary
problem reduces the feasible objective space Z to one dimension using one
of the evenly distributed normals ~ν along a Utopia line which connects all
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3.3. Route planning problem

single-objectively optimal solutions. Within the reduced objective space, the
remaining objective is optimised using a gradient-based method [49]. Due to
complex decision variables and often non-differentiable objective functions,
gradient-based methods are not applicable. Even solving the single-objective
auxiliary problem is only viable with a metaheuristic since brute force would
take too long. This means that guarantees about the Pareto-optimality of a
set generated by NCM can no longer be made. To the best of our knowledge,
there is no other verification method applicable to routing problems that could
replace NCM in the fifth step.

3.3. Route planning problem

For this thesis, let a time-dependent route planning problem(
{ttravel, ttv, deg turn}, G, nO, nD, w0, t0

)
be defined as

min
(
ttravel(x,w0, t0),

ttv(x,w0, t0),

deg turn(x)
)

s.t. x ∈
{

(n0, . . . , nl) | l ∈ Z≥1;
n0, . . . , nl ∈ V ;

∀ i ∈ {0, . . . , l − 1} (ni, ni+1) ∈ E;

n0 = nO;nl = nD

}
w0 ∈ {0, 1}
t0 ∈ {hh : mm : ss | hh ∈ [0, 23];mm, ss ∈ [0, 59]}.

(3.4)

The goal of such a route planning problem is to find a route which can be
taken by some vehicle and which minimises the three objective functions ex-
plained below. The objective functions are conflicting which is the reason they
have to be optimised simultaneously. Hence, we have a multi-objective route
planning problem. The values of our objective functions depend on a route x
of variable length l from an origin node nO to a destination node nD as well
as w0 and t0 which define the departure time. w0 determines whether the
departure is during the week (w = 0) or on the weekend (w = 1) and t0 is a
time specification. The time-dependent road network is defined as a property
graph G = (V,E) with a set of vertices, or nodes, V which are connected by
a set of edges E. The property graph is directed and allows for attributing
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properties to nodes and edges [57]. Nodes are assigned indices as identifiers
(IDs). Edges E ⊆

{(
(u, v), {swh

uv | swh
uv ∈ R≥0 ∀w ∈ {0, 1} ∀h ∈ [0, 23]},

{ttwh
uv | ttwh

uv ∈ R≥0 ∀w ∈ {0, 1} ∀h ∈ [0, 23]}
)
|u, v ∈ V ; swh

uv ∈ R≥0; ttwh
uv ∈ R≥0

}
have hourly average speed attributes swh

uv for during the week and on week-
ends. These speeds and lengths of edges are the basis for the computation of
travel time properties ttwh

uv for days during the week and on weekends and each
hour of the day h. To get the travel time per minute, hourly travel times are
linearly interpolated. Furthermore, each edge is assigned a number of traffic
signals sgnuv encountered when traversing the edge in direction from u to v.

First Objective: Travel time One of the main criteria when people plan
a trip from one point to another is the time taken to travel along a route.
Unlike the shortest path, the fastest route depends on multiple factors such as
speed limits, congestion or traffic signals. Therefore, re-evaluating a path in
regard to this objective becomes necessary before every new trip. For example,
a commuter may take the same shortest path every day but the fastest route
might be vastly different depending on the day or just the departure time. We
compute the travel time of a route x in seconds using Equation 3.5.

min ttravel(x,w0, t0) =

|x|−1∑
i=0

ttwiti
x[i]x[i+1] + sgnx[i]x[i+1] · 20 (3.5)

|x| denotes the length of route x. The variables wi and ti calculate the current
time and whether it is the weekend when reaching node i depending on the
departure time and the travel time already needed to arrive at node i. Like
Kanoh [40], who also inspired our third objective, we give a penalty of 20
seconds for each traffic light along the route. This is because signal systems are
a factor that significantly affects travel times [46].

Second Objective: Travel time variability Another important factor for
route choice is travel time variability. Gan and Bai [26] report that drivers are
less likely to choose paths with higher travel time variability. From different
possibilities for measuring variability, we select the upper semi-standard de-
viation (SSD). It only takes observations greater than the mean into account
which is preferable because most drivers only want to minimise the risk of
arriving too late at their destination. Since drivers might be unsure when they
are actually starting their journey and edges only contain travel times for days
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3.3. Route planning problem

during the week or on weekends, we minimise the travel time variability of a
route x over varying departure time. We measure the travel time variability
with Equation 3.6 in the interval {t0 + i · 15 | i = -6,−5, . . . , 6} which is 90
minutes before and after a planned departure time in 15 minute increments.

min ttv(x,w0, t0) =

√√√√ 1

13

6∑
i=-6

(
max

(
ttravel(x,w0, t0 + i · 15)− tt, 0

))2
(3.6)

tt refers to the mean of all travel times in the time interval with the 13
observations. As mentioned above, the hourly travel times of an edge are
linearly interpolated depending on the minute of each time t0 + i ·15. If this was
not done, the algorithm would be encouraged to minimise travel time variability
by taking detours until the next hour starts where lower or no variability was
reached for certain edges.

Third Objective: Ease of driving Especially in cities, the fastest path with
the most reliable travel time might not be the most comfortable for the driver.
For example, by taking smaller roads through residential areas, drivers might
be able to avoid congested roads but need to make many more turns. This is
not only strenuous but may also negatively affect time and energy consumption
on a route. Therefore, our third objective maximises ease of driving which is
inspired by Kanoh and Hara [42]. To maximise ease of driving, we minimise the
sum of degrees of turning needed to drive along a route x with Equation 3.7.

min deg turn(x) =

|x|−2∑
i=0

180◦ − ∠
(
x[i]x[i+ 1]x[i+ 2]

)
(3.7)

Note that a turn can mean any angle from 0◦ to 180◦. Therefore, it may be a
U-turn (180◦) or a straightforward crossing of an intersection (0◦). We subtract
the turning angle from 180◦ since the sum of turning angles could simply
be maximised by an EA by making routes longer. This objective could be
expanded by including, for example, incentives to avoid traffic jams, or to use
wider streets or roads with more lanes. Avoiding congested streets, for example,
is already encouraged by other objectives which is why it is not part of the
third objective again. The definition for ease of driving could further be refined
by differentiating between right-hand and left-hand turns. When driving on
the right side of the road, making left-hand turns is less comfortable. Similarly,
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3. Problem statement

left-hand turns are more time-consuming which could be integrated into the
travel time objective. However, since not all countries drive on the right side of
the road, we do not include this differentiation in our objectives.
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4. Related work

In this chapter, we contextualise our thesis with respect to related work on
innovization and multi-objective route planning in time-dependent networks in
sections 4.1 and 4.2. Furthermore, subsection 4.2.1 explores related research
regarding two of our objectives, travel time variability and ease of driving.
Finally, we compiled literature that uses Uber Movement Speeds datasets in
section 4.3.

4.1. Innovizing path planning

Our proposed innovization for route planning approach is based on the in-
novization by Deb and Srinivasan [18]. Both methods share the intention of
extracting innovized principles that can be reused in the optimisation of similar
problems. As explained in section 3.3, the original innovization cannot simply be
applied to route planning problems. Therefore, we propose an adapted version
specialised for this kind of problems. To the best of our knowledge, there are
no works using innovization for problems in the area of path or route planning.
Coello Coello et al. [12] applied innovization to a related problem which is
a bi-objective travelling salesman problem. They discovered that there are
some edges which are rarely part of Pareto-optimal solutions. As an innovized
principle, authors suggest excluding these infrequent edges during optimisation
to lower computational effort. In route planning, the value of this type of
knowledge is limited since it is not often reusable in complex road networks.
There, routes for various route planning problems often use completely different
streets even when planning in the same city, for example. Interestingly, there
are also efforts to automate innovization [15] so that no human intervention is
needed. This could be a future extension of our proposed approach.
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4.2. Multi-objective time-dependent route
planning

For parts of the innovization for route planning, we also design a MOEA for
route planning in time-dependent networks. In this kind of networks, some
of its information changes with time. In our case, the travel times of edges
depend on the time and whether it is the weekend or not. Planning is generally
done offline. This has to be distinguished from dynamic route planning where
solutions are computed and recomputed online while driving [24].
For time-dependent route planning, we can also differentiate between sources
of time-dependent travel times. The travel times for our experiments are exclu-
sively based on a dataset containing historical speed data. Sometimes, historical
data is used to create some kind of estimation model for travel times [61].
A good overview of different prediction methods is given by Lin et al. [46].
Others use real-time traffic information gathered via a vehicular-ad-hoc-network
(VANET) in addition to historical data [10, 56]. Another option is modelling
travel times stochastically [45, 55, 68]. Since integrating an estimation model
for travel times is a complex topic, it is beyond the scope of this thesis. In
future, some prediction method could be implemented to improve the accuracy
of routing algorithms for real-world applications.
The work most similar to our route planning method is that of Kanoh and
Hara [42]. With time-dependent travel time, route length and ease of driv-
ing, they define similar objective functions. Unlike us, they use a cellular au-
tomata [41] to calculate traffic prediction before the optimisation. Moreover, we
utilise NSGA-II while they propose a combination of the Dijkstra algorithm [20]
and a genetic algorithm with different operators than ours. Liu et al. [47] also
use NSGA-II with Node Based Crossover (NBX) but other steps of their EA
differ from ours. Furthermore, they have similar objective functions which are
total vehicular emission cost, time-dependent travel time, number of turns, and
route length. Although the authors utilise real-world data too, they only test
their method on a single path planning problem in a much smaller road network
than us.
Other papers only deal with single-objective time-dependent problems [44] or
the multi-objective problem is optimised single-objectively using a weighted
sum approach [8]. There are also more papers on multi-objective problems in
time-dependent networks, but they examine different problem definitions. The
problems are usually designed for other use cases such as VRPs [29, 43, 64, 73],
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4.2. Multi-objective time-dependent route planning

path planning for a set of emergency vehicles [72] or time-dependent multi-hop
ride sharing [32].

4.2.1. Objectives

Besides the relatively common travel time minimisation, we optimise two other
objectives which are discussed in previous research. In the first paragraph, we
compile different approaches for defining travel time variability. The second
paragraph shows the inspiration for our ease of driving objective.

Travel time variability Our second objective is to minimise travel time
variability, also called travel time reliability. Rajabi-Bahaabadi et al. [55] provide
a good overview of literature minimising travel time variability and of different
function definitions for reliability. We highlight some papers from this overview
that are most relevant to our work and extend the list by some additional
works. Mostly, the variability is defined as the expected value of travel time,
its variance or a combination of both [33, 35, 58, 66]. These definitions have
the disadvantage that they also take arriving too early into account. This
is something drivers are usually not concerned by. For this reason, Rajabi-
Bahaabadi et al. [55] additionally minimise the probability of travel times
exceeding pre-specified travel times. Ishibuchi et al. [36] instead optimise travel
time budgets that ensure the driver’s on-time arrival with a certain confidence
level. Wellman, Ford and Larson [70] on the other hand use a SSD of travel
times as an objective function. The latter is the option we choose because of the
benefits already explained in section 2.4. Another interesting idea is minimising
the congestion probability of routes instead of the travel time variability [71].

Ease of driving Our third objective function, ease of driving, was inspired
by Kanoh and Hara [42]. They implement ease of driving as a function which
penalises narrower roads and greater numbers of turns, signals and traffic jams.
We included some of these aspects in the calculation of our travel time objective.
In our thesis, we simplified ease of driving to minimising the degrees of turning
needed to drive along a route. Especially in robotics, this is also referred to as
path smoothness [1, 39, 65]. Alternatively, the number of turns is minimised
instead of the angles [6, 53].
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4.3. Uber Movement datasets

For our experiments, we use the Uber Movement Speeds dataset for Berlin [62].
Previous literature related to route planning with Uber Movement Speeds data
exists. However, Uber Movement also provides datasets for cities other than
Berlin that are mostly used.
Some papers create travel time estimation models with the data but do not use
them in a route planning algorithm [48]. Deb et al. [13] additionally analyse
patterns in their prediction model to extract knowledge for routing in Mumbai,
India. They learned that holidays cause irregular patterns in the data which
is something we too observed during the data preparation. In our case, there
was a massive increase in recorded rides just after midnight on New Year’s
Day 2020. However, due to averaging for some weekdays and interpolating for
missing edges, this anomaly was no longer noticeable during route planning.
Deb et al. furthermore observed that travelling in the evening can take longer
than during the PM peak period. Unfortunately, we cannot corroborate this
since the authors do not specify which time they consider to be the PM peak
period.
Some papers also use Uber Movement data for route planning optimisation.
Zheng et al. [74] minimise expected travel time and a travel time budget in
Manhattan, New York City. In contrast to our work, their network is not time-
dependent. Ch, Krumm and Kun [9] optimise the departure time for a specific
route whereas we find a route for given a departure time that minimises the
possibility of taking longer than the expected travel time. Overall, we found no
papers using any Uber Movement dataset for innovization.
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5. Innovization for route
planning

To apply innovization to route planning problems and alleviate the challenges
described in section 3.2, we propose the following, adapted version of the original
innovization method [18]:

1. Compute a Pareto front using a multi-objective evolutionary algorithm
(MOEA) for routing problems.

2. Verify extreme solutions using a single-objective algorithm. Add new
extreme points discovered during the single-objective runs to the Pareto
front and compute the non-dominated set to receive the extended front.

3. Apply Perimeter Mutation Local Search (PMM-LS) to the extended front
to obtain the modified front.

4. Prepare the analysis: Cluster solutions of the modified front in the decision
space. Plot pairs of objectives for the clusters. Compute correlation
coefficients between different route characteristics and objectives.

5. Analyse the Pareto-optimal solutions and materials from the previous step.
Check for any commonality principles which can be reused as extracted
knowledge. To this end, it might be useful to combine the analysis of
modified fronts from multiple runs, for example with different start and
end points or with different departure times.

A detailed explanation of our MOEA for the first step follows in section 5.1 and
for PMM-LS in section 5.2. As suggested in the original innovization method,
the MOEA was reused for single-objective runs in the second step by defining
only one objective function at a time. It is possible that single-objective algo-
rithms return new extreme points instead of verifying the ones in the front. This
is because finding extreme points for routing problems is hard due to the com-
plexity of decision variables and constraints. In some cases, a single-objective
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algorithm outputs multiple individuals with the same optimal value. Trivially,
only non-dominated extreme solutions should be added to the extended Pareto
front. Moreover, newly discovered extreme solutions might dominate solutions
in the extended front. It is therefore necessary to compute the non-dominated
set of the Pareto front from the first step along with any newly found extreme
points.
For the decision space clustering in the fourth step, we apply OPTICS [2] with
automatic cluster extraction. The advantage of this method is that there is no
need to define a number of clusters or an ε-value for the neighbourhood size. In
addition, OPTICS is able to handle arbitrarily shaped clusters with different
densities and noise. The only parameter which has to be set isMinPts for identi-
fying core points. We employ the heuristicMinPts = number of objectives +2

by Ester et al. [23] which they discovered for DBSCAN, another density-based
clustering algorithm similar to OPTICS. As the distance function for routes
in the decision space, we utilise the discrete Fréchet distance δdF [22] with Eu-
clidean distance between node coordinates. We recommend visualising clusters
of routes on a map for analysis. The route characteristics mentioned in the
fourth step are the number of traffic signals along a route and the percentages
of street types. As street types, we distinguish between motorways, main roads,
residential streets and other or unclassified streets.
For route planning problems, analysing fronts separately in the fifth step may
result in the extraction of knowledge which is too problem-specific. For example,
we could find from one run with specific start and end points that routes always
pass through one specific node or always use a certain edge. However, this
knowledge is not applicable to most other route planning problems with other
start and end points. An in-depth discussion of our entire proposed innovization
for route planning is contained in section 5.3.

5.1. Multi-objective evolutionary algorithm

We use NSGA-II [17] as our multi-objective evolutionary algorithm (MOEA).
NSGA-II is an EA which iteratively applies crossover and mutation to a popula-
tion of individuals until a given termination criterion is reached. We customised
some of the steps for route planning which are explained in the following sub-
sections. To encode our route planning problems, we want to employ a natural
encoding which is also suitable for real-world data. Since our road network is rep-
resented as a graph G = (V,E), chromosomes are a sequence of node indices Ini
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from start nO to destination nD of our route planning problem. Formally, an
individual x ∈ {(In0 , . . . , Inl

) | l ∈ Z≥1;n0, . . . , nl ∈ V ;n0 = nO;nl = nD}.
This way, similar chromosomes have similar fitness values. Feasible individuals
must have an edge between each pair of consecutive nodes. As paths may have
different lengths in reality, our encoding also has variable length.
In the first step of our MOEA, an initial population is created using guided
random walks as described in subsection 5.1.1. The size of our population is
chosen dynamically for every route planning problem based on its difficulty.
One factor which influences the difficulty is the length of solutions. Therefore,
we choose the population size N for a routing problem based on the length
of the shortest path lsp between start and end point. Equation 5.1 computes
the population size as 2.5 times the length of a shortest path rounded to the
nearest ten.

N =

⌊
2.5 · lsp

10
+ 0.5

⌋
· 10 (5.1)

Individuals of the initial population are then evaluated according to a fitness
function. In our case, the fitness is a vector of the objective functions described
in section 3.3. Additionally, we give a penalty of 100, 000 to each objective
for any missing edge between consecutive nodes in a chromosome. Based on
this fitness function, NSGA-II employs binary tournament selection to choose
solutions for creating new individuals with crossover and mutation. To fill each
spot in the mating pool, two random individuals compete in a tournament [14].
The winner is the dominating solution or, if neither solution dominates the
other, it is the solution with greater crowding distance. We customise crossover
and mutation operators as we explain in subsections 5.1.2 and 5.1.3. Survivors
are then selected from the population including newly created individuals based
on fast non-dominated sorting and crowding distance sorting.
These steps are repeated until our stopping criterion is reached. We follow the
recommendation from the original innovization [18] to let the MOEA run for
a large number of generations. The goal of this is to reach a high confidence
in innovization results. The understanding of a large number of generations
varies per routing problem. Therefore, we terminate if the change in ideal
point z∗, nadir point znad and Inverted Generational Distance (IGD) is less
than 0.0025 for 25 consecutive generations. This set of indicators ensures that
the algorithm is stopped after diversification and converging of the algorithm
are finished [5]. Stopping criteria are evaluated over multiple generations to
make the termination more robust. As a fall-back, we stop the algorithm after
200 generations.
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start
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A B

C
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Figure 5.1.: Generation of an example individual. From the neighbours A, B,
C and D of current node ∗, B is chosen with a 75 % chance. A
and C are selected with a 12.5 % chance each

5.1.1. Generation of initial population

The initial population is created using guided random walks since standard
random walks take too long in complex graphs like road networks. A random
walk starts at the given start point and ends when the predefined destination is
reached. Consider the example in Figure 5.1 where we are currently at node ∗.
If present, we remove any visited neighbours from the selection pool. In this
case, D would be excluded. For simplicity, self-loops are always disallowed. We
move in direction of the node that is closest to the direction of our destination
with a probability of 75 %. In the example, this applies to node B. The other
25 % chance are evenly distributed among the rest of the neighbours or, in
this instance, A and C. This guidance is a trade-off between diversity of initial
populations and runtime. However, the direction of a neighbour towards the goal
can sometimes be misleading and the random walk gets stuck in a circle. If the
current node has been visited at least ten times and all neighbours have already
been visited, we choose a successor uniformly at random from all neighbours to
get out of any loops.
For future work, one could consider removing any loops from individuals after
their generation or disallowing revisiting nodes altogether. However, the latter
would mean that random walk and reproduction get more complex as multi-
edge U-turns are sometimes necessary to prevent individuals from becoming
infeasible.

28



5.1. Multi-objective evolutionary algorithm
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Figure 5.2.: Crossover of two example solutions P1 and P2 at common node 3
resulting in children C1 and C2

5.1.2. Node Based Crossover

Recombining two paths can be intuitively done as a one-point crossover when
paths share common nodes like in Figure 5.2. To the best of our knowledge,
this kind of crossover was first described by Munetomo et al. [52] and has later
been termed Node Based Crossover (NBX) [11]. In the example, the two parent
solutions P1 and P2 have common nodes 1, 2, 3 and 4. Since a crossover at
start (1) or end point (4) would not produce a new individual, we choose any
other common node for a one-point crossover. Say we randomly select node 3,
the crossover produces children C1 and C2 by giving children a different part
of each parent. If two parents share no common points, a one-point crossover
at a randomly placed cut is performed. The position of the cut is random but
it is restricted such that a crossover at the start or end point is prevented. The
resulting individuals are repaired with shortest path between the node before
the cut and the one after it.

5.1.3. Perimeter Mutation Operator

After the creation of offspring using crossover, a mutation operator is applied
to them. Our mutation operator is largely inspired by the Perimeter Mutation
Operator from Weise and Mostaghim [67]. The idea is to replace a random part
of the path by an alternative route. A visualisation of our mutation operator can
be found in Figure 5.3. First, we choose random mutation start and end indices.
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start destination

mutation
start

mutation
end

Figure 5.3.: Visualisation of our mutation operator which replaces a random,
small part of the path with an alternative path

To ensure that the mutation is only a small change but that an alternative
route can be found, the indices are within 10 % to 20 % of chromosome length
apart. Secondly, we determine the middle point between the two nodes at the
chosen mutation indices. We find all nodes within a circle around this middle
point with a radius of 0.8 times the distance between mutation start and end
node. In Figure 5.3, this is represented by the red circle. We randomly select
one of the nodes which is not already on the path. Finally, we replace the
path between mutation start and end node with the shortest path between
mutation start and end via the chosen alternative node. Since there might be
no alternative nodes available within a radius, not every mutation is successful.
Therefore, we set our mutation probability a little higher than usual at 25 %.

5.2. Perimeter Mutation Local Search

Perimeter Mutation Local Search (PMM-LS) is a local search method based
on the mutation from previous subsection 5.1.3. It is more systematic than
the small mutations of few individuals during the course of an EA. The goal
of PMM-LS in this particular case is finding solutions dominating individuals
in the extended front Pres from step 2 of our innovization for route planning.
The pseudocode of PMM-LS is detailed in Algorithm 1. For every individual in
Pres, alternative routes are created using the mutation from subsection 5.1.3.
This mutation is applied for every possible mutation window of size 20 % of
chromosome length. Instead of randomly selecting only one alternative node
as for the MOEA, all possible alternative routes are generated. After each set
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Algorithm 1 PMM-LS(Pres)
function dist(A,B)

return great-circle_distance(A,B)

function concat(x, wstart, wend, nodealt)
routealt = x[0, . . . , wstart]

routealt = routealt : shortest_path(x[wstart], nodealt)
routealt = routealt : shortest_path(nodealt, x[wend])
routealt = routealt : x[wend, . . . , |x|]
return routealt

P = Pres

Xnew = Pres

step = 1

while Xnew 6= ∅ do
Pold = P

for x ∈ Xnew do
wstart = 0

wend = wstart+round(|x| · 0.2)
while wend ≤ |x| do

centre = middle_point(x[wstart], x[wend])
radius = {v ∈ V | dist(v, centre) ≤

0.8·dist(x[wstart], x[wend])}
for nodealt ∈ radius do

P = P ∪ concat(x,wstart, wend, nodealt)

wstart = wstart + step

wend = wend + step

P = non-dominated_set(P )
Xnew = P\Pold

return P
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of mutations, the sliding window is moved by step size of 1. This parameter
can be changed to a higher value for a trade-off between computation time and
completeness of the search. After all alternative routes for all individuals have
been computed, only the set of non-dominated individuals of Pres and alternative
routes is kept. These steps are repeated for any newly found individuals until
no more new individuals were discovered. Finally, the method returns a locally
improved Pareto front.

5.3. Discussion

In this chapter, we have answered RQ1 by proposing an adapted innovization
method which is specialised for handling route planning problems. The special-
isation was achieved particularly by developing a new local search method for
routing problems, PMM-LS. This local search defines a route’s neighbourhood
and systematically searches for improvements within these neighbourhoods.
Since route planning problems have complex decision variables and constraints,
and often non-differentiable objective functions, applying the local search and
the verification method from the original innovization [18] is only viable when
using a metaheuristic. However, that means that the guarantees of these meth-
ods no longer hold. Therefore, the biggest difference of our innovization variant
in comparison to the original is the introduction of a specialised local search
and the omission of the NCM verification step. For a more comprehensive
assessment of the challenges of the original innovization, refer to section 3.2.
Additionally, the order of steps has been revised to include improvements from
newly discovered extreme points and PMM-LS when clustering. Inserting new
extreme points from single-objective runs into the front before PMM-LS helps
improve the results of the local search even further. The reason for this is that
routing problems are deceptive. This means that extreme points with the same
optimal value for one objective are not necessarily close in the decision space.
Because of this, PMM-LS often reveals previously undiscovered parts of the
Pareto front. An example of this can be seen in Figure 5.4. In the example, new
points close the MOEA front are found along with completely new parts of the
front. These new routes dominate many routes of the MOEA front. Overall,
PMM-LS proved useful in our experiments. The local search lead to a median
normalised hypervolume improvement of about 0.02 when comparing the fronts
produced by our MOEA and by PMM-LS. In future, other design choices for
PMM-LS such as different search strategies could be explored. For example,
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Figure 5.4.: Pareto fronts of an exemplary routing problem as a result of the
MOEA step (a) and after inserting extreme points and performing
PMM-LS (b). Orange points are newly discovered

more exploration could be included instead of the current greedy approach
where we only check neighbourhoods of newly found, improved individuals.
One idea is to gradually decrease the size of the mutation window and thus
decrease the radius in which alternative routes are examined. This allows for
more exploration in the beginning of the search though a larger mutation
window increases computation time. Another idea is to integrate PMM-LS into
a Variable Neighbourhood Search (VNS) [31] to break out of potential local
optima after PMM-LS converges. VNS applies local search within a set of larger
neighbourhood structures, moving from one neighbourhood to another if no
improvement was found.
PMM-LS is one of the steps of our innovization variant that can be slow,
especially for Pareto fronts with many individuals. However, a trade-off be-
tween computation time and completeness of the search can be achieved by
adjusting the parameters for window size or step size. Moreover, parallelising
multi-objective and single-objective optimisations accelerates the process. This
has also been suggested by the authors of the original innovization [18]. Another
noteworthy difference of our proposed innovization variant is that we choose the
population size dynamically. Equation 5.1 computes population size depending
on the difficulty of each routing problem which is indicated by the length of
the shortest path from start to end node. Thereby, we prevent an unnecessarily
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large excess of function evaluations. Like the original innovization method,
innovization for route planning overall remains a time-consuming procedure.
However, it is intended to be applied only once to a set of problems. Its benefit
arises from using extracted knowledge for optimisations of similar problems
where this knowledge ideally reduces computational effort.
In contrast to the original innovization, we only perform the clustering after
inserting new extreme points and conducting a local search. The reason for this
is that PMM-LS often returns dominating solutions which would have to be
assigned to already existing clusters. Furthermore, dominated solutions would
have to be deleted from clusters. Overall, this could result in a totally different
cluster structure. Additionally, we do not cluster in the objective space but in
the decision space. As we do not cluster in the objective space and we omit
NCM, there is no need to compute the ideal and nadir point or to normalise ob-
jectives. Since we use the clustering for analysis, individuals of the same cluster
need to possess some commonalities. However, finding meaningful similarities
in objectives space clusters of route planning problems is difficult due to the
deceptiveness of route planning and the complexity of decision variables such
as lists of node indices. Moreover, principles, that can be found for objective
space clusters, are often too problem-specific. Deb and Srinivasan [18] only use
clustering to identify some well-distributed solutions for which they run their
local search. Similarly, we could use representative solutions from decision space
clusters to speed up PMM-LS. Future work for innovization for route planning
could also include advancing the clustering step by testing other clustering
algorithms or by finding a heuristic for OPTICS’ ε parameter. Setting ε to less
than infinity would decrease the runtime of the clustering.
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For our experiments, we implement the method from the previous chapter in
Python using the pymoo framework [4] for our MOEA. Due to time restrictions
and since the MOEA just serves as a step in our innovization, we do not conduct
a systematic hyperparameter optimisation. Instead we set parameters to values
which we observed to work well during implementation. A hyperparameter
optimisation, especially for mutation probability and dynamic population size,
should be run in future to try to improve the MOEA. To calculate time-
dependent travel times for a network, we use the Uber Movement Speeds
dataset [62] for Berlin. This dataset is explained and discussed in the following
section. Section 6.2 thereafter covers the knowledge extraction from innovization
experiments run for RQ2. Innovized principles from this section are used for
the experiments for the following section 6.3 where we examine whether an
improvement of our MOEA is achieved. We conclude this chapter with a
discussion of our results.

6.1. Uber Movement Speeds dataset

Defining route planning problems from section 3.3 for our experiments requires
a graph representing a road network. Additionally, each edge (u, v) needs a
number of traffic signals sgnuv and a speed attribute swh

uv for every hour h
during the week and on weekends w. Road networks are readily available as
OpenStreetMap (OSM) [54] graphs with the OSMnx package [7] in Python.
The edges of these OSM graphs also contain relevant information such as the
number of traffic signals. As a source for speed attributes swh

uv , we choose the
Uber Movement Berlin Speeds dataset [62]. This dataset contains mean hourly
speeds and their standard deviation recorded for Berlin street segments in
January of 2020. Start and end points of each street segment are identified by
OSM node IDs. Each data entry is an average traversal speed from a sufficient
number of Uber trips on a specific street segment in one hour of a certain
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day. Travel time attributes ttwh
uv are calculated based on interpolated hourly

speeds attributes swh
uv and length of edges provided by OSM. The determination

of speed attributes for each edge in the OSM graph of Berlin is described in
subsection 6.1.1. Afterwards, we discuss the dataset in subsection 6.1.2.

6.1.1. Determination of speed attributes

Since our routing problems only pertain to motor vehicle, we only load the
OSM graph with the drive network type for feasibility and runtime reasons.
Uber maps GPS data from trips to internal node IDs first before providing a
matching to OSM node IDs. Unfortunately, the OSM IDs provided by Uber
often do not match node IDs in the drive network. Sometimes the size of
segments are not equivalent. In many other cases, nodes are not even part of
the drive network but instead represent, for example, footpaths or lifts. We
hypothesise that this is because Uber Movement only matches internal IDs to
coordinate-wise closest nodes in a complete OSM network of Berlin. Therefore,
we provide our own matching from OSM street segment IDs to OSM node IDs
in the drive network graph.

Matching For each data entry, we check whether start and end points of the
segment are nodes in the drive network. If both are contained in the OSM
graph and they share an edge (u, v), we assign swh

uv for the respective hour h
and weekend or not w of the data entry. In case both nodes are part of the
graph but they do not share an edge, this usually means that there is some
interstitial node on the street. These are nodes which are not part of any
intersections. Therefore, we update correspondent speed attributes for all edges
on the shortest path from OSMnx. Unfortunately, these two cases only cover
around half of the data entries. For the rest, we get coordinates of the affected
nodes from the complete OSM graph of Berlin and match them to the closest
edges in the drive network. Still, around 7 % of the data points cannot be
matched. This is mostly due to deprecation of nodes or changes in the road
network such as construction. Moreover, for some speed attribute swh

uv multiple
data entries exist, for example on different dates. In that case, we take the mean
of all speeds recorded for the respective speed attribute. Since the unsimplified
drive network of Berlin with 211,838 nodes and 385,194 edges is incredibly
large, we simplify the network in the next step to improve computation times.
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6.1. Uber Movement Speeds dataset

Simplification We observe that the dataset for Berlin is sparse and discon-
nected. This is the case even though we already aggregate the data for days
during the week and days on the weekend. Data in the center of Berlin is
a little less sparse covering approximately 14 % of edges in comparison to
only around 3.9 % edge coverage for the entirety of Berlin. Therefore, we limit
our road network to a polygon which contains the center of Berlin up to ring
roads. Since there are only main roads and residential streets in the center of
Berlin, the inclusion of circular motorways allows for more diverse solutions.
The used polygon is marked by a dashed line in Figure 6.1. This reduces the
graph to 58,518 nodes and 96,989 edges, which is roughly only a quarter of
edges from the entire graph. We now use the OSMnx simplification module
that decreases the size of the graph even further by removing interstitial nodes.
These nodes only add irrelevant information to chromosomes as individuals
would have to visit these nodes anyway when traversing the corresponding
edge from one intersection to another. Theoretically, this simplification could
have been triggered before node matching. However, the reduced number of
nodes would make matching more difficult and less accurate. Hence, we simplify
the graph after matching, reducing it to 6,557 nodes and 15,928 edges. The
OSMnx simplification method merges edges by creating lists when different
values are encountered for the same attribute. We simply take the mean of
lists for speed attributes. Unfortunately, some interstitial nodes include traffic
signal information. Therefore, we save the number of traffic signals for each
edge before the simplification and reinsert it on the closest edge afterwards.
The direction of the edge, on which the information is inserted, depends on
the assumption that traffic lights are close to the end node of an edge. Note,
however, that this assumption may not hold for other countries, such as the
United States of America. Additionally, we delete multiples of edges between
node pairs since edges in our road network must be uniquely identifiable by a
pair of node IDs. The deletion affects some parallel edges but also alternative
streets such as U-shaped roads. Lastly, we delete dead ends, meaning nodes
with no ingoing or no outgoing edges. These nodes hinder optimisation and
could only be used as start or end points of routes anyway. Since there are still
many unassigned street attributes in our simplified graph, we interpolate in
the next step.

Interpolation To calculate missing speed attributes, we cannot simply take
the average of speed attributes from neighbouring edges since speeds may vary,
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Figure 6.1.: Flows of the interpolated road network for 8 pm (median average
flow) during the week. The dashed line marks the polygon in which
speed data was used

for example due to inhomogeneous speed limits. Only interpolating streets with
the same street type or speed limit also does not work. The reason for this is
that for some street types, particularly residential roads, there is almost no
data available. Instead, we interpolate all speed attributes per hour and per
weekend categorisation using, what we call, flow. The flow ρwh

uv of an edge (u, v)

at hour h with weekend categorisation w is computed using Equation 6.1 where
smax
uv is the maximum allowed speed on edge (u, v).

ρwh
uv =

swh
uv

smax
uv

(6.1)

Speed attributes, to which no entry in the dataset was matched, are assumed
to have 100 % flow in the beginning of the interpolation. For each edge, we
only interpolate the flows from ingoing and from outgoing edges to preserve
speeds for varying directions. To update speed attributes, we just multiply
flow ρwh

uv by the speed limit smax
uv . Speed attributes which were assigned using

the dataset are fixed which means they are not updated. The interpolation
runs through the set of edges E in iterations until speed attributes converge.
However, convergence for interpolating 2 · 24 speed attributes for all edges is
very slow. Therefore, we only update speed attributes if the difference is greater
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or equal to 0.01. For the Uber Movement Speeds dataset for Berlin, this results
in an interpolated network graph for which flows are visualised in Figure 6.1.
Flows in the graph are shown based on speed attributes at 8 pm during the
week, with the average flow in the graph being the median.

6.1.2. Dataset discussion

The two main advantages of the Uber Movement Speeds dataset are that it is
publicly available and in an easily machine-readable CSV format. Unfortunately,
matching the provided OSM IDs to ones in an OSM drive network is not trivial.
The biggest limitation of this dataset, however, is the sparseness of the data.
Especially for smaller roads such as residential streets, speeds are missing.
To compensate for the lack of data, aggregating speeds of different weekdays
and interpolating becomes necessary. For this reason, most speed attributes
do not directly come from entries in the dataset but are estimates based on
aggregation, averaging and interpolation. Moreover, our interpolation assumes
100 % flow for speed attributes not in the dataset. Future work needs to assess
whether this is a valid assumption. These aspects likely mean that the resulting
road network is not a realistic representation of Berlin’s streets in January
of 2020. Moreover, one could even question whether the speeds provided by
the dataset themselves are an accurate reflection of reality. For example, it
could be possible that the dataset is biased since Uber drivers might use expert
knowledge to avoid frequently congested streets by themselves. That would
also mean that the assumption of free flow on roads without data would be
inaccurate in some cases. Another aspect which is unclear from the dataset
is how much traversal speeds are affected by waiting times at traffic signals
and signs. In some cases, the added traffic signal penalty of 20 seconds could
already be included. Another abnormality of this dataset is that a fraction
of speed attributes exceed the respective speed limit. Uber Movement assert
that no conclusions about road safety can be drawn from this [63]. They argue
that speeds are not instantaneous but instead calculated as segment lengths
divided by traversal times. In conclusion, these potential problems have to be
investigated further in future work to assess whether this dataset is a good
basis for time-dependent travel time estimations. Nevertheless, the speed data
does provide some insights into travel times and congestion, which is why we
used it.
In general, using real-world data comes with more difficulties compared to
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assigning, for example, stochastic distributions of travel times to edges or to
entire routes which is often done in related work on travel time variability.
Aside from the additionally necessary preparation of real-world data discussed
in the previous subsection, the main complications stem from the discreteness
of travel times. While stochastic distributions are continuous, real-world data
is mostly recorded in larger time steps. Hourly travel times lead to problems
with our travel time variability objective where routes would take detours until
the next hour to minimise travel time variability of certain edges. Therefore,
our objective functions need to interpolate again between hourly travel times.

6.2. Knowledge extraction

This section examines RQ2 which questions what knowledge can be gained
from applying our innovization variant to the Berlin Uber Movement dataset.
To extract knowledge which is representative for the whole family of routing
problems in Berlin, we compare classes of innovization experiments for different
sets of route planning problems:

1. medium-length routes at different times of the day during the week

2. medium-length routes during the week versus on the weekend

3. long versus short routes

The classification of routes by length is based on the polygon in which we use
speed data from Uber Movement. A circle with a 10.5 km diameter around the
Deutscher Dom, a central place in the polygon, includes most of the polygon.
Based on this, routes are separated into three classes according to the straight
line distance between their origin and their destination:

• short: distance ≤ 3.5 km

• medium-length: 3.5 km < distance ≤ 7 km

• long: distance > 7 km

As described in our innovization for route planning approach, each experiment
should return a decision space clustering, a plot of objective values of clusters
and correlation coefficients between different route characteristics and objective
functions. However, some experiments only output a single optimal solution or
just one cluster. As explained in chapter 5, we selected percentages of street
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type of experiment travel
time

travel
time

variability

degrees of
turning

during the week, rush hour 0.620 0.014 -0.680

during the week, medium flow 0.645 0.202 -0.617

during the week, best flow 0.687 0.173 -0.737

on weekends 0.762 0.280 -0.736

short 0.421 -0.097 -0.459

long 0.605 0.040 -0.740

all 0.672 0.152 -0.687

Table 6.1.: Median Spearman correlation between main roads percentage and
each objective for different types of route planning problems

types and number of traffic signals along a route as route characteristics. We
analyse their correlation among each other and with each of our objective
functions. Since the median correlation between main roads percentage and
number of signals across all experiments was relatively high at 0.817, we only
consider the main roads percentage in the analysis. For the latter characteristic,
the Spearman correlations with each objective for different types of experiments
are listed in Table 6.1. Overall, we see a relatively strong positive correlation
of 0.672 in relation with the first objective and a relatively strong negative
correlation of -0.687 in relation with the third objective. However, for some
types of experiments these correlations are considerably weaker.
The different classes of experiments listed at the beginning are analysed in
detail in the following two subsections. After reporting our findings, we evalu-
ate some additional experiments on excluding our second objective from the
optimisation in subsection 6.2.3. Finally, we formulate innovized principles to
use for algorithm improvement based on our findings.

6.2.1. Medium-length routes

The first two sets of experiments use a representative set of ten medium-
length routes in Berlin. Their shortest paths are visualised in Figure 6.2. Their
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Figure 6.2.: Shortest paths of ten medium-length routes used in the innovization
experiments

formal problem definitions with OSM start and end point indices and the route
numbering are detailed in Table A.1 in Appendix A. We will look at individual
results of route planning problems at different times of the day during the week
and at medium flow on weekends before discussing knowledge extracted from
comparative maps. Comparative maps visualise which solutions overlap and
which do not for the different times of the day and during the week versus on
the weekend.

Different times of day We select three different times of the day during the
week for the first class of experiments on medium-length routes. The selection
is based on the best, median and worst average flow during the week in our
network. Rush hour is at 4 pm with an average flow of 75.3 %, best flow is at
4 am with 97 % flow. Medium flow is between 7 pm and 8 pm. We randomly
select 8 pm as the time with medium flow at 85.5 %. For all times of the
day, the majority of Pareto-optimal solutions more or less follow the straight
line from start to end point. An example of this can be seen in Figure 6.3a.
This knowledge is already exploited in our original MOEA since we use guided
random walks as initialisation. However, the guiding in our current initialisation
only loosely follows the straight line. A subset of initial populations could be
created by closely following the linear path.
At best flow in the network, there are some exceptions as in Figure 6.3b and
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(a) R9 at rush hour (b) R10 at best flow

(c) R6 at best flow (d) R3 at medium flow (e) R7 at medium flow

(f) R7 at best flow (g) R1 at best flow (h) R7 at rush hour

Figure 6.3.: Decision space clustering for various medium-length problems dur-
ing the week. Different clusters have different colours but routes
classified as noise are not included. The R-numbering refers to the
route numbering in Table A.1 in Appendix A
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in Figure 6.3c where solutions take relatively long detours to use main roads
or motorways to achieve lower degrees of turning. However, this usually also
leads to longer travel times, which is unsurprising since the routes with detours
are longer. The same trade-off can be observed at medium flow, for example in
Figure 6.3d. Notably, there is one case at medium flow where the exact opposite
compromise is achieved. For Figure 6.3e, many solutions closer to the straight
line between start and end point have higher travel times and lower ease of
driving. The reason for this is that clusters closer to the linear path can also
follow a main road but are closer to the city centre where the flow is worse.
Nevertheless, solutions taking detours away from the straight line path via main
roads or motorways provide important trade-off options. Innovized principles
should encourage the generation or the discovery of this kind of routes.
Another observation that can be made at best flow is that not all compromise
solutions might be useful to a decision maker. In Figure 6.3f, most clusters
which take longer detours are worse on average for both the first and third
objective but exhibit a slightly better travel time variability. Similarly, half
of the clusters in Figure 6.3g, that take the more eastern routes, have similar
average travel times to the rest of the clusters but insignificantly lower travel
time variabilities. The differences in travel time variability here are between
0.1 and 0.4 seconds. Everyday drivers are unlikely to care about this minor
trade-off. As an innovized principle, we could implement a different dominance
criterion for the second objective so that solutions, which are only better for
travel time variability, are dominated.
During rush hour, there is one route planning problem depicted in Figure 6.3h
where none of the solutions follow the straight line path. This is because it is
dominated by more eastbound options with higher main roads percentage and
therefore lower degrees of turning or lower travel time variability.

During week versus on the weekend In the second class of experiments,
we run our innovization method for the medium-length routes depicted in
Figure 6.2 during the week and on the weekends at medium flow. Medium
flow is at 8 pm during the week which is why we also choose this time for
experiments on weekends. The runs during the week are the same as those
for medium flow in the previous paragraph and do not need to be rerun or
separately analysed again.
The majority of Pareto-optimal routes follow the straight line between start
and destination. Interestingly, there are a few clusters that make an exception

44



6.2. Knowledge extraction

(a) R3 (b) R7

Figure 6.4.: Decision space clustering for various medium-length problems on
weekends. Different clusters have different colours but routes clas-
sified as noise are not included.

from this to achieve different combinations of function values. In Figure 6.4a,
only one cluster more or less follows the straight line route. The other clusters
take more eastern routes which result in a slightly higher travel time but an
insignificantly lower travel time variability. This is most likely not in the interest
of a decision maker. In other cases like in Figure 6.4b, straying from the linear
path yields a more meaningful trade-off. Most clusters in Figure 6.4b take
detours using main roads for higher travel times but lower degrees of turning.
This is supported by the Spearman correlations in Table 6.1 which are 0.762

on weekends between the main roads percentage and the first objective and
-0.736 for the third objective. These compromise routes should be discovered
more easily with our innovized principles.

Comparative maps For further analysis, we created comparative maps for
each medium-length route for the three different times of the day during the
week and for medium flow during the week versus on the weekend. Examples
are shown in Figure 6.5. Generally, almost no solutions overlap completely.
Only a median of 0.36 % overlap at all three times of the day and only a median
of 2.7 % both during the week and on the weekend. The overlap between
sets of edges used in solutions on the other hand is larger. Some patterns are
noticeable for the travel times of common routes. Unsurprisingly, the travel
time increases as the flow worsens during the week. There is an increase of
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(a) R3 at different times of
the day

(b) R8 during the week versus on weekends

Figure 6.5.: Two exemplary comparative maps depicting sets of solutions at
different times of the day (a) or on the weekend versus during the
week (b), common routes and the respective shortest path.

9.0 % in travel time from best to medium flow and another 10.5 % from medium
to worst flow. Moreover, the travel time for common routes is 5.4 % better on
weekends. Interestingly, the travel time variability does not follow the same
pattern and differences in values are negligibly small. The degrees of turning are
independent of departure times. Overlapping solutions are the ones that follow
the straight line path the closest. They are almost identical to the respective
shortest path with a median discrete Fréchet distance δdF of 0.175 in both cases.
We considered the inclusion of the shortest path of a route planning problem in
the initial population as an innovization. However, we believe that this would
lead to the algorithm getting stuck in a local optima since the shortest path
is initially significantly better than individuals generated by guided random
walks. The shortest path is even misleading in some cases where all solutions
deviate from it. For example in Figure 6.5a, no route follows the shortest path
in the beginning since it uses edges with bad flow. In Figure 6.5b, no solutions
match the middle part of the shortest path. Instead, routes take the motorway
which has a similar flow but allows a higher maximum speed.
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(a) Short routes (b) Long routes

Figure 6.6.: Shortest paths of ten short (a) and ten long (b) routes used in the
innovization experiments

6.2.2. Short versus long routes

In this section, we share the results of the last class of innovization experiments
on short and long routes during the week at medium flow. We randomly selected
a set of ten representative problems each. Their shortest paths are shown in
Figure 6.6. Their formal problem definitions with OSM start and end node
indices and the route numberings are listed in Table A.2 and A.3 of Appendix A.
Start and end points of short routes are randomly chosen from a list of points of
interest in the centre of Berlin based on [59]. The short route planning problems
are generally easy to solve. Two of them return only a single optimal solution
and four others output only one decision space cluster. In the other cases, most
clusters have higher average travel times and lower average degrees of turning,
the higher their average main road percentage is.
The route planning problems with long routes are generally harder and produce
more Pareto-optimal solutions and more clusters. Overall, we observe a strong
correlation between clusters’ average main road percentage and travel times and
degrees of turning respectively. This is consistent with the median correlations
over all solutions in Table 6.1. Interestingly, we can see that the correlation with
travel times can additionally be grouped by length. In Figure 6.7 for example,
we can see that two clusters, which take longer detours, are separate from the
trend between main roads percentage and travel times. Note that on the left
of this example almost all clusters have to go through a bottleneck which is
the Tiergarten Spreebogen tunnel. While this is interesting for this particular
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(a) Long R1

(b) Relationship between main roads per-
centage and travel time for all individu-
als from (a)

Figure 6.7.: (a) Decision space clustering of a route planning problem where
most routes have to use a bottleneck. The R-numbering refers to
the route numbering in Table A.3 in Appendix A. (b) Relationship
between main roads percentage and travel time for the same route
planning problem. Individuals in the green and the purple cluster
in (a) have higher travel times separating them from the rest of
the trend

routing problem, it is not useful for other route planning problems in Berlin as
mentioned above.
Many solutions such as in Figure 6.8a somewhat follow the straight line from
start to destination like we have seen in other classes of experiments. Never-
theless, many clusters accept longer detours to use main roads or motorways.
In some cases such as in Figure 6.8c, this is true for all clusters. Figure 6.8b
illustrates that detours for long routes can be much longer than for short or
medium-length routes. This should be taken into account when formulating
innovizations in subsection 6.2.4.

6.2.3. Exclusion of travel time variability

While analysing the results of our innovization experiments, we noticed that our
second objective, travel time variability, returns relatively low values. As shown
in the middle column of Table 6.2, the maximum function value of Pareto-
optimal solutions from all experiments is 2.217 seconds. Furthermore, solutions
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(a) Long R3 (b) Long R4

(c) Long R2

Figure 6.8.: Decision space clustering for various long route planning problems.
Different clusters have different colours but routes classified as
noise are not included

with 2nd

objective
without 2nd

objective

minimum 0.0 0.0

maximum 2.217 2.055

maximum median 0.653 0.701

median standard deviation 0.188 0.147

median number of solutions found 36.0 8.5

Table 6.2.: Statistics for second objective function values of Pareto-optimal
solutions in seconds and for number of solutions with the second
objective included in the optimisation and without it

49



6. Analysis

return similar travel time variabilities with a median standard deviation of only
0.188 seconds. In our scenario, an everyday driver probably does not care about
a risk of being roughly two seconds late in the worst case. Moreover, some opti-
misations find routes which are worse in both the first and third objective but
only insignificantly better in travel time variability. These routes are not really
relevant for drivers and only hinder their decision making process. For these
reasons, we perform some additional MOEA runs where we use the same set of
experiments but leave out the second objective during optimisation. Afterwards,
we compute travel time variability function values for the Pareto-optimal solu-
tions. We aim to determine whether excluding the second objective negatively
affects function values of solutions. The right column in Table 6.2 shows that
the minimum and maximum travel time variability function values, the median
maximum value as well as the median standard deviation only slightly change
when excluding the second objective from the optimisation. Furthermore, a
two-tailed Mann–Whitney U test results in a p-value of around 0.8 which shows
that the change in worst case maximum values is not significant between both
sets of experiments. Therefore, this objective can be left out. However, it seems
that the objective helps to preserve lateral diversity during the optimisation
since the average hypervolume decreases by 912.16 in comparison to the original
RQ2 experiments. Some diversity preserving mechanism should be included in
our innovizations in the following subsection to counteract this phenomenon.
Interestingly, the additional MOEA runs also show that the travel time vari-
ability objective is responsible for small protrusions in routes that are clearly
visible, for example in Figure 6.8c. It seems that it is more reliable, for instance,
to make a right turn and a U-turn to get back on the same road instead of just
crossing straight through an intersection.

6.2.4. Innovized principles

From the results of these innovization experiments, we can extract four principles
which can be reused in future route planning optimisations.
When analysing the correlation between the main roads percentage and our
objectives in Table 6.1, we generally see a positive correlation with the travel
time and a negative correlation with the turning degrees. Pareto-optimal routes
can usually be separated into two groups, for which these trends can also be
observed. The first closely follows the straight line from start to destination
and is often similar to the shortest path. This group exhibits lower travel
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times but higher turning degrees. The opposite normally holds for the second
group which uses a high percentage of main roads and motorways. Considering
the first group, which uses more residential roads, another objective could be
added in the future to balance the comfort of drivers and residents. In some
experiments, only one of the two groups exists, such as for Figure 6.3h, or both
groups overlap. An overlap occurs, for example, if the straight line routes mostly
use main roads as in Figure 6.3a. Otherwise, the routes in the second group
might take detours to use main roads and motorways. We observe that the
longer the route is, the longer are the possible detours. With this knowledge,
we can adapt the generation of the initial population. Originally, the entire
population was initialised using guided random walks where the edge in closest
direction to the destination is chosen with a probability of 75 %. Now we split
the initialisation in half. The first half is still created using guided random walks
but the individuals should follow the straight line more closely. Therefore, the
probability of going in direction of the goal is increased to 98 %. Nonetheless, we
do not seed the initial population with the shortest path since the optimisation
then gets stuck in local optima more easily. We also no longer insert the shortest
path as a replacement, if the generation gets stuck. The other half of individuals
prefer main roads and motorways. When choosing the next edge, the outgoing
edges are sorted first by whether they are main roads or motorways, and second
by their orientation towards the destination. The probability of choosing the
most preferred edge depends on the categorisation of a route by length defined
in the beginning of section 6.2. The probability is 95 % for short routes, 90 %
for medium-length routes and 85 % for long routes. This way, we allow longer
detours for longer routes. However, since some destinations are only reachable
via residential roads, we switch to guided random walk as in the first half,
when the destination is less than 250 m away. Nonetheless, some paths still
get stuck in a loop during generation. If a path is five times the length of the
shortest path from start to destination, we finish it by inserting the shortest
path from the current node to the destination. This prevents excessively long,
initial routes.
An analysis of function values of the travel time variability objective show that
leaving the second objective function out of the optimisation has virtually no
impact on the travel time variability of the Pareto-optimal solutions found. The
worst recorded function value is a travel time variability of around two seconds
either way. Since everyday drivers are unlikely to be concerned about a risk of
being a couple of seconds too late, we can leave the second objective function
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out of the optimisation. Additionally, the first or the third objective could
be omitted for some of the route planning problems. For example, there is a
relatively strong negative median Spearman correlation of -0.857 between these
objectives for long routes. However, we did not utilise this since the correlation
is not strong enough and routing problems are deceptive. This means that parts
of a Pareto front may not be discovered if one of the objectives out is omitted
because routes with similar fitness values can be relatively far apart in the
decision space. If the correlation was higher, either the first or the third objective
function could have been left out for a trade-off between computational effort
and quality of Pareto-optimal solutions.
Even leaving only the second objective function out, makes the route planning
problems less complex and easier to solve. As we can see in Table 6.2, the
number of Pareto-optimal solutions found by our EA is reduced to less than a
quarter of Pareto-optimal solutions for the same optimisation problems with the
second objective. For this reason and to avoid unnecessary function evaluations,
we decrease the populations size from 2.5 times the shortest path rounded to
the nearest ten to 1.5 time the shortest path rounded to the nearest ten.
Exemplary experiments have also shown that optimisations easily get stuck
in local optima without the travel time variability objective. Getting stuck
in local optima is a known problem for NSGA-II. While the algorithm has
mechanisms to ensure diversity along the Pareto-optimal front, the selection
mechanisms destroy lateral diversity across fronts since only the best individuals
are chosen for reproduction and survival. To mitigate this problem, NSGA-II
with controlled elitism [16] is used. A disadvantage of this algorithm is that
another hyperparameter, the reduction rate r, has to be set. In our case, setting
this parameter r = 0.2 has worked well in exemplary tests. The same tests
revealed a higher mutation probability of 35 % instead of 25 % for optimisations
on the weekend as favourable.
In conclusion, the following four innovizations are applied in the experiments
for RQ3:

• Update of generation of initial population

• Exclusion of second (travel time variability) objective

• Decrease in population size

• Increase in exploration through controlled elitism and higher mutation
probability on the weekends
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(a) Shortest paths (b) Parameter distribution

Figure 6.9.: Map with shortest paths (a) and distributions per different cate-
gories (b) of the 100 route planning experiments for RQ3

6.3. Algorithm improvement

As stated in our third research question, we now want to examine whether the
innovized principles from the previous section can improve the efficiency or the
results of our MOEA. We compare our route planning MOEA from section 5.1 to
an adapted version which implements the innovized principles. From now on, we
will be referring to the former as original MOEA and to the latter as innovized
MOEA. Both algorithms are run on 100 randomly generated route planning
problems. The parameter settings of these experiments are listed in Appendix B.
A map of the shortest path and the distribution of experiments among different
randomised parameters can be found in Figure 6.9. The randomised parameters
are relatively balanced with a slight overrepresentation of medium-length routes
and problems with a departure time between 5 am and 6 am. To evaluate
the third research question, we compute efficiency, quality of the final results
and total number of function evaluations for both algorithms. The efficiency
measures the quality of solutions as the hypervolume after a certain number of
generations. To evaluate the final results, we measure hypervolumes after each
run terminates. The termination criterion is the same as for the original MOEA
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(a) Median hypervolume (b) Median hypervolume improvement

Figure 6.10.: Evolution of the median hypervolume (a) and the median hy-
pervolume improvment (b) over generations for all experiments.
Translucent areas show the respective 95 % confidence intervals

which stops an algorithm if there is no significant change for 25 consecutive
generations or after 200 generations at the latest. Since the knowledge extraction
in the previous section revealed that the travel time variability is not useful in an
everyday routing use case, we omit the second objective from the optimisation
in the innovized MOEA and from any hypervolume computations. The original
MOEA still uses travel time variability in its fitness function but we compute
the set of non-dominated solutions before any hypervolume calculations after
leaving out the second objective.
First, we compare the efficiency of both algorithms. For this, we only evaluate
hypervolumes up to the 26th generation because that is the maximum number
of generations computed for all runs. We can see the development of the
median hypervolumes over generations for all experiments for both algorithms
in Figure 6.10a. Figure 6.10b shows the evolution of the median hypervolume
improvement. We compute the hypervolume improvement as the difference
in hypervolume from the original MOEA to the innovized MOEA for each
experiment in every generation. As we can see in these figures, the innovized
MOEA starts with significantly higher hypervolumes in comparison to the
original MOEA. A median hypervolume improvement of about 0.11 after the
first generation implies a positive effect of the new initialisation. Afterwards,
the median hypervolume of the innovized MOEA increases until about the
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(a) Hypervolumes of final results (b) Total function evaluations

Figure 6.11.: Normalised hypervolumes of final results per algorithm (a) and
total number of function evaluations needed to achieve the final
results (b)

10th generation. The median hypervolume of the original MOEA converges
towards the median hypervolume of the innovized MOEA. After 19 generations,
the median hypervolume improvement stagnates at 0.0 for a few generations.
After the 26th generation, the median hypervolume improvement is 0.0 which
means that, according to our definition, the efficiency of both algorithms is
the same. The median hypervolume improvement then worsens and before it
increases again. However, this gradient is questionable since experiment runs
finish after different generations. This is due to our stopping criteria which
allow earlier termination based on changes of multiple indicators. Therefore,
we compare the final results from all runs instead.
Figure 6.11 shows the normalised hypervolumes of the final results and the total
number of function evaluations needed per algorithm. In Figure 6.11a, we can
see that hypervolumes of final results are better when using the original MOEA.
The median hypervolume of the original MOEA is around 0.81 while the one for
the innovized MOEA is worse at 0.69. Both algorithms also produce extremely
low hypervolumes. When both algorithms return only a single optimal solution,
the hypervolume improvement is 0.0. A two-tailed Mann-Whitney U test with
significance level of 0.01 results in a p-value of 0.0002, indicating that the
difference in hypervolume is significant. However, if we compare hypervolumes
for each experiment separately, the difference between both algorithms is smaller
with a median hypervolume improvement of only about -0.01. This means that
although the difference in hypervolumes is significant, the quality of final results
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per routing problem is not substantially worse.
Remarkably, Figure 6.11b demonstrates that the number of total functions
evaluations for runs of the innovized MOEA is much lower than that of the
original MOEA. Median total function evaluations of 5,909 for the innovized
MOEA are only 38.6 % of the median from the original MOEA at 15,300.
Likewise, when comparing the sum of total evaluations for all experiments,
the innovized MOEA with 643,239 evaluations needs only about a third of the
original MOEA with 1,801,385 evaluations.
To see what results we would get if we did not exclude the second objective, we
run our RQ3 experiments on a third variant which is the same as the original
MOEA except for the innovized generation of the initial population. For this
version, the median hypervolume improvement in comparison to the original
MOEA is 0.0002. The total number of function evaluations is 1, 926, 124 which
is slightly higher than those for the original MOEA.
In conclusion, we have seen that an improvement of the original MOEA can be
achieved with the innovized principles. While the efficiency remains the same,
the final results are not substantially worse and the innovized MOEA requires
only approximately a third of the function evaluations. That means a similar
quality of solutions can be produced with far less computational effort. This is
particularly valuable for route planning problems where many optimisations
run, for example, on mobile devices that typically have limited computational
resources. Alternatively, a better quality of final results can be achieved when
using a variant of the original MOEA with only the innovized initialisation
of populations. However, this results in a slightly higher number of function
evaluations. Furthermore, a positive effect of our innovized initialisation has
been observed in form of better hypervolumes for earlier generations. Future
work could improve operators and exploration mechanisms of the MOEAs to
make better use of the advantage created by the innovized initialisation.

6.4. Discussion

In this chapter, we successfully extracted knowledge from route planning prob-
lems using our proposed innovization for route planning. Moreover, the extracted
knowledge helped us improve our original MOEA by reducing the computational
effort. Since we set hyperparameters of the MOEAs to values that proved to be
reasonable during exemplary test, it could be argued that an algorithm improve-
ment could also be attained by a hyperparameter optimisation. Nevertheless,
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this would improve both algorithms which would result in a level playing field
again. However, performing the hyperparameter optimisation before applying
our innovization variant, may improve the results from the multi-objective
optimisation step. In spite of this, we argue that this does not change the
end results of our innovization significantly because any shortcomings in the
first, multi-objective step are compensated by the improvements from single-
objective optimisations and PMM-LS. For example, better solutions from the
first step might only mean that we discover fewer new extreme solutions during
the single-objective runs or that the PMM-LS needs fewer iterations. Since
hyperparameter optimisations themselves are time-consuming, we recommend
doing a hyperparameter optimisation to speed up the process if innovization
for route planning is frequently used or if the employed MOEA is intended to
be reused.
Another point of discussion is the travel time variability. One of our innovized
principles excludes this objective since its values are negligibly small. However,
we hypothesise that this is not due to the design of the objective but rather
due to the nature of the dataset used. The Uber Movement Speeds dataset
only contains a relatively small subset of recorded speeds from all edges at
all hours on every day of the week. That is why we averaged speeds during
the week and on weekends, and interpolated the data for any missing edges or
times. Because of this, peaks in the data are levelled out and edges with high
travel time variability are already avoided due to high travel times. We still
believe that the travel time variability objective is useful in combination with a
more detailed dataset or a sophisticated travel time prediction model. This may
be especially true for certain use cases such as for emergency services. Even
the small values we deem negligible for everyday drivers could make a crucial
difference when emergency vehicles are trying to reach their destination.
Leaving out the second objective moreover leads to problems with the compara-
bility of the original and the innovized MOEA. We exclude the second objective
from all hypervolume calculations, even though the function values for the
second objective could be computed after running the innovized MOEA. When
including the second objective in the hypervolume computation, there are some
cases where the original MOEA has a significantly better hypervolume due to a
better diversity in its front. However, the solutions, that lead to the significantly
better diversity in these cases, are also the solutions that are dominated when
excluding the second objective. As we have already mentioned, these additional
options are more of a hindrance than a help to decision makers because they
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only have a slightly better travel time variability but are worse for all other
objective functions. This is why we believe that omitting the second objective
from hypervolume computations is more reasonable. Nevertheless, a different
dataset might make the travel time variability a useful objective so that it
would make sense to include it in calculations, or innovized principles would
not exclude it in the first place.
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In this thesis, we presented innovization for route planning which is an adapted
version of the original innovization. To this end, we introduced PMM-LS, a
local search method for routing problems. This novel search method systemati-
cally explores the neighbourhoods of routes by generating alternative routes.
PMM-LS was able to achieve a median normalised hypervolume improvement
of 0.018 in our experiments. Additionally, we designed a routing MOEA and
described a detailed analysis step.
Using innovization for route planning, we successfully extracted four innovized
principles from time-dependent route planning problems. One of the major
discoveries was that Pareto-optimal routes can typically be separated into two
groups. The first group consists of routes that are close to the linear path from
start to end point. These solutions usually exhibit lower travel times but higher
degrees of turning. The second group is a set of longer routes that take faster
roads and that have higher travel times but lower degrees of turning. This
knowledge was used to update the generation of the initial population. The
other main finding was that the travel time variability objective can be omitted.
The reason for this is that the differences in travel time variability between
solutions are insignificant for decision makers. We suspect that the overall small
values are due to limitations of the chosen dataset. In future, the impact of the
travel time variability objective should be re-evaluated on a dataset that has
sufficient speed data for a road network graph.
Lastly, we have shown that we are able to improve a MOEA using extracted
knowledge. While the efficiency remained the same in our experiments, the
quality of the final results was not substantially worse and we managed to dras-
tically decrease the number of necessary function evaluations to one third. That
means similar quality solutions can be produced with far less computational
effort using the knowledge extracted with our innovization for route planning.
This is particularly valuable for applications, where limited computational re-
sources are available, such as mobile devices which are often utilised for routing.
Additionally, we demonstrated that choosing between computational effort and
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quality of final results is possible by using only the innovized generation of the
initial population.
In conclusion, our primary contribution is the development of an innovization
for route planning and PMM-LS. Outside of academic research, our proposed
methodology can be used to improve drivers’ quality of life by being able to offer
more personalisation and decision support with faster multi-objective routing
algorithms. Moreover, the reuse of knowledge increases the sustainability of
algorithms.
One limitation of innovization for route planning is its computation speed.
Especially PMM-LS is slow. However, a trade-off between computation time
and completeness of search is possible via the step and window size parameters.
Generally, the slow computation times are not a drawback since innovizations
are intended to be used only once for knowledge extraction. Nevertheless, fu-
ture work could speed up the innovization process by parallelising some steps
or by employing a heuristic for setting problem-specific ε-values for OPTICS.
Moreover, only applying PMM-LS to a few well-distributed solutions as in the
original innovization is possible. Additionally, PMM-LS might be further im-
proved by other search strategies such as an integration into VNS. A verification
method for the Pareto-optimality of solutions, that can handle route planning
problems, would also be a beneficial extension. The data analysis step could
be improved by analysing more route characteristics such as road width or the
usage of one-way streets. In general, using innovization for route planning with
other datasets or for differently defined route or path planning problems are
interesting future research opportunities. Furthermore, automating knowledge
extraction, as it has been done in related work, is a possible research area of
the proposed approach.
In case our MOEA is intended to be reused for routing optimisations, im-
provements should be made to make use of the advantage from the innovized
generation of the initial population. We recommend changing operators or
exploration mechanics, or executing a hyperparameter optimisation.
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A. Problem definitions of RQ2
experiments

Experiments with medium-length routes include all route planning
problems

{(
{ttravel, ttv, deg turn}, G, nO, nD, 0, t0

)
| nO, nD as in Table A.1;

∀ t0 ∈ {4, 16, 20}
}
and

{(
{ttravel, ttv, deg turn}, G, nO, nD, 1, 20

)
| nO, nD as in

Table A.1
}
.

route number index of start node nO index of end node nD

R1 26784424 21487259

R2 26953628 2769140801

R3 29207861 260053605

R4 28794056 1544797640

R5 2796846632 8894045297

R6 28096041 581883334

R7 26869273 61771109

R8 27543579 351868926

R9 26913884 2612436579

R10 31032157 28096372

Table A.1.: Route numbering and OSM start and end node indices for medium-
length routes

Experiments with short and long routes are comprised of all route
planning problems

{(
{ttravel, ttv, deg turn}, G, nO, nD, 0, 20

)
| nO, nD as in

Table A.2 and A.3
}
.
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route
number

index of start
node nO

index of end
node nD

points of interest

R1 1447899974 27011222 Reichstag to Victory Column

R2 1447899974 283039346 Reichstag to Gendarmenmarkt

R3 3463621770 27011222 Brandenburg Gate to Victory Column

R4 25663420 27011222 Checkpoint Charlie to Victory Column

R5 863119413 3463621770 Berlin TV Tower to Brandenburg Gate

R6 25663420 262479941 Checkpoint Charlie to Museum Island

R7 283039346 27011222 Gendarmenmarkt to Victory Column

R8 26763015 29063088 Kaiser Wilhelm Memorial Church to
Holocaust Memorial

R9 295600226 863119413 East Side Gallery to Berlin TV Tower

R10 25663420 295600226 Checkpoint Charlie to East Side
Gallery

Table A.2.: Route numbering and OSM start and end node indices for short
routes. Origins and destinations are based on points of interest in
Berlin

route number index of start node nO index of end node nD

R1 27785303 625736296

R2 1828366924 9169023886

R3 26750963 20246171

R4 2296386929 4839921236

R5 3015494652 281814186

R6 27197252 26960746

R7 28253030 1410036225

R8 29269508 29318894

R9 244430254 27409724

R10 26984400 29276213

Table A.3.: Route numbering and OSM start and end node indices for long
routes
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B. Problem definitions of RQ3
experiments

RQ3 experiments consist of all route planning problems{(
{ttravel, ttv, deg turn}, G, nO, nD, w0, t0

)
| nO, nD, w0, t0 as in Table B.1

}
.

route
number

index of start
node nO

index of end
node nD

weekday w0 departure
time t0

1 26765651 773318474 1 13:39:52
2 338795310 270737259 0 18:30:21
3 29063088 29785881 1 05:41:10
4 28300064 21432815 0 15:47:17
5 3131745415 26748231 0 21:33:08
6 394582779 3015494652 1 15:59:03
7 28252568 761343334 1 01:25:16
8 29276959 10073921795 0 07:09:59
9 26758719 26916065 1 05:21:59
10 26726690 26745948 1 10:57:30
11 26881976 1411289036 0 03:51:27
12 442032872 26807748 0 06:15:14
13 299937279 4505398576 0 05:06:22
14 29063251 28300100 0 02:11:35
15 1675108861 1599974865 0 22:08:11
16 26751311 7217029008 0 00:18:26
17 260053613 26738414 0 06:21:53
18 271030233 760570150 1 09:40:16
19 601409797 26646273 1 09:18:54
20 26763057 29788864 1 12:31:01
21 26822979 304510227 0 08:50:44
22 305244365 2928629712 1 23:37:46

Continued on next page
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route
number

index of start
node nO

index of end
node nD

weekday w0 departure
time t0

23 26731247 26969265 0 11:48:12
24 27555119 10554821413 0 01:03:36
25 575727837 28253982 1 06:01:56
26 20246267 10648314047 0 16:11:51
27 26866793 29266243 1 00:13:47
28 697441444 38457826 1 20:50:23
29 2959830776 26704108 0 09:40:03
30 27540223 224023546 1 04:58:05
31 28254057 29271700 0 17:21:12
32 29785483 295706299 0 17:37:00
33 604944182 27484580 1 16:46:20
34 271739554 26704450 0 08:37:38
35 27785489 1864428537 0 17:41:30
36 27540475 29785878 1 22:09:04
37 26745596 26734234 1 13:50:02
38 27785150 26731180 1 14:55:33
39 26761234 1837610629 1 17:59:07
40 268523016 26751256 1 22:49:19
41 26704087 26960767 1 12:24:06
42 87828184 26754191 0 07:49:33
43 28252019 26908826 1 18:44:01
44 26952874 283035794 1 01:25:34
45 270182847 508308244 0 00:02:41
46 7702993650 26726531 1 22:53:41
47 29221583 21487242 0 05:55:23
48 664798253 727333481 0 12:14:35
49 1837885779 26784982 1 17:39:25
50 9177686437 26785760 1 03:16:19
51 243993487 26682638 1 21:23:39
52 26740510 271400982 1 22:50:15
53 26682651 26757492 1 20:57:33
54 26752863 26750492 1 12:30:51
55 1835539162 26952905 0 04:19:38
56 28097275 27787547 0 20:18:23

Continued on next page
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route
number

index of start
node nO

index of end
node nD

weekday w0 departure
time t0

57 29804217 10554290231 1 13:30:53
58 29985590 1711812125 0 05:30:55
59 27186878 28794519 1 05:31:31
60 21677321 271649075 1 12:45:07
61 26749751 637672657 0 12:46:39
62 26980893 29221506 1 17:07:05
63 28302186 678901775 0 13:27:38
64 1935829068 29208253 0 19:23:53
65 26868108 29269506 1 01:20:25
66 1893660715 309345035 1 03:42:36
67 300128994 28252304 1 17:11:32
68 26750963 274977646 0 03:08:39
69 29790216 26747878 0 03:58:52
70 25663498 26749747 1 13:34:28
71 27432786 26731182 0 07:32:48
72 263703832 95728073 1 05:45:38
73 6206501300 31372375 1 11:27:10
74 31259202 697323164 0 13:51:26
75 26852202 26708477 1 18:21:09
76 31357356 26726686 0 20:14:43
77 805463430 26727583 0 09:23:54
78 3336091663 349904567 0 05:42:15
79 218739803 2212847786 1 15:41:39
80 26765068 26785770 1 13:54:59
81 2476048346 272438052 1 05:50:08
82 1666487146 26822448 1 08:33:56
83 58571017 4377815950 0 11:09:33
84 26735641 4348866539 1 09:42:36
85 27541390 359390910 0 21:57:55
86 29276014 27005148 0 10:55:44
87 31259202 28302080 0 19:05:18
88 27541390 26876583 0 04:03:32
89 34812302 287650997 0 12:53:23
90 26785772 564640084 1 16:47:42

Continued on next page
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route
number

index of start
node nO

index of end
node nD

weekday w0 departure
time t0

91 29421278 26871569 1 23:01:58
92 303069220 27008019 0 08:31:44
93 324368407 416010793 0 21:16:43
94 34812302 1837885734 1 04:11:26
95 388557132 29326011 0 10:37:48
96 5450916417 10002955547 1 16:37:40
97 26731303 27011994 1 16:33:28
98 8874096289 3168358968 1 00:39:38
99 415919772 26852187 0 01:03:07
100 205312472 26731270 1 09:38:19

Table B.1.: Parameters of route planning problems for RQ3 experiments
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