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This thesis presents the Energy Aware PSO (EAPSO) as a search mechanism
for aerial micro-robots with limited energy capacity. The proposed model is
an extension of the search concept of Particle Swarm Optimization (PSO)
that additionally considers the energy levels of the individuals for an efficient
movement. One major contribution of this thesis is that the energy efficiency
results from a multi-criteria decision making process performed by the indi-
viduals. The energy consumption model in EAPSO is adapted from a real
hardware scenario and has been tested on three known landscapes which are
very similar to search terrains by the aerial micro-robots. The results show that
EAPSO can reduce the total energy consumption of the swarm with negligible
degradation of the search results.

The proposed approach works as follows: each individual has the ability to
choose between different actions (start, land and fly) and neighborhood sizes.
The neighborhood includes the other individuals in the swarm. We use the
neighborhood to select the global best individual for the PSO formula. With
this process, each individual has the ability to decide between different flights.
The decision is made based on two objectives, profit in terms of the overall
gain in search process and cost in terms of the energy consumption. The values
are weighted by the risk value of the individual.
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1 Introduction

Swarm Robotics (SR) has been the subject of research for almost over a
decade. The major properties concern a large number of simple robotic sys-
tems and simple rules. The swarm is supposed to collectively learn a pre-
defined given task |[Trianni, 2008]. One important challenge in micro-robotic
systems is managing the energy resources, which is a crucial aspect in ac-
complishing a task by such autonomous systems |O’Hara et al., 2006]. This
is notably evident with small aerial robots, which have severely limited bat-
tery of typically 10 to 15 minutes [Roberts et al., 2008, Valenti et al., 2007].
Different to ground robots, aerial robots have significantly different energy dy-
namics, require substantially more energy to locomote [Roberts et al., 2008,
Stirling and Floreano, 2013|, and the small payload entails reduced sensing
and processing capabilities.

The proposed method introduces a new PSO-based search mechanism called
Energy Aware PSO (EAPSO) which additionally considers the amount of en-
ergy consumption for each individual. In contrast to the standard PSO, the
individuals estimate the amount of required energy for moving to the next
position and decide about the movement by considering the trade-off between
profit and energy consumption. The thesis presents various models for multi-
criteria decision making and the experiments and comparisons illustrate that
with EAPSO the individuals are able to save a large amount of energy with-
out degrading the quality of search. EAPSO is modeled based on energy
consumption of a real hardware scenario. However, the presented work in this
thesis only considers the search mechanism and has met several assumptions.
Decision making in the swarms has been studied in other contexts presented
by [Valentini et al., 2015, Wahby et al., 2015] in which the authors investigate
different robot controllers for collective decision-making in the context of the
speed-versus-accuracy trade-off. The proposed approach in this thesis is dif-
ferent from collective decision making in swarms as we let the swarm members
decide on their own by considering the local information.




1.1 State of the Art

Dealing with limited energy levels has been addressed in the literature, for
instance, an algorithm for indoor aerial swarm search that exploits the abil-
ity of flying robots to attach to ceilings and saves energy was developed
by [Roberts et al., 2008] and [Stirling et al., 2010]. A novel strategy was
studied by [Stirling and Floreano, 2013] which controls the density of fly-
ing robots. They illustrate an efficient way of reducing swarm energy costs
while maintaining a rapid search. Other approaches consider Underwater
robots [Amory et al., 2014] saving energy by staying on the surface or forming
a V-formation [Amory et al., 2013]. These works are among the first pub-
lications addressing the trade-off. Time and energy were previously either
examined independently, or only with multi-objective functions that mask
trends in the individual metrics. Prior work also usually neglected the energy
consumption of sensors and processors [Mei et al., 2005]. In many scenarios
a rapid deployment is desired. However, time and energy are not indepen-
dent, and often there is a trade-off as indicated by [Moscibroda et al., 2006,
Hayes, 2002, Mei et al., 2006]. An additional aspect in swarm robotics is con-
trolling deployment into unknown environments. If robots deploy to unnec-
essary locations, energy is wasted. Conversely, if an area receives insufficient
robots the task may be unachievable or the performance is reduced. Neverthe-
less, a crucial feature is the autonomy of robotic systems, i.e., the individual
robots need to be able to make decisions on their own by considering own
and the performance of the other swarm members. Another challenge is the
charging of the aerial robots. For this, [Mulgaonkar and Kumar, 2014] intro-
duces a system of autonomous charging stations for a team of Micro Aerial
Vehicles (MAVs). The presented MAVs are able to recharge their on-board
batteries without any human intervention. An extension of this approach
is to work with unmanned ground vehicles (UGVs) as mobile charging sta-
tions [Mulgaonkar and Kumar, 2014, Michael et al., 2012].

1.2 Research Goals and Specific Objectives

The main goal of this thesis is to propose a new model for a search mechanism
in a swarm of small flying robots (aerial micro-robots) which is based on Par-
ticle Swarm Optimization method. The major achievements of this thesis can




be summarized as follows:

To use the standard PSO method as a search mechanism for aerial micro-
robots, a model of the robots is required. This includes the modeling of the
movements, as well as the mapping of the movement in discrete time steps.
Therefore, the first objective is to build a movement model, with different
actions like fly, start, and land, for the individuals.

Objective 1: Modeling a general movement behavior for

the individuals in a swarm

In order to analyze the energy consumption of different methods, we need
a model that describes the needed energy of the copter for different actions.
Therefore, the second objective is to provide a model of energy consumption
for the copters, based on our micro aerial robot FINken-III.

Objective 2: Building a simplified model of energy con-

sumption for the individuals, based on FINken-III

For an energy efficient optimization, it is necessary to integrate the energy into
the standard PSO method. To achieve this, the third objective deals with the
integration of the energy efficient decision making process into the conventional
PSO method. The goal is, to present an algorithm, such that the individuals
are able to save energy without degrading the quality of search.

Objective 3: PSO-based search mechanism which considers

the amount of energy consumption for each individual

The fourth objective of this thesis concerns the implementation of the EAPSO
approach. The implementation includes the movement model, the simplified
model of energy consumption and the EAPSO model.

Objective 4: Implementation of the Energy Aware PSO
approach for evaluation and future projects




The last objective cares about the evaluation of the various models for multi-
criteria decision making. The aim is to show, whether the methods work and
which properties they have.

Objective 5: Evaluation of different EAPSO methods, to
show whether the methods work out as desired

1.3 Document Organization

This thesis is organized as follows. Chapter 2 reviews the basic concepts of Par-
ticle Swarm Optimization (PSO) in Section 2.1, multi-criteria decision making
in Section 2.2 and provides a description of our micro aerial robot FINken-III
in Section 2.3. Afterwards, we introduce our model in Chapter 3. The struc-
ture is as follows. We show our movement model in Section 3.1, outline the
new discrete time flight concept in Section 3.2, and describe the neighborhood
topology in Section 3.3. Afterwards, we show the concept of the energy com-
putations for our FINken-III robots in Section 3.4. Next, we demonstrate our
new Energy Aware PSO method in Section 3.5, the selection and multi-criteria
decision making in Section 3.6, and the profit approximation in Section 3.7.
The implementation is shown in Chapter 4. Subsequently, Chapter 5 contains
the evaluation of the method. Section 5.1 describes the experiments and Sec-
tion 5.2 gives an explanation of the simulation environment. In Section 5.3, the
results of the individual methods is shown. Finally, the thesis is summarized
in Chapter 6 and an outlook is given.




2 Background

In this section, we describe the background about Particle Swarm Optimiza-
tion, multi-criteria decision making and our micro aerial robot FINken-III.
These three areas form the basis of our proposed model.

2.1 Particle Swarm Optimization (PSO)

Introduced by Kennedy and Eberhart 1995 [Kennedy and Eberhart, 1995], the
first approach was described as population-based stochastic search and opti-
mization process. In general, a swarm is defined as an apparently disorganized
collection of moving individuals that tend to cluster together. The movement
of a single individual, however, seems to be random. These behaviors can be
observed by bird flocks or fish schools, which are searching for some targets
(e.g., food). These kinds of swarms are self-organized and lead to the definition
of an intelligence swarm. With the definition of an intelligence swarm as “a
population of interacting individuals that optimizes a function or goal by collec-
tively adapting to the local and /or global environment” [Kiranyaz et al., 2014],
the functionality of PSO can be described.

The behavior of a single organism in a swarm is often insignificant,
but their collective and social behavior is of paramount importance.
[Kiranyaz et al., 2014, p. 45]

This statement reflects the idea of Particle Swarm Optimization. The PSO ap-
proach considers a swarm, consisting of moving individuals or particles. Each
particle has the goal to optimize the given cost-function. In the optimization
process itself, each particle is moving through the search space and the position
serves as input for the cost-function.

To reach the optimal solution, a swarm of N individuals in a n-dimensional
space is considered, defined by S [Kennedy and Eberhart, 2001]. Each indi-
vidual i has a position Z;(t) € S and a velocity v;(t) at time step ¢. The




individuals move in the search space by considering three factors: their own
velocity vector at ¢t — 1, their own best obtained position Py and the position
of the globally (or locally) best individual from the population Z,:

Ti(t + 1) = wi(t) + C161 (Prest — Ti(1)) + Cocpo(Zy — (1)) (2.1)

Where ¢ and ¢, are two random vectors € [0, 1]". C} and Cy are constants and
determine the attraction rates. The globally best individual Z, can be defined
using different communication topologies which is known to have a large impact
on the convergence rate of PSO [Engelbrecht, 2005|. As selecting the globally
best solution (leader) defines the amount of distance an individual might fly
(depending on the random value ¢,), the topology can implicitly influence the
energy consumption of the individuals. Ideally, the closer the globally best
solution is located, the less energy is required to reach that point.

2.2 Multi-Criteria Decision Making

Multi-criteria decision making methods usually involve several conflicting ob-
jective functions f;(¥) fori = 1,--- ,m and ¥ € S which have to be optimized
at the same time. The solution of multi-objective optimization problems is
usually a set of so called Pareto-optimal solutions from which the user has to
T

select one. A solution * is called Pareto-optimal for minimization problems,

if there is no other solution ' in the search space S so that:
Vi fz(f,) < fz(f*) and El] : fj<f/) < f](f*>

Accordingly, we can use the same definition to compare the solutions. In this
case, a solution #; dominates another solution #5 (denoted by ¥ < Zy), if:

Vi : fz(fl) < fl(.fl_ﬁ')g) and Elj : f]<fl) < f](fz)

The solutions which do not mutually dominate each other are called
non-dominated solutions. Selecting one of the Pareto-optimal (or non-
dominated) solutions depends on the preferences of the user and can vary
accordingly [Miettinen, 1999, Purshouse et al., 2014|.  Weighted sum ap-
proach [Marler and Arora, 2010, Grodzevich and Romanko, 2006] is known to
be the most straight forward mechanism to incorporate the preferences of the
user in a weight vector (wy,--- ,w,,) where Y ", w; = 1. Each w; indicates




the relative preference towards the objective function . Different vector values
lead to different selection preferences.

2.3 Micro Aerial Robot FINken-I11

In this Section we describe the underlying hardware platform FINken-IIT'.
Figure 2.1 shows the copter FINken-III with the current sensors. The copters
are developed to allow an autonomous behavior. A great attention is paid to
the independence of external sensors. The copters send all sensor data to a
ground station. This is only for monitoring. The copter can act without a
connection to the ground station. In addition, the copter can be tracked via
built-in LED and a camera system.

802.15.4 Autopilot Sonar Remote
Downlink Board Sensor Receiver

o

RGB LED IR Distance Speed
Sensor Controller

Figure 2.1: The components of a single FINken-III copter, described
by [Steup et al., 2016].

This type of quadcopters typically subject to some constraints, which are ex-
plained in the following. The design of the platform is a challenge for itself and
often discussed in literature [Bermes, 2010, Bouabdallah, 2007, Mettler, 2001,
Pines and Bohorquez, 2006, Kumar and Michael, 2012|. Due to the small con-
struction of our copters the load-capacity is limited. Thus, even restrictions
apply on power storage, sensor payload and the flight times. By virtue of

!The FINken platform is developed at the SwarmLab of the Otto von Guericke University
of Magdeburg, Germany (www.is.ovgu.de).




these limitations an energy-saving movement is even more important. In or-
der to ensure the independence of external devices and sensors, the copters
are equipped with multiple sensors. This includes four ultrasound distance
sensors and one IR-distance sensor. Using these sensors, it is possible to au-
tonomously hold the height and to recognize other copter or walls. Other
projects [Kushleyev et al., 2013] that want to optimize the weight and size of
the copters are dependent on external sensors.

The copter work with a customized version of the Paparazzi autopilot frame-
work [Hattenberger et al., 2014]. The programming has been adapted that
the copter can work without GPS. As a replacement, the distance and height
sensors described above are used.

To model a swarm behavior the copters use an almost linear at-
traction and non-linear repulsion potential function between each
other [Gazi and Passino, 2011]. The attraction and repulsion method is
described in detail in [Steup et al., 2016].

The current version of the quadcopters uses a Li-Po Battery (3 Cells, 900
mAh). This battery is removable and must be changed manually. The battery
allows a flight time of about 10 minutes.

For our proposed model an automatic loading would be desirable. There are
several possibilities. The first idea involves charging via solar cells. Here the
problem is again the weight. To guarantee a quick recharge, a lot of cells
need to be installed. In addition, one has to rely on a source of light. A
second possibility is described in [Mulgaonkar and Kumar, 2014]. Here the
quadcopters fly autonomously for charging at predetermined stations. Fur-
thermore, the possibility is introduced to transport the charging stations with
UGVs (cf. Figure 2.2). With a combination of fixed and mobile charging sta-
tions a large area, like an earthquake-damaged building [Michael et al., 2012],
can be explored.




Figure 2.2: The Pelican MAV being transported by the iRobot PackBot, de-
scribed by [Mulgaonkar and Kumar, 2014].




3 Proposed Model

Our new approach consists of several parts, that are explained in detail in
this chapter. The chapter is structured as follows. In Section 3.1, we describe
our movement model for the individuals with the different states and actions.
In order to employ PSO as a search mechanism for aerial micro-robots, we
need to extend the PSO by a new energy model and additionally address
the discrete time movements. For that, the discrete time flight concept is
described in Section 3.2. Section 3.3 describes the neighborhood topology for
the decision making process. Next, we describe the new simplified energy
consumption model, based on the FINken-III copter, in Section 3.4. The
model is developed for our FINken-III copter, but can easily be adapted to
other robots. In Section 3.5, we show the algorithm of our new Energy Aware
PSO approach and describe how the algorithm works. Afterwards, Section 3.6
describes the selection and multi-criteria decision making process, used in the
EAPSO approach. Finally, we show the profit approximation for the decision
making process in Section 3.7. The approximation is the main challenge in the
decision making process. For that, we discuss some challenges and problems
of the approximation method.

3.1 Movement Model

In order to better capture the main concept, we model the flight behavior of
the individuals using a simple finite state machine, as shown in Figure 3.1.

The individuals operate in two states: “Ground” or “Air”. In the Ground state,
the individuals can decide between two different actions. If an individual ¢
has enough energy e; (i.e., €; > €akeors), it can start and switch to the Air
state. In the case of low energy level (e; < €takeoss), the individual stays in
the Ground state. For simplicity, we assume that staying in Ground state

10



€; > Ctakeof f

€ < Ctakeoff @ € > Cakeoff

€ < Cland

Figure 3.1: Transition graph depicting the flight model for an individual ¢ de-
pending on its energy level e;

is coupled with charging. This is a very strong assumption which cannot be
easily implemented in real-scenarios.

In the Air state the individuals either change state and go to Ground state
if ; < ejna or they move (fly) towards a certain direction. In fact the di-
rection towards which the individuals move has a great impact on the energy
consumption of the individuals. In this case, the individuals need to decide on
the distance they will move in the next iteration.

3.2 Discrete Time Flight

Even though the real-world is continuous in time, robotic systems work in a
time-discrete way. They follow a strict input, compute, output scheme with
a fixed time interval. In the case of real aerial micro-robots (quadcopters),
different functional blocks have different time intervals. Our reference copters
“FINken-III" [Steup et al., 2016] for example stabilize their attitude approxi-
mately 100 times per second, but they only decide about the next movement
command approximately 10 times per second. Consequently, our simulation
follows the time-discrete approach and models the micro-robots to only take
decisions in certain time intervals. Each time interval is a snapshot of the
system on which the next decisions will be taken. To generalize the simulation
we abstracted away the time interval and simply count the amount of deci-
sions taken, which also yields a monotonic increasing time measurement. This
allows for an easier comparison with PSO Equations (2.1) and (2.2), since the
equations are measured regarding the number of iterations passed. Therefore,
we call our time interval count iterations.

11



3.3 Neighborhood Topology

In the following, we introduce the neighborhood topology for the individual.
The neighborhood topology is required for the decision making process. The
neighborhood includes the individuals who are necessary for the selection of
the global best individual in the PSO formula. In the following, we take the
“k-Nearest-Neighbor” neighborhood topology, where £k = N — 1 refers to the
fully connected network. In the experiments, the size k will be analyzed. An
individual with a “k-Nearest-Neighbor” neighborhood communicates with his &
nearest neighbors. It follows that each individual can only receive information
from his neighborhood, e.g. the global best position or previously visited
positions and the associated function values.

Choosing the size of the neighborhood depends on the risk value, described in
Section 3.6. Also, the exchange of already known points in the landscape de-
pends on the size of the neighborhood as described in 3.7. Other neighborhood
topologies are also possible, but they are not examined in this thesis.

3.4 Energy Computations

In the following, we introduce a simplified model of energy consumption for the
individuals which is modeled based on a real scenario from [Steup et al., 2016].
The energy of an individual is defined in units per iteration. In each iteration,
each individual can use at most one energy unit. Based on this energy unit
several constants are defined, which represent the energy consumption of dif-
ferent actions the aerial robot can execute, such as: take off, hover, control,
move, and land. Each constant is defined as a fraction of an energy unit. The
resulting constants are €sakeoff; Chovers Ccontrols Cmoves Clands aNd €charge-

Ctakeoff aNd €14nq Tequire a relatively fixed amount of energy and can be calcu-
lated by considering the required energy related to the potential energy:

Et=m-g-h (3.1)

where the mass (m), the gravitation (¢) and the target height h are considered
to be constant as we let the aerial robots move at the same height (either the
target height while flying or zero when landed). Therefore, we can conclude
that eiareors = Epor and €jang = — Epor-

12



€control iNdicates the amount of energy which is required for computations and
communication and can be estimated to be a constant value per iteration for
computation.

The main sources of energy consumption which can be additionally influenced
by the individual itself, are the epoper and €,,00e- The more time an individual
spends in the hovering state, it will consume more energy. This also holds
for the flight distance and its corresponding energy consumption denoted by

emove .

In order to keep the model as simple as possible, we have met the following as-
sumptions. In our model, we set a maximum distance that each individual can
move in one iteration. All robots fly at the same height, have identical weight
and move in constant time steps. To calculate a simplified movement cost, the
flight has an acceleration and a deceleration phase. With these assumptions,
the cost for “move” depends on the flight distance which is calculated using
the Euclidean distance values. The individuals can recharge their batteries
while in Ground state. The charging rate ecpqrge is defined in percentage of
the energy unit.

3.5 Energy Aware PSO

Algorithm 1 illustrates the main building blocks of our proposed approach
called Energy Aware PSO. In this algorithm, we consider the flight physics
in the PSO computations. The goal is to define a population of individuals,
which search for an optimal solution in a defined search space. The individuals
have physical constraints in terms of their energy values. In this algorithm,
the individuals can decide about the amount of their movement in the search
space based on both their current energy level and the performance of the
other individuals in their neighborhood.

The algorithm starts with initialization of the individuals at ¢ = 0 using certain

start positions x;(t), initial velocity values 7;(t) and certain energy level e;(t)
for individual <.

After the initialization, the individuals make a decision about their functional-
ity and select a state either as “Air” or “Ground”. The function “DecideState”
considers the amount of the energy e;(t) available to individual i and in case

13



Algorithm 1: Energy-aware PSO
Input : N Individuals

t+ 0

Initialize the individuals
fori=1to N do

Z;(t) < StartPosition(5)

U;(t) < 0

ei(t) < Random(éin, €maz)

end

while Stopping Criterion not fulfilled do

fori=1to N do

state;(t) < DecideState(Z;(t), e;(t))

if state;(t) = Ground then

‘ charge: e;(t) < e;(t) + ¢

end

else
Z4(t) < LeaderSelection(state;(t), e;(t))
U;(t + 1) <= ComputeVelocity (Z;(t), Z4(t))
Z;(t + 1) < UpdatePosition(v;(t), Z;(t))
e;i(t + 1) < ComputeEnergy(v;(t + 1))

end

end
t+—t+1
end

there is a certain minimum value of e,,;,, the individual takes off. Otherwise,
the individual’s state (state;(t)) remains in “Ground” and gets charged. Here
we take a simple additive recharging mechanism with a constant value c.

In the case that the individual takes off, it needs to find the globally best
individual (denoted at the “LeaderSelection”) to be able to perform the PSO
movement. However, this depends on the amount of available energy e;(1).
The individuals with enough energy values can perform as in the standard
PSO, while the others with low energy values can only perform a local search.
This decision has a large impact on the convergence of the approach and will
be studied in Section 3.6. The next steps after the leader selection mechanism
are straight forward. Each individual computes its velocity vector and moves
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accordingly using the PSO equations. In addition to this, if the calculated
velocity is less than a certain minimum threshold, e.g. if the individual is
stuck in a local optima, we use the so called turbulence factor: those individuals
take a randomly generated velocity vector. Additionally, we assign a maximal
velocity value V4. as a threshold and in case the velocity vector is larger
than V.2, it will set to V},... After each movement, the individuals compute
their energy consumption in “ComputeEnergy”. This process is performed
iteratively until a stopping criterion is fulfilled. We set the maximum number
of iterations (time) as the stopping criterion.

3.6 Selection and Multi-Criteria Decision
Making

Leader selection mechanism (cf. Algorithm 1) contains the multi-criteria de-
cision making process for each individual in the population. An individual ¢
must select a leader according to several factors such as its energy level e;,
the amount of overall work to be done and the status of the other individuals
in the neighborhood. The main steps for selecting the leaders are shown in
Algorithm 2.

Algorithm 2: Leader Selection for individual :
Input : state;(t) and e;(t)
Output : Global best position Z,(¢)
if state;(t) = Air then
for k = 1 to N-1 do
Z%(t) « FindBest (k)
Cost (k) := ComputeCost(Z%(t))
Profit(k) := ComputeProfit(Z}(t))
end
x4(t) < MCDM(Profit, Cost, €;(t))
end

The individual 7 goes through the multi-criteria decision making for leader
selection mechanism only when it is in the “Air” state. The first step is to
find the globally best solutions for several neighborhood topologies with k£ =
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1,---, N — 1 using the “k-Nearest-Neighbor”. In this case, we can have N — 1
different possible globally best solutions: x(t) to z~'(t). The individual
computes (simulates) cf. 3.7 its next position Z;(t + 1) by considering each
of the possible N — 1 globally best solutions. In order to select one of them,
it computes the “cost” and “profit” in terms of energy consumption for each
of the possible next positions. Cost simply captures the amount of required

energy to reach Z;(t + 1).

Profit means the difference between the quality of the current position f(Z;(t))
and the next one f(Z;(t + 1)). This value must be approximated as the PSO
equations involve several random values such as ¢; and ¢9 and the quality of
the position for ¢ + 1 is not known. Section 3.7 describes the approximation.

The values related to cost and profit are in conflict with each other; the solu-
tions with high profit can cause a large energy consumption. In this case, the
individual must select one of the N —1, x’; (t),k=1,---,N—1, using concepts
from multi-criteria decision making (denoted as “MCDM (profit, cost, e;(t))”
in the Algorithm 2).

In this thesis, we take the weighted sum approach from Chapter 2. Each
individual 7 is assigned a weight vector for the two criteria “profit” and “cost™
w; = (r;,1 —r;), where r; indicates the amount of risk in terms of energy
consumption an individual would spend to achieve a large profit. For instance,
w; = (1,0) depicts the preference to select a new possible position which
delivers a large amount of profit and requires a large amount of energy. The
values for r; can be selected using different mechanisms:

1. Randomly: Each of the individuals in the population has a random pref-
erence.

2. Constant: All the individuals have the same value such as (0.5, 0.5), (1,
0) and (0, 1).

3. Adaptive: The individuals select their preferences based on the amount
of available energy.

After setting the preferences for the individuals, each individual ranks each of
the possible N — 1 new positions at ¢ + 1 according to its weight vector as
follows:

Rank(k) = r;-profit(k) + (1 —r;) - cost(k) (3.2)
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Where k =1,--- , N —1. The position with the lowest rank will be selected as
the Z,(t) by the individual. In this case, the profit is a negative value, because
we modeled the optimization as minimization problem.

The above multi-criteria decision making approach for each single individual
implicitly implies that the individuals with low values of risk (e.g., r; = 0) will
perform small movements in the search space and hence a local search. On the
other hand, the individuals with r; = 1 select the leaders which are far away
from them and require a large amount of energy. Considering the amount of
profit in the decision making process implicitly involve the status of the other
individuals in the neighborhood. If all of the individuals in a neighborhood
have more or less the same function value, the amount of profit will degrade.

3.7 Profit Approximation

In this section, we describe the approximation of the profit by the individuals.
As described in the last section, each individual simulates the next N — 1
possible steps in order to make a decision. The output of this process is a set
of parameters. This set contains the next state of the individual, the action
performed by the individual, the cost for moving, the velocity vector and the
profit of the movement. Since we deal with an unknown environment, the
function value of a none visited position is not known. Therefore, the function
value of the possible next positions must be approximated. Here, we use the
information given by the neighborhood around each individual who is able
to access the previously visited points and corresponding function values of
all individuals in its neighborhood. With this information, the individual is
able to approximate the unknown landscape and can calculate the function
value of the simulated goal. For the approximation, we use ordinary least-
squares regression [Moutinho and Hutcheson, 2011| to fit a quadratic model
with constant, linear, interaction, and squared terms. In order to save memory
and improve the approximation, each individual collects points with a distance
greater than a certain threshold (here 0.1) in the neighborhood.

Challenges and Problems

In this section, we describe the challenges and problems of the approximation
method in more detail.
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The main challenge of the approximation is that we only know already visited
points and not the entire landscape. A second challenge is that in most of the
cases the individuals just fly a short distance and the information gain of the
new point is very low. The third challenge is the size of the approximation.
If we approximate the entire landscape, we consume unnecessary resources
like energy and computation time. As well, the approximation of the entire
landscape with only limited given points is not sufficient.

Figure 3.2 shows the approximation of the Rosenbrock function after 500 iter-
ations for one individual (as full landscape approximation). One can see that
the Rosenbrock function is not completely approximated. This is due to the
fact that a large part of the landscape is not known after the 500 iterations.
Therefore, only a small part of the landscape is known. The approximation
from Figure 3.2 represents the valley of the function.
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Figure 3.2: Approximation of Rosenbrock function after 500 iterations with
entire landscape

Figure 3.3 shows a close up view from Figure 3.2. Here it becomes clear how
much the approximation deviates from the given points. The known points
are all close to zero. The approximated surface is near —2-10* and thus shows
a significant deviation. With the poorly distributed given points it is difficult,
with a fairly simple method, to approximate the landscape.

To avoid the problems, we use some techniques, we describe in the following.
As describes in Section 3.7, we only add points with distance greater than 0.1
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Figure 3.3: Clipping of Rosenbrock approximation (Figure 3.2)

to the existing ones. This saves memory, speeds up the calculation and im-
proves the approximation. As second improvement, we only use the k nearest
neighbors of the point we want to estimate. The approximation of the neigh-
borhood is faster and more precise. Test shows that & = 20 gives the best
results for all functions. Another reason why we use the neighborhood approx-
imation is, each individual can only move a limited distance per iteration, so
the hole landscape is not important for the decision making. The results show
that the neighborhood approximation is better than the approximation of the
hole landscape.

Figure 3.4 shows the average error of the approximation per iteration for the
three functions. The plot shows 30 runs of our adaptive EAPSO method. The
peaks in the curves are caused by the collective fly and load behavior of the
individuals. The approximation error plot for the Sphere function displays up
to iteration 200 an error. The error disappears when the minimum is reached.
In the beginning, only a part of the function is known, and this is approximated
as a surface. The first peak is caused by the lack of data points. In the first
iteration, the individual knows only his own position, so the corresponding
error is high.

The error plot for the Ackely function shows a periodically uniform approxima-
tion error. The error remains until the end. Here, the error can be explained
by the local optima. The method only approximates the local optima. Thus,
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an accurate calculation of profit is very difficult. The shown error is lower than
in the approximation of the whole landscape.

The Rosenbrock function shows the greatest approximation error. The rash at
the beginning can be explained by the small number of data points (similar to
the other functions) and the high starting positions of some individuals. The
error decreases when the valley is reached. After reaching the minimum, the
error is reduced even further.

All three functions show an approximation error, but the error is smaller than
using the approximation of the whole landscape. Only for the Sphere function,
the error drops to zero in the time of recharging. This is due to the landscape
of the functions. Individuals move uniformly, but not all at the same time. The
Sphere function is very simple, therefor, we can get a very uniform motion.
For functions with local optima, it is more difficult. No steady motion can
take place here. As a result, there are always individuals who move. Thus, the
approximation never drops to zero.
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4 Implementation

This chapter describes the implementation of the proposed EAPSO model
from Chapter 3. First, Section 4.1 describes the implementation of the swarm
component of the PSO algorithm and Section 4.2 the corresponding particle
or individual. In Section 4.3, we describe the implementation of the neighbor-
hood topology, introduced in Section 3.3. Afterwards, Section 4.4 shows the
implementation of the state (described in Section 3.1), Section 4.5 explains
the implementation of our simplified energy model (described in Section 3.4)
and Section 4.6 the selection and multi-criteria decision making process from
Section 3.6.

To make the implementation extensible and usable for future reference, an
object-oriented programming was chosen for the project. The project is im-

plemented in MATLAB. The used MATLAB version is R2016a. The code can
be downloaded from https://github.com/wittfabian?tab=repositories.

4.1 Swarm

As the central control unit operates the swarm class. In the class, the initial-
ization and the central control of the individuals is implemented. The most
important part at it is to control the optimization using the “optimize” method,
described in Algorithm 3. Here, the command of the optimization is forwarded
via the method “move” (cf. Algorithm 4) to the individuals. In addition, the
method stores all important information such as battery levels, positions, func-
tion values, the global best individual and the neighborhood topology of each
individual. The stopping criterion here can be either the number of iterations,
a minimum of the function value or a threshold of change in the function value.

For the optimization process, the “move” method delegates via “simulateMove”
and “move” the movement command to the individuals. This is recommended,
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Algorithm 3: Global optimization (swarm/optimize)

Input : Stopping Criterion

while Stopping Criterion not fulfilled do
move ()

saveEnergyLevels ()
saveFunctionValues ()
saveGlobalBestIndividual ()
saveNeighborhoodTopology ()

end

Algorithm 4: Delegation of the move command (swarm/move)

Input : N Individuals

for : = 1 to N do

‘ simulateMove (tndividual i)
end

for : = 1 to N do

‘ move (individual 1)

end

because first, all individuals have to simulate the move, including the decision
making process for the neighborhood topology. After that, they can execute
the move. Only with this order, we can simulate a parallel decision making
and movement process.

4.2 Particle

The particle class describes the individual with his properties like position,
function value, energy (as object, described in Section 4.5), neighborhood (as
object, described in Section 4.3), state (as object, described in Section 4.4),
risk value, landscape memory, option whether constant ¢; and ¢, is used or
not, option whether the turbulence factor is enabled and the task. The particle
class also contains the PSO values ¢1, ¢o, C1, Cs, w and the last velocity v;(t).

The task is implemented as a class and currently only includes the optimization
function. To facilitate the further work on the project and to allow multi task
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scenarios, the tasks functionality was implemented as class. The risk value
is dependent on the scenario, and either determined during the initialization
(random or pre-defined) or is dependent on the current energy. The option
whether ¢, and ¢, is constant or not affected the generation of ¢; and ¢,.
If the option is enabled, the PSO algorithm uses for each simulation in the
actual iteration the same ¢; and ¢,. Otherwise, the variables are generated
before each simulation is performed. In addition, the movement of the indi-
vidual is stored as a pair of position and functional value per iteration (named
movement _memory). Also, the deviation between the approximate function
value and the real function value is stored, to possibly serve for a learning
process (named save approximation _values).

To allow the individual to decide between different movements, we simulate
the PSO movement with different neighborhoods (cf. Algorithm 5) and save
everything in the so called simulation container. The simulation container
is used as input for the decision making process and saves the state, action,
needed energy, velocity vector and the approximated profit. The set of possible
actions contains: start, land, hover, fly, wait and charge.

Algorithm 5: Decision making process (particle/makeDecision)

Input : Individual I
Output : best individual
for k=1to N-1do
nh knn(k) < copy (Undividual I)
nh knn(k).neighborhood < neighborhoodKNN (k)
nh_ knn(k).simulateMove ()
end
Rank < LeaderSelection(risk selection)
Rank.addParticleArray(nh_ knn)
Rank.riskval < risk value of individual 1
best Individual <— Rank.run()

The method “makeDecision” generates for each neighborhood size a copy of
the individual and simulates the move with this neighborhood. After that, all
simulations are added to the ranking object and ranked with respect to the
risk value. The function “run” performs the selection mechanism, including the
dimension generation, ranking, and selection, and returns the best individual.
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4.3 Neighborhood Topology

The neighborhood class provides, dependent on the size, all relevant informa-
tions. The most important information is the global best individual, as well as
its position and the corresponding function value. The position and the func-
tion value of the global best individual is also stored in the particle class. The
implementation currently uses only the “k-Nearest-Neighbor” topology. For
the purpose of reusability and extensibility, the class is modeled as abstract
to possibly test and use new neighborhood topologies. The neighborhood ob-
ject knows all individuals in the swarm and individually selects the k nearest.
Each neighborhood object has to implement the “getGlobalBest” function. The
function returns the global best individual dependent on the chosen value k.
Another function of the neighborhood is the collecting of visited positions. The
“getParticleLandscapeMemory” function collects all visited locations, with the
corresponding function values, of the neighbors and returns them as a list.

4.4 State

The state class is the core of the movement model. The state class is also
modeled as an abstract class, to simply add new states. As defined in Section
3.1, we decide between two sates: “Ground” and “Air”. Each state has to im-
plement the two functions “simulateMove” and “move” (used in Algorithm 4).
The action property describes the actual behavior in the state. In the Ground
state the individual can decide between the action “charge” or “wait”. In our
approach, the action “wait” is only performed in the first iteration when the in-
dividual wait to start. In all other cases the individual automatically switches
to the charging mode. Algorithm 6 describes the method “simulateMove” as
implementation in the state ground class. If energy > €keors is true, the in-
dividual is able to start. In this case, we calculate the necessary energy for the
start (named energy change) and store all relevant parameters in the simu-
lation container with the help of the function “setSaveSimulate”. Otherwise,
if the energy of the individual is too low, the individual stays in the Ground
state and switch to the recharging process.

Algorithm 7 describes the method “simulateMove” as implementation of the
state air class. The operation of the method is similar to the method in the
state ground. The method distinguishes three cases:
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Algorithm 6: Movement simulation (Ground/simulate M ove)

if energy > eiakeorr then
energy change < calculateEnergyCost (start)

. . —
setSaveSimulate (state air, action start, energy change, 0, 0)
return

end

_>
setSaveSimulate (state ground, action charge, 0, 0, 0)

o If the energy is less than ey, the individual switch to the Ground state
and start recharging

e If the energy is greater or equal than ey, the individual is able to sim-
ulate the fly (cf. Algorithm 8)

e If none of the first two options are possible, the individual switches into
the hovering mode.

The last option is not possible (with this implementation), but is added for
the sake of completeness.

Algorithm 7: Movement simulation (Air/simulate M ove)

Input : Individual P
if energy < ey, then

energy change <— calculateEnergyCost (land)
setSaveSimulate (state ground, action land, energy change, 6>, 0)
return

end

if energy > ey, then
simulateFly()
return

end

energy change <— calculateEnergyCost (hover)

. . —
setSaveSimulate (state air, action hover, energy change, 0, 0)

Hereinafter, the operation of the method “simulateFly” will be explained. The
method includes the calculation of the PSO formula and possible adjustments.
First, the vector v;(t+ 1) is calculated by using the PSO formula from Section
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2.1. Next, we check whether the condition for the turbulence factor is fulfilled.
The condition is true if the length of the vector v;(t + 1) is smaller than 0.001.
In the next step, we check whether the length of the vector exceeds the maxi-
mum length V., (defined in Section 3.4). If the statement is true, the vector
is shortened via the function “shortVector”. For the obtained velocity vector
the resulting energy cost and new energy level of the individual is calculated
by using the function “calculateFlyCost”. If the energy value, after deduc-
tion of the flight costs, is lower than the threshold ey, the fly is shortened
again. For this, the usable energy is calculated. If the usable energy is less
or equal than zero, we return without a fly. Otherwise, we shorten the vector
v;(t + 1) with the function “shortVector” with respect to the usable energy.
As the last step, the profit of the fly is approximated with “calculateProfit”
(described in Section 3.7). In the end, the simulated parameters are saved via
“setSaveSimulate” in the simulation container.
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Algorithm 8: Flight simulation (Air/simulateFly)

Input : Individual P
Ti(t+1) = w-TGi(t) 4+ ¢1 - O - (Prest(t) — Zi(t)) + o - Co - (Ey — (1))

if ||o;(t +1)|| < 0.001 then
U;(t + 1) < addTurbulenceFactor (v;(t + 1))
end

if [|7;(t + 1)[| < Vingo then

// short ¥;(t+1) to Ve

U;(t + 1) < shortVector (v;(t + 1), Vipas)
end

energy change, new energy < calculateFlyCost (U;(t + 1));
if new_energy < ey, then
usableEnergy < e;(t) - egy

if usable Energy < 0.0 then
‘ return; // return without fly
end

// short u;(t+ 1) with usable Energy

U;(t + 1) < shortVector (v;(t + 1), usableEnergy)
energy change + calculateFlyCost (U;(t 4+ 1));
end

profit «<— calculateProfit (v;(t + 1));
setSaveSimulate (state air, action fly, energy change, U;(t + 1), profit);
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4.5 Energy

The energy class implements our simple energy concept from Section 3.4. Here,
the model can be adapted to the special properties of each copter. The class
holds the actual energy level of the individual, the definitions of the energy
values (described in Section 3.4, €.g. €takeoff OT Enover), the maximum movable
distance per iteration V.., and is able to calculate the energy consumption
for a given movement (e.g. start, land, hover or fly). The functions “doAction”
and “calculateDoAction” contain the rules for calculating the possible actions.
The method “calculateDoAction” only calculates the energy consumption and
the new energy level for a given action. The method “doAction” performs the
action, which means that the function changes the actual energy level of the
individual.

4.6 Leader Selection

The selection of the best simulation is performed in the Leader Selection class.
Algorithm 9 describes the Leader Selection mechanism from Section 3.6. The
algorithm receives as input the simulated individuals with the corresponding
simulation containers and the risk value R. In the first step, the data is ex-
tracted from the container and stored in a dimension table. It should be noted
that the profit is stored as negated value because we modeled the optimization
as minimization problem. As the second step, we normalize the dimensions.
Afterwards, the rank of each element or dimension is calculated, described in
Section 3.6. In the final step, the smallest element of the ranking list is re-
turned by the function “min”. If several elements have the lowest rank, one
element is randomly selected.
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Algorithm 9: The Leader Selection algorithm

Input : N Individuals, risk R
for i = 1 to N do
stimC'ont < simulationContainer (i)
dimensions.add (simCont.cost, simCont.profit * -1)
end
dimensions < normalize (dimensions)
// calculate risk ranks
for : = 1 to N do
‘ rank(i) < dimensions.profit * R + (1 - R) * dimensions.cost
end
// get best ranked element
best < min (rank)
if size(best) > 1 then
‘ return best.random
end
else
‘ return best
end
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5 Evaluation

This chapter presents the experimental evaluation of EAPSO. The individual
EAPSO methods are shown and compared. How the concepts work will be
shown along with the impact of different fitness functions in comparative ex-
periments. The following experiments are performed using MATLAB R2016a.

5.1 Experiments

The main idea of this thesis is motivated by a real case scenario of an aerial
micro-robotic swarm. The proposed model and the corresponding features are
meant to provide an algorithmic design for the energy consumption and search
of the aerial swarm. Therefore, the goal of the experiments is to provide a
baseline for further realistic tests. The parameters are selected based on a
model of the FINken-III micro aerial robot [Steup et al., 2016|, described in
Table 5.1.

The flight of the aerial robots is modeled in an n = 2 dimensional search
space. The goal is to analyze if a swarm with limited energy can find
an optimal solution in the search space. We take the standard PSO
[Kennedy and Eberhart, 2001] as the baseline algorithm and denote it as “de-
fault PSO”. As the search space only contains two parameters, the default PSO
is easily able to solve the problem.

Three test problems such as Sphere, Ackley, and Rosenbrock from the literature
are being used for the experiments. These test problems can very well simulate
the terrain in which aerial swarms can fly and search, while Sphere is only for
simple tests, Ackely and Rosenbrock respectively capture search terrains with
lots of local optima and a flat plateau. The primary focus of our experiments
is the different multi-criteria decision making approaches and the total energy
consumption. All the experiments run 30 times. The median values and
corresponding standard errors are reported.
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The individuals fly in a defined arena. All individuals start in a defined area
with a random position (this is a realistic assumption for aerial robotic sys-
tems). The initial state is set to be the Ground state. The optimization stops
after 500 iterations. All parameters are listed in Table 5.1.

Table 5.1: Selected parameters for the experiments

Description Parameter Value

PSO variables

population size N 30
initial velocity Vg 0.0
inertia weight w 0.5
attraction rate for ﬁbest Ch 1.0
attraction rate for Z, Cy 1.0
random value for ﬁbest 01 random
random value for @, 0o random

energy consumption

takeoff Ctakeof f 10
hover Ehover 28
control Econtrol 20
move Emove 22
land Cland -10
charge €land 10
flight area

search space n 2
area length T [—10, 10]
area width To [—10, 10]
start area length Ts1 [—10, 10]
start area width Ts2 [—10, —§]

In all experiments, the best function values (denoted as “fitness”), the to-
tal amount of movement in the swarm (denoted as “distance”) and the total
amount of available energy in the swarm (denoted as “energy”) are measured.
The total amount of movement is meant to capture the amount of energy
consumption, while the total amount of energy can be used to estimate the
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charging behavior and its frequency during the 500 iterations. In the experi-
ments, we compare default PSO with EAPSO with different values for r; as 1.0
(named risky), 0.5 (named balanced) and 0.0 (named careful). Additionally,
we perform a random risk initialization of the individuals denoted as random
and the adaptive variant denoted as adaptive in which the individuals select a
leader according to their available energy level e;(t).

5.2 Simulation Environment

Figure 5.1 shows the simulation environment (Rosenbrock function) at the first
iteration. Here one can see that all individuals start in the specified area from
Table 5.1. The position is random. The color of the landscape denotes the
function value. Bright colors stand for high function values and dark colors
for lower functional values. The valley can be seen clearly.
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Figure 5.1: Simulation environment for the Rosenbrock function with our
adaptive EAPSO concept at the first iteration and 30 individuals.
The black dots represent the individuals at their current position
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Figure 5.2 shows the simulation environment (Rosenbrock function) after 30
iterations. Most of the individuals are close together. Some of the points are
colored red. This means that the individual is currently recharging.
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Figure 5.2: Simulation environment for the Rosenbrock function with our
adaptive EAPSO concept after 30 iterations and 30 individuals.
The black dots represent the individuals at their current position.
Red dots indicate charging individuals.
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5.3 Results

In order to better analyze the results, we investigate the convergence plots,
the energy and distance measures over the iterations.

The detailed analysis is structured as follows. First, we examine all three
plots (convergence, energy and distance) for the constant risk types r; = 0.0
(named careful), r; = 0.5 (named balanced) and r; = 1.0 (named risky) in
Section 5.3.1. The consideration is to show how the decision factors (movement
cost and profit) affects in general. Then, in Section 5.3.2, we compare the two
types balanced and random. For the risk type balanced, all individuals of
the swarm have the same level of risk. In the case of random, the value
is determined randomly in the initialization of the individual. The value can
vary from individual to individual. Here the difference between a homogeneous
swarm and a heterogeneous swarm (with different risk values) can be examined.
Next is the comparison of random and adaptive in Section 5.3.3. Both methods
have different characters in the swarm. In the case of random, the risk values
are constant over time, however, adaptive calculates the risk value out of the
energy level. Here the benefits of dynamic risk values are shown. Afterwards,
we compare our adaptive EAPSO with the default PSO in Section 5.3.4. Here
one can see the advantages and disadvantages of the new concept. Finally,
we discuss some details and characteristics of the different types that are not
apparent from the plots.
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5.3.1 Constant Risk Analysis

In this section, we consider the constant risk types careful, balanced and
risky. We show that the risk types work as desired and talk about their
properties. First, we have a look at the convergence plot in Figure 5.4. The
curves confirm the concept of the risk values. The higher the risk value is, the
faster the optimum is reached (for this simple function). Balanced and risky
here differ only slightly. The largest deviation can be seen for careful. The
method shows the worst result and does not reach the optimum (cf. Table 5.2).

In the next plot, one can see how the risk value affects the moved distance
per iteration. For careful, an average movement of about 1.9 can be seen at
the beginning. This value decreases very fast. This corresponds to the desired
behavior with minimal movement. The larger movements at the beginning
are caused by the distribution of the individuals. Once the individuals have
collected, they move only minimally. The contrary form the individuals with
the risk value risky. Here one can see, that at the beginning the maximum
distance per iteration is selected. Again, the intended behavior is generated.
The curve shows quite clearly when most of the individuals have reached the
optimum. The individuals in this method decide solely on the basis of profit.
After reaching the optimum, due to the shape of the Sphere function, the
approximation returns in most of the cases a negative profit. Therefore, the
individuals choose small neighborhoods and move only minimal distances. The
third variant includes the individuals with the risk value balanced. These
individuals weight the cost and profit of a movement with 50 percent each.
The average distances here lie between the two other methods. Due to the
short distances, these individuals take a little longer until they have found the
optimum. Here can also be seen when most of the individuals have reached
the optimum. In this case, the individuals behave similarly to the ones with
the risk value risky. Also, the further course is very similar.

Next, we have a look at the average total amount of energy in the swarm per
iteration. Balanced and risky show a nearly identical course. Only the curve
of care ful is shifted slightly to the right. The lower power consumption effects
that the first charge cycle takes a little later. The uniform shape of the curves
shows that the individuals are very in sync. If one compares the total amount
of energy in Table 5.2, one arrives at the same conclusion. Balanced and risky
need almost the same amount of energy. Only care ful requires less but is not
able to reach the optimum.
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Table 5.2: Results of the

Sphere function with risk care ful, balanced and risky

(median values and standard errors (std)) “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the

swarm

risk r;  fitness

+ std energy + std distance =+ std

careful 5.598
balanced  0.000

0.485 4375483 1.499 415959 5.337
0.000 4430.815 1.157 729.013 2.684

risky 0.000 0.000 4449.644 1.203 799.311 3.406
= care ful
-
bal d
W 415.96 - f";ce
distance [ 729.01 risky
I 799.31
N 4,375.48
energy [ 4,430.82
I 4,449.64

Figure 5.3: Results of the Sphere function with risk careful, balanced and
risky (median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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Next, we consider the Ackley function in Figure 5.6. Again, the convergence
plot shows a similar course as the Sphere function. Balanced and risky achieve
the optimum in a short time. Risky needs a little less time. For this function,
again careful does not reach the optimum (cf. Table 5.3). Only a minimal
improvement takes place here. This is due to the landscape of the function.
Careful always chooses the way with the lowest cost and thus the shortest
path. This means that the global best is always very close. Due to the local
optima of the Ackley function, it is therefore very difficult to leave the local
optima. Overall, one can say that the risk types show here the expected
behavior for the convergence plot.

Next, we have a look at the average movement per iteration. Here the curve
for risky stands out particularly. We can see relatively large movements, al-
though the optimum has been reached. Table 5.3 shows a multiple higher total
moved distance for the risky method. This behavior is also caused by the lo-
cal optima of the function. A few individuals have reached the optimum, but
many individuals still stuck in local optima. The attempt to achieve the global
optima produces the increased distances. The constant height of the average
moved distances shows that most individuals have not reached the optimum.
The other method behaves similarly. C'areful and balanced show high aver-
age movements. From iteration 150, the average movement for care ful is even
higher than for balanced. Careful continuously tries to reach the global op-
timum and therefore the average movement is higher. Most individuals of the
balanced method, however, have at iteration 150 already reached the optimum.
Therefore, the average movement decreases continuously.

The third plot (average total amount of energy in the swarm) confirms the
behavior of the methods for the function. The decreasing amplitude, in the
energy plot, shows that the individuals are no longer in sync. This means the
number of individuals who simultaneously charge or fly decrease over time.
This behavior is as well caused by the local optima. Individuals at differ-
ent positions require a different number of iterations, and therefore different
amounts of energy to leave local optima. Referring additionally the conver-
gence plot, it is striking that the optimum is reached relatively quickly (for
balanced and risky), but the power curve does not change appreciably from
the time of convergence. Some individuals can quickly reach the optimum.
These individuals do not move noticeably and use the larger part of their en-
ergy to hover. Another part of the swarm stuck in local optima and thus
requires more energy for movement. This means that the synchronization is
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lost in the swarm. This course is shown by all three methods. Most clearly it
is for the risky method.

The analysis shows that only the consideration of the profit for a function
with local optima (e.g. Ackley function) is very inappropriate and consume
unnecessary energy. The balanced method takes a little longer to reach the
optimum but consumes almost 1.5 times less energy than the risky method.
This shows the advantage of the multi-criteria decision making process.

Table 5.3: Results of the Ackley function with risk care ful, balanced and risky
(median values and standard errors (std)). “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance =+ std

careful 11.61 0.162 4505.048 3.383  935.639  9.089
balanced  0.000 0.554 4531.115 8.800 1008.798 22.184
risky 0.001 0.171 4993.991 6.649 2491.168 25.109

= care ful
-
bal d
I 935.64 g aance
distance ] 1,008.8 risky

[ 2,491.17

I 4,505.05
energy [ 4,531.12
I 4.993.99

Figure 5.5: Results of the Ackley function with risk careful, balanced and
risky (median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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In last part of this Section, we have a look at the Rosenbrock function in Fig-
ure 5.8. Again, the convergence plot shows the differences of each method and
the corresponding risk values. All three methods require more time, in order
to achieve the optimum. The exception is here again care ful, the method does
not reach the optimum. Also, balanced and risky does not reach the optimal
value 0.0 (cf. Table 5.4). Noticeable here is the standard error for careful
and balanced. This indicates that some runs did not reach the optimum. This
suggests that small risk values for flat landscapes are unsuitable.

Considering the average moved distance per iteration, balanced and risky
show a different behavior. Balanced achieves the optimum only at iteration
350 and almost no movement takes place until this point. The curve is nearly
like the careful method. Risky shows a relatively large movement, although
the optimum is already reached at iteration 125. On the flat landscape of
the function, the two methods respond very differently. Since balanced also
includes the cost of the movement, the resulting movement is shorter. Risky
in contrast only focuses on the profit. Here, it often happens that too large
movements are selected and individuals wander. Risky shows here the same
disadvantages as for the Ackley function in Figure 5.6. The average moved
distance for risky is even 3 times as high as for balanced (cf. Table 5.4).

A view of the energy curves supports this theory. Careful and balanced
show a consistent and similar course. The only change is the reduction in
the amplitude over time. The reduction of the amplitude is caused by the
desynchronization of the individuals. Conspicuous is this behavior in the risky
method. Here the curve shows a zigzag course. The actions of the individuals
are very different. Some individuals have already found the optimum and do
not move. Other individuals are attracted by the swarm and maybe overfly the
optimum. A third type breaks out from the swarm after recharging and leaves
the optimum again. Thus, individuals are always in movement and energy is
consumed.
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Table 5.4: Results of the Rosenbrock function with risk care ful, balanced and
risky (median values and standard errors (std)). “fitness” refers to
the best function value obtained by the swarm, “energy” and “dis-
tance” indicate the total amount of energy and the distance moved
by the swarm

risk r;  fitness =+ std energy =+ std distance + std

careful 1095 76.57 4391.300  2.108  491.280  8.549
balanced  1.483 68.10 4432276 7.299 714.238 28.774
risky 0.102 0.296 4899.941 17.155 2179.118 58.146

= care ful

B 49198 =balanced

= .
distance [ 714.24 risky
I 2,179.12

I /3013
B ] 4432.28
D ,309.94

energy

Figure 5.7: Results of the Rosenbrock function with risk care ful, balanced and
risky (median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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5.3.2 Random and Balanced Risk Analysis

In this section, the two types of risk random and balanced are now compared.
Balanced rates the two decision factors (cost and profit) equally. Swarm mem-
bers in the random method have all different risk values. We again start with
the Sphere function. For this function balanced and random behave almost
identical in the convergence plot and show a rapid convergence. The method
random reached somewhat faster the optimum. This shows the benefits of
different risk levels in the swarm. The method also includes individuals having
a risk value in the vicinity of one. These traverse great distances and allow
rapid optimization.

More significant is the difference in the moved distance plot. At the begin-
ning, the two methods show a difference in the average movement per iteration.
Balanced moves in the first iterations more and thus require more energy. Due
to the individuals with different risk levels in random, the average movement
is lower. At the same time, Random achieves the optimum faster. This shows
that different individuals can be an advantage in a swarm. Individuals with
a high risk value fly ahead. Individuals with a low risk value are later at-
tracted by the swarm and take longer. After both methods have reached the
optimum, the curves have the same course. The movements are reduced to a
minimum. Looking at Table 5.5, one can see that random needs a less total
distance. Striking is the standard error of the distance for random. The er-
ror is caused by the different risk value initializations of individuals. Swarms
with high average risk values move more than swarms with low risk values (cf.
Section 5.3.1).

Considering the energy plot, the uneven course of the random method at the
beginning stands out. This curve adjusts to the method balanced, during the
optimization. The various risk values in the swarm prefer different distances.
Thus, the energy consumption of each individual is different. On this course,
one can see at which time step most of the individual have reached the opti-
mum. From iteration 200 stabilizes the curve. The individuals have reached
the optimum, and almost do not move. The movement is at this stage inde-
pendent of the risk level. The shape of the Sphere function results in negative
profit values. This leads the individuals to choose the smaller possible move-
ments. Looking at the total energy consumption in Table 5.5, the difference
of the methods is only slightly.
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Table 5.5: Results of the Sphere function with risk balanced and random (me-
dian values and standard errors (std)). “fitness” refers to the best

)

function value obtained by the swarm, “energy” and “distance” in-
dicate the total amount of energy and the distance moved by the

swarm

risk ;  fitness =+ std energy =+ std distance =+ std

balanced  0.000 0.000 4430.815 1.157 729.013 2.684
random  0.000 0.000 4425.916 2.541 684.370 8.266

=
balanced
=
random

distance = g824(f?(>)71

I 4,430.82
O ] 4,425.92

Figure 5.9: Results of the Sphere function with risk balanced and random (me-
dian values). “energy” and “distance” indicate the total amount of
energy and the distance moved by the swarm
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For the Ackley function, balanced and random show at the beginning a rapid
convergence. Random then remains in local optima and needs about 50 iter-
ations to leave this. In this case, balanced has the better course. The method
starts with a slower convergence than random, but the progress is continuously
and finally the optimum is reached faster.

The motion plot emphasizes this theory. Both methods start with a similar
average distance per iteration. The distance is slightly lower for balanced,
than e.g. in the Sphere function. This is also due to the local optima. After
the first charge cycle, a plateau begins in the convergence plot. Here denotes
random substantially less motion than balanced, although the optimum has
not been reached. There are two essential reasons. On the one hand, random
has a number of individuals who have a very low risk level. These individuals
are almost not moving. This leads to the fact that on account of the local
optima, these individuals do nothing to improve the function value. In this
case, the individuals are useless for the swarm and only consume energy. On
the other hand, the different risk values cause a desynchronization of the swarm
members. This means that the individuals charge and move no longer at the
same time. For functions with local optima, it is better if the swarm fly
and charge together. The joint movements can prevent that many individuals
gather in local optima, and no one can get away from there. Table 5.6 shows
how different the method random can be. The average distance is higher for
random. Considering also the standard error, it is noticeable that this value
is influenced by the individual runs. The risk values in the swarm can differ
from run to run. Thus, the values are difficult to compare. Nevertheless, it is
clear that random moves more.

A second disadvantage is the movement, even though the optimum is reached.
The behavior occurs in both methods (only delayed). This shows that there
are still individuals that try to achieve the optimum. These individuals stay in
local optima and consume energy. After a short time this behavior is no longer
visible in the moved distance plot. Also in the energy plot, only balanced shows
a uniform course. For random, these movements are easier to see. During the
period of the function value plateau, very dissimilar curve can be seen. Here
is no unified movement in the swarm. The same can be seen at the end of the
optimization. Some individuals try to achieve the optimum, others just hover.
Thus, no synchronization prevails in the swarm. In addition, Table 5.6 shows
that random takes a longer distance and consumes much more energy.
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Table 5.6: Results of the Ackley function with risk balanced and random (me-
dian values and standard errors (std)). “fitness” refers to the best

)

function value obtained by the swarm, “energy” and “distance” in-
dicate the total amount of energy and the distance moved by the

swarm

risk r;  fitness =+ std energy =+ std distance + std

balanced  0.000 0.554 4531.115 8.800 1008.798 22.184
random  0.001 0.203 4773.944 12.115 1766.415 37.688

=
balanced
=
random

distance -_1’00818 766.49

I 4,531.12
O ) 4,773.94

Figure 5.11: Results of the Ackley function with risk balanced and random
(median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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To conclude this Section, we consider the Rosenbrock function. Here shows
random and balanced a continuous improvement of the function value. Both
methods achieve the optimum. The random method is about 150 iterations
than the balanced method. Table 5.7 shows for balanced a small deviation
from the optimum. Noticeable here is the standard error. A closer look at
individual runs shows that some of them end up very far from the optimum.
This indicates that small risk values in flat landscapes can be a disadvantage
(cf. Section 5.3.1).

Similar to the convergence plot, the average distances are similar. Both meth-
ods start with an average distance of 0.3. From the 50th iteration, both meth-
ods show only a minimal movement. This behavior can be explained by the
landscape of the function. The Rosenbrock function has a very flat landscape.
The starting field of the individuals lies partially on a high point. Thus, despite
the flat landscape, an initially rapid optimization can be achieved. Only after
the first load cycle, at iteration 50, the movement flattens permanently. Here,
a small plateau can be seen in both methods (convergence plot). This suggests
that the swarms are synchronized and in this period most of the individuals are
charging. Caused by the start area, the individuals pull together very quickly.
Therefore, according to the charging phase only small movements can be seen.
The effect is reinforced by the flat landscape. Although the distance curves
are very similar, but the total distances in Table 5.7 differ significantly. This
shows that a large part of the swarm acts similar, but still, a lot of unnecessary
movements are made by some individuals.

The energy plot shows an interesting progress. In the first 100 iterations, the
curves of the methods are almost identical. Only later, the random method
loses synchronization. This behavior is not visible in the other plots of the func-
tion. The amplitude of the balanced curve decreases too, but not as strong as
for the random method. Another effect, in this case, is the displacement of the
loading point to the right. This shows that the random method has difficulties
with flat landscapes. Some individuals (with a low risk value) remain at the
optimum, others (with a high risk value) wander around the optimum. This
behavior is unnecessary and consumes energy.
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Table 5.7: Results of the Rosenbrock function with risk balanced and random
(median values and standard errors (std)). “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance + std

balanced  1.483 68.10 4432.276 7.299  714.238 28.774
random  0.018 0.174 4549.582 12.328 1029.446 41.034

=
balanced
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distance =1il(2)39 45
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Figure 5.13: Results of the Rosenbrock function with risk balanced and
random (median values). ‘“energy” and “distance” indicate the
total amount of energy and the distance moved by the swarm
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Figure 5.14: Convergence plot, energy plot and movement plot for Rosenbrock
function with risk balanced and random
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5.3.3 Random and Adaptive Risk Analysis

In this section, we compare our new adaptive EAPSO approach with the
random method. Both of them include different individuals in the swarm.
The difference of adaptive is that this method calculates the risk value out of
the energy value. This means the risk value change from iteration to iteration.
We start again with the Sphere function to validate the concept of our new
approach.

In the convergence plot, the adaptive method shows first a similar course as
random. After a short time, the adaptive curve is stagnating. From this
point, the energy saving behavior of the method is shown. The energy of
the individual drops and the distance traveled per iteration decrease. This
flattens the progress of the curve. In the further process, “steps” can be seen
in the curve. These are caused by the collective moving and loading of the
individuals. In contrast, the method random shows a completely different
movement pattern. Here are always individuals in motion and the curve does
not stagnate. Again, the small movements are supported by collecting the
swarm. Table 5.8 shows that both methods achieve the optimum with no
standard error.

Considering the average distance per iteration, the first advantage of our adap-
tive EAPSO becomes clear. The adaptive method has the ability to choose
large distances at the beginning. Thus, all the energy can be used. Random,
however, only uses an average distance of 0.3. Subsequently, the distance curve
flattens quickly for both methods. This occurs even though the optimum is
not achieved. The individuals start with an almost full battery. When charg-
ing, the batteries are not completely filled. The individuals start when the
battery is filled to 50 percent. The resulting risk values again cause shorter
movements. In addition, the dense swarm provides only small movements.

The energy plot shows for the random method the already explained curve
(see Section 5.3.2). The curve of the adaptive method, however, shows on the
entire time a uniform flow. This confirms the effect of adaptive risk values.
Individuals with a low risk value choose short distances, high risk individuals
choose greater distances. Caused by this, the individuals move and load almost
uniformly.

The plots and the table clearly show that our new method is able to save
energy. The disadvantage of the energy saving behavior is the convergence
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time. The difference is reflected in the moved distance in Table 5.8. Adaptive
travels significantly less. The difference in the total amount of energy is, for
this simple function, not significant.

Table 5.8: Results of the Sphere function with risk random and adaptive (me-
dian values and standard errors (std)). “fitness” refers to the best
function value obtained by the swarm, “energy” and “distance” in-
dicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance =+ std

adaptive  0.000 0.000 4404.301 1.315 568.176 6.851
random  0.000 0.000 4425.916 2.541 684.370 8.266
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Figure 5.15: Results of the Sphere function with risk random and adaptive
(median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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The Ackley function shows a similar scene. First, the curves are similar again.
After a short time, the adaptive method stagnates, and shows to the end the
already described “step behavior”. Striking here is, that both methods have a
plateau at the same function value. At this point, both methods are trapped
in a local optimum. Random finally reaches twice as fast as adaptive the
optimum (random after 200 iterations and adaptive after 400 iterations).

Similar to the Sphere function, adaptive shows the required behavior in the av-
erage distance plot. In the beginning, large movements can be seen. These are
reduced, due to the energy, after the first recharging. The somewhat smaller
distance at the beginning is caused by the approximation of the landscape (ini-
tially only the actual local optima is known). Here, the difference between the
methods is more clearly. Although the random method has already reached
the optimum, movements still occur. Adaptive, however, always shows only
very small movements. This decreases even when the optimum is reached.
For the Ackley function, Table 5.9 shows the difference of the methods more
clearly. The distance traveled by random is more than twice as long as for
adaptive. Also, the difference in energy consumption is obvious.

The next effect is shown in the energy plot. Comparing the two curves in more
detail, it becomes apparent that the adaptive curve has one charging cycle less.
Random shows at the beginning and at the end a very jagged curve and low
amplitude. Referring the convergence plot, it is noticeable that in the first
portion no improvement of the function value is made. This suggests that due
to the very different risk levels in the swarm, no uniform motion comes about.
Adaptive in turn, apart from the decreasing amplitude, shows no change of the
curve. Here the trade off between convergence time and energy consumption
is significant.
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Table 5.9: Results of the Ackley function with risk random and adaptive (me-
dian values and standard errors (std)). “fitness” refers to the best
function value obtained by the swarm, “energy” and “distance” in-
dicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance + std

adaptive  0.002 0.852 4449.128  5.755  775.828 19.086
random  0.001 0.203 4773.944 12.115 1766.415 37.688

= :
adaptive
=
random

, I 775.83
distance g 1,766.42

I 149,13
O 4,773.94

Figure 5.17: Results of the Ackley function with risk random and adaptive
(median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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Figure 5.18: Convergence plot, energy plot and movement plot for Ackley func-
tion with risk random and adaptive
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Also in this section, we finally consider the Rosenbrock function. For the
Rosenbrock function, the method adaptive shows a much better result. Here
we see that adaptive, in the first movement phase, can explore the valley
spaciously. As with the other functions, the first charging phase begins after
25 iterations. From here, the “step behavior” can be seen again. The random
method is slower at the start but reached the optimum almost simultaneously
with adaptive. In comparison, adaptive works here better. Especially with
flat landscapes, the use of the entire energy at the beginning is very beneficial.
The average obtained fitness value in Table 5.10 shows a better result for the
random method. The corresponding standard error is smaller for the adaptive
method. This shows the constant behavior over a number of runs.

The average movement per iteration shows the known behavior of the adaptive
method. Here all the energy is used. Only after the first charging cycle, the
energy saving phase begins. Random, on the other hand, chooses only an
average distance of 0.3 at the start and thus slows down the convergence. The
random method shows only a small movement. Looking closely at the adaptive
curve, one can see almost no more movement. Here a lot of energy is saved.
The difference is also reflected in consideration of Table 5.10. The Table shows
a difference of over 160 in the total energy consumption of the swarm. Also,
the total moved distance is for random more than twice as high. Again, the
standard error for adaptive is in both cases significantly lower.

Also, the energy plot shows a uniform course for the adaptive method again.
It is striking that even after reaching the optimum this course is not lost. This
proves the synchronization of the swarm. After the optimum is reached, the in-
dividuals use the energy almost exclusively for hovering. Thus, the individuals
load and unload very evenly.

For the flat landscape of the function, we achieve the best result. The con-
sumed energy and the moved distance are both smaller for adaptive. At the
same time, the convergence time is not inferior.
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Table 5.10: Results of the Rosenbrock function with risk random and adaptive
(median values and standard errors (std)). “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance + std

random  0.018 0.174 4549.582 12.328 1029.446 41.034
adaptive  0.067 0.014 4387.826  0.774  433.425  2.552

= :
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b
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Figure 5.19: Results of the Rosenbrock function with risk random and adaptive
(median values). “energy” and “distance” indicate the total
amount of energy and the distance moved by the swarm
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Figure 5.20: Convergence plot, energy plot and movement plot for Rosenbrock
function with risk random and adaptive
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5.3.4 Baseline Risk Analysis

Finally, we compare our new adaptive EAPSO with the default PSO. We
want to show the energy saving features and demonstrate advantages and
disadvantages. Therefore we start with the Sphere function.

For the Sphere function, adaptive shows the “step behavior”, explained in Sec-
tion 5.3.3. The default PSO method is similar to the random method, balanced
and risky. It shows here a clear advantage in the speed of convergence.

Both methods show to the start a similar movement course. In the first cycle of
movement, both methods use the maximum distance and travel large distances.
We observe that the movement of the individuals in default PSO never stops,
even if the PSO has already obtained the optimal solution. In contrast to this,
in the adaptive EAPSO the individuals reduce their movements (and therefore
the energy consumption) to a large extent. Both of the approaches have a cyclic
behavior in the distances due to the recharging effect in the model. Since the
individuals, all start with a certain high battery level, many of them require
a recharging at the same time steps. Considering Table 5.11, the first major
difference is clear. The swarm of the default PSO method flies more than four
times the distance of adaptive. The corresponding standard error is nine times
as high as for adaptive.

The third plot illustrates the total amount of available energy in the entire
swarm. We observe that both of the methods have a cyclic energy level. Start-
ing with a large amount of energy, the individuals get synchronized over the
iterations, i.e., they all recharge at the same time steps (at the lower peaks).
This effect is more visible in EAPSO than in default PSO. This interesting
side effect can be explained by the fact that in the adaptive EAPSO the in-
dividuals only move if the trade-off between profit and cost is large enough.
The change in the energy curve is clearly visible for the default PSO. Once the
optimum has been reached, the amplitude decreases. This continues until the
end. This supports the statement that the individuals are always moving. A
look at Table 5.11 shows a significantly lower total amount of energy for the
adaptive method.
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Table 5.11: Results of the Sphere function with risk adaptive and de fault PSO
(median values and standard errors (std)). “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance + std

default 0.000 0.000 4924.679 11.950 2274.928 38.020
adaptive  0.000 0.000 4404.301 1.315 568.176  6.851

= de fault = adaptive

dist I 2.274.93
1Stance - 56818

I 02468
NS R 1043

Figure 5.21: Results of the Sphere function with risk adaptive and
defaultPSO (median values). “energy” and “distance” indicate
the total amount of energy and the distance moved by the swarm
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Figure 5.22: Convergence plot, energy plot and movement plot for Sphere func-
tion with risk adaptive and default PSO
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In the Ackley function, the default PSO has a clear advantage in case of the con-
vergence time. Until the 150th iteration, adaptive shows an even faster conver-
gence. After that, the default PSO method shows a steeper curve and reaches
ahead of adaptive the optimum. In addition, the convergence of adaptive is
delayed by the pinning in local optima (described in Section 5.3.3). In this
case, the standard error of the fitness is higher for the adaptive method.

Again, the average movement per iteration is very different. Adaptive mini-
mizes the movement after the first recharging as usual. Default PSO shows
all the time a relatively high movement. The movements get smaller when
the optimum is reached, but there is still movement. During this time a lot
of unnecessary energy is consumed. Table 5.12 confirms this statement. The
traveled distance is almost three times as long as for the adaptive method.

For the Ackely function, the synchronized behavior is less visible than for the
other two test problems. The individuals can be trapped in several local optima
and build clusters with different properties. By careful observations, we can
conclude that the EAPSO individuals require less re-charging cycles than the
individuals in default PSO.
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Table 5.12: Results of the Ackley function with risk adaptive and de fault PSO
(median values and standard errors (std)). “fitness” refers to the
best function value obtained by the swarm, “energy” and “distance”
indicate the total amount of energy and the distance moved by the
swarm

risk r;  fitness =+ std energy =+ std distance 4 std

default 0.001 0.120 4942563 4.235 2317.692 13.242
adaptive  0.002 0.852 4449.128 5.755  775.828 19.086

= de fault = adaptive

dist I 2.317.69
1Stance - 77583

I 042,56
O ) 4 14913

Figure 5.23: Results of the Ackley function with risk adaptive and
defaultPSO (median values). “energy” and “distance” indicate
the total amount of energy and the distance moved by the swarm
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Figure 5.24: Convergence plot, energy plot and movement plot for Ackley func-
tion with risk adaptive and default PSO
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The last function we consider is Rosenbrock. Both methods show in the first
25th iterations a similar course. From then on, adaptive shows again the
“step behavior” and the default PSO method reaches the optimum after 50
iterations. The convergence plot also shows the detriment of our adaptive
EAPSO concept. Once the first recharging begins, adaptive can not keep up
with the default PSO.

The advantage, however, shows itself in the average movement plot. Here the
range from iteration 200 to the end is interesting. For the two other functions,
default PSO shows a continuous movement. However, it is always a recharge
phase recognizable. For the Rosenbrock function, a different scene emerges.
No unified movement can be seen. The difference of the total moved distance
is here the greatest. According to Table 5.13, default PSO needs more than
five times the distance of the adaptive method.

The observation is supported by energy plot. After the 250th iteration, no
oscillation can be seen. During this time no uniform motion longer takes
place. Some individuals stay at the optimum and only consume the energy
for the hovering. Other individuals move around the optimum and consume
unnecessary power. Here, the biggest advantage of our algorithm becomes
clear. With the calculation of the risk value from the energy, the movement
is reduced to a minimum. Again, Table 5.13 supports this observation. The
total energy consumption for adaptive is significantly lower.
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Table 5.13: Results of the Rosenbrock function with risk adaptive and
defaultPSO (median values and standard errors (std)). “fitness”
refers to the best function value obtained by the swarm, “energy”
and “distance” indicate the total amount of energy and the distance
moved by the swarm

risk r;  fitness =+ std energy =+ std distance 4 std

default 0.000 0.000 4929.129 9.580 2291.180 31.136
adaptive  0.067 0.014 4387.826 0.774  433.425  2.552

= de fault = adaptive

dist [ 2,291.18
1stance - 433.43

I 029.13
ST R /1043

Figure 5.25: Results of the Rosenbrock function with risk adaptive and
defaultPSO (median values). “energy” and “distance” indicate
the total amount of energy and the distance moved by the swarm
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5.3.5 Summary

In this section, we summarize the results and have a look at some detailed
results. Table 5.14 shows the results after 500 iterations. All the experiments
are run for 30 times and the median values, and the corresponding standard
errors are reported. In all the experiments the careful method delivers the
worst fitness value as expected. In this case, the individuals always select the
closest better individual as their global best and therefore they save lots of
energy and distance. Considering the Sphere function, we observe that all the
other EAPSO variants can find the optimal solution where the particles in de-
fault PSO move the largest distance and consume more energy than the others.
Among the EAPSO approaches, the adaptive method saves the most amount
of energy, while risky has the highest energy consumption. Considering the
Ackley function with lots of local optima, the default PSO obtains the best
result in term of the fitness value (and the corresponding standard error val-
ues). The adaptive variant is not as good as the other variants, nevertheless,
its distance and the energy values are the best among the others. The same
results can be observed in Rosenbrock function with a large flat plateau. Due
to the small amount of profit which can be obtained in a local neighborhood,
the individuals reduce the amount of movement and save energy while not
making the effort of moving. This leads to a degradation in the function value.

The analysis revealed, especially in Section 5.3.4, that the adaptive EAPSO
method avoids unnecessary movements. To illustrate this, we show in Fig-
ure 5.27 the two methods adaptive EAPSO and default PSO in the Rosen-
brock function after 450 iterations. Both methods have reached the optimum.
The individuals in the adaptive EAPSO method are crowded. In the default
PSO method, the individuals are widely distributed. This shows that the in-
dividuals of the default PSO method move on, even though the optimum is
reached.
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Table 5.14: Results for the three test problems with 30 individuals and 500 it-
erations (median values and standard errors (std)). “fitness” refers
to the best function value obtained by the swarm, “energy” and
“distance” indicate the total amount of energy and the distance
moved by the swarm

risk r;  fitness =+ std energy =+ std distance + std

Sphere

default 0.000  0.000 4924.679 11.950 2274.928 38.020
careful 5.598  0.485 4375483 1499 415959  5.337
balanced  0.000 0.000 4430.815  1.157  729.013 2.684
risky 0.000  0.000 4449.644  1.203  799.311  3.406
random  0.000 0.000 4425916  2.541  684.370  8.266
adaptive  0.000 0.000 4404.301  1.315 568.176  6.851

Ackley

default 0.001  0.120 4942.563  4.235 2317.692 13.242
careful 11.61 0.162 4505.048  3.383  935.639  9.089
balanced  0.000 0.554 4531.115  8.800 1008.798 22.184
risky 0.001 0.171 4993.991  6.649 2491.168 25.109
random  0.001 0.203 4773.944 12115 1766.415 37.688
adaptive  0.002 0.852 4449.128  5.755  775.828 19.086

Rosenbrock

default 0.000  0.000 4929.129  9.580 2291.180 31.136
careful 1095  76.57 4391.300  2.108  491.280  8.549
balanced  1.483 68.10 4432.276  7.299  T14.238 28.774
risky 0.102  0.296 4899.941 17.155 2179.118 58.146
random  0.018 0.174 4549.582 12.328 1029.446 41.034
adaptive  0.067 0.014 4387.826  0.774  433.425  2.552
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Figure 5.27: Rosenbrock  function after 450 iterations with risk
adaptive EAPSO and default PSO
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Additional Observation

Finally, we highlight a result that is not apparent from the plots. By consid-
ering single runs, we observed some individuals who are separated from the
main swarm. These individuals have subsequently formed their own swarm or
cluster.

On investigation, we noticed that the individuals in a cluster have similar risk
levels. Due to the similar risk values, these individuals also selects similar
neighborhood sizes. Thus, it happens that seceded individuals explore a part
of the landscape, independently of the other individuals. Due to the flat land-
scape of the Rosenbrock function, there are no disturbing local optima that
may block this behavior. For this behavior, a swarm with different risk types
(e.g. random or adaptive) is required. Only with different characters, it is
possible to produce this behavior. Especially for the type adaptive it happens
that individuals move between clusters or clusters merge together. This be-
havior can be observed when a group of individuals starts after recharging.
Due to the energy level, the risk is high, and the individuals move towards
clusters with similar risk levels.
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6 Conclusion and Future Work

This chapter summarizes the thesis and outlines possible improvements for
future work.

6.1 Conclusion

This thesis introduced the EAPSO (Energy Aware PSO) method as a search
mechanism for a swarm of aerial micro-robots. For that, we have defined some
objectives. Based on these objectives, we conclude this thesis.

Objective 1: Modeling a general movement behavior for

the individuals in a swarm

We build a movement model for the individuals in a swarm with different states
and actions. Each individual has the ability to choose between different states
and actions. We have defined two states: “Ground” and “Air”. Each state has
its own actions. In state “Ground”, the following actions can be selected: start
and charge. The state “Air” completes the model with the following actions:
fly, hover, land, and wait. With the defined states and actions, the necessary
range of functions were described.

Objective 2: Building a simplified model of energy con-

sumption for the individuals, based on FINken-III

We have introduced a simplified model of energy consumption for the individ-
uals, based on the aerial micro-robot FINken-III. The energy of an individual
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is defined in units per iteration and several constants represent the energy
consumption of different actions.

Objective 3: PSO-based search mechanism which considers
the amount of energy consumption for each individual

The proposed model is built upon the default PSO with an additional multi-
criteria decision making aspect for the individuals which make a decision before
starting a movement. The decision is made based on two objectives, profit in
terms of the overall gain in the search process and cost in terms of the energy
consumption. The profit is calculated with an approximation of the landscape.
We have used weighted sum approach and an adaptive version for the decision
making.

The algorithm uses the simplified model of energy consumption, a “k-Nearest-
Neighbor” neighborhood topology and the discrete time flight (from PSO) in
the search mechanism.

Objective 4: Implementation of the Energy Aware PSO

approach for evaluation and future projects

The implementation includes all described components of the EAPSO ap-
proach and the structure is based on the standard PSO. The main components
are the swarm and the particle class. The movement model is implemented in
the state class and the energy class describes the model of energy consumption
for the individuals. The multi-criteria decision making process is realized by
neighborhood and the leader selection class.

Objective 5: Evaluation of different EAPSO methods, to
show whether the methods work out as desired

In the experiments, the different methods (careful, balanced, risky, random
and adaptive) are examined. We have shown how the methods work in dif-
ferent landscapes and pointed out some advantages and disadvantages. For
that, the convergence of the function value, the moved distance per iteration
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and the energy in the system are measured. The experiments on three test
problems (Sphere, Ackley and Rosenbrock) show that EAPSO can be used
as a search mechanism for swarm of aerial micro-robots and integrating the
decision making process in the optimization can extensively reduce the energy
consumption, while the quality of search will be influenced.

6.2 Future Work

This work has opened a large number of research questions for future work.
Below we present some ideas that can help to improve the algorithm.

As an extension of the existing multi-criteria decision making a learning system
can be used. While the copters are flying, they can collect data with various
sensors for later evaluation. One option is to learn the PSO parameters w, C
and (5. These parameters are constant for the purpose of simplification in our
experiments. With the help of the previous movements, sensor data, and some
decision rules, it is possible to learn the parameters of the PSO formula. Thus,
an adaptation to the landscape is possible. Another variation is the risk value
itself, to incorporate as a kind of learning factor. A problem that becomes
clear here is the amount of sensor data that accumulates the copter itself or
from his neighborhood. To process and filter the important data presents a
challenge.

Another idea is to monitor permanently the sensor values (especially the height
sensor) during the flight. A disadvantage of the current model is that only the
start and the end point of movement is known. The structure of the landscape,
which is overflown in the movement is not stored or analyzed. The idea is to
analyze the covered distance after the actual movement and verify whether
a better function value is found on the route. If this is the case, the copter
can decide to plan the next flight in the direction of this point. Alternatively,
the copter can compare the actual target point with the new one and decide
to terminate the flight. Another advantage, resulting from the analysis of
the trajectory is the better understanding of the landscape. The more known
points of the landscape are available, the better is the approximation of an
unknown point. As described in 3.7, the approximation of the environment
is an important part of decision making. Therefore, in future work, this part
should be further explored.
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To improve the approximation, an adaptive approximation size can be used.
Thus, each individual can decide if he increases or decreased the number of
points for the approximation. Particularly useful is this mechanism at the
Ackley function. Individuals can detect that the error is too large, and increase
the amount of points. In this case, not only the local optimum is approximated,
but also other parts of the function. In the Sphere function, individuals can
use more points at the start and less later. Thus, the error at the beginning is
minimized and computing capacity can be saved.

Another approach is to work with multiple tasks. Here it is possible to specify
multiple targets (waypoints) for the entire swarm that needs to be reached.
These waypoints can be local optima in a function or an individual function.
In this case, the entire swarm flies from target to target. Another possibility
is to give the swarm or each individual the ability to decide independently
what goal they want to track. Again, the risk value can influence this decision.
Individuals with low energy or small risk values can work on nearby targets. In
relation to the adaptive approach, the goal of an individual may change over
time. Individual with a high level of risk can decide to choose a distant goal.
After some time, when the power runs low and the individual is in the vicinity
of another target, it can decide to visit a new destination. In this approach, we
need a threshold providing information about the processing status of a task.
If a task is almost completely fulfilled (e.g. the minimum is already found), it
is unattractive for other individuals and they look for another destination.

The following idea deals with the model of the movement and the possible
actions, described in Section 3.1. So far, the copter performs every move, even
if they are very small. Here it is possible to let the copter decide whether the
landing or the hovering action is more energy efficient than the fly. For this
purpose, the movement cost and the profit must be considered. In the event
that the cost of a small fly is too high in relation to the profit, the copter can
decide not to fly. Thus, the copter can save some energy. However, there are
two problems. On the one hand, it may happen that the individuals can only
decide between small movements and no longer fly to the optimum. On the
other hand, the decision whether a flight is too expensive or the profit is too
small, is not easy.

Another approach is to integrate the risk value or the energy into the
PSO formula. One possible option is the constriction factor proposed by
[Clerc and Kennedy, 2002] and [Eberhart and Shi, 2000]. This is actually used
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to improve the control of the swarm. For that, the equation from Section 2.1 is
multiplied by the constriction factor X'. The factor is usually a constant value,
but it is possible to use the energy level as a factor. Thus, the movement can
be slowed down and the individuals move dependent on their energy level.

Ti(t + 1) = X[wii(t) + Cr1(Prest — (1)) + Cocha(T, — Z(t))] (6.1)

The evaluation has shown that the charge level has a large effect. A disad-
vantage which has been shown was the loading of the individuals. Caused
by the fact that the individuals recharge up to a power level of 50 percent,
the individuals are not able to fly long distances. Here it is useful to raise
the percentage. Another possibility is to let the individuals decide whether
a longer recharging time is useful or not. Factors can be the distance to the
(calculated) optimum, the distance to the other individuals or movements in
the past. Thus, the individuals can reach the target quickly. Once this is
achieved, the energy-saving characteristic can be used.

These and other approaches can help to make the presented algorithm better
and more efficient. The results also motivate further research in this area. The
next step is to work on the assumptions and implement the search mechanism
on our Hardware platform (FINken-IIT).
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