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Abstract

Hyper-heuristics are methods that combine several different strategies from
different optimization algorithms, which can improve the generality of the op-
timization process and searchability on a range of problems with different
characteristics [1, 2|. So far, hyper-heuristics for solving continuous multi-
objective problems have not received much attention in the literature, and
even less attention has been paid to hyper-heuristics that use Multi-objective
Evolutionary Algorithms (MOEAs) [1, 3-5].

In this thesis, an offline selection hyper-heuristic using MOEAs is devel-
oped and investigated. To the best of the author’s knowledge, the Offline
Learning Hyper-Heuristic collaborative Multi-objective Evolutionary Algo-
rithm (OHHMOEA) as presented in this paper is the first case of an offline
selection hyper-heuristic using MOEAs.

The offline hyper-heuristic is evaluated on nine different optimization prob-
lems. The performance of the hyper-heuristic is evaluated and compared with
the MOEASs used, and the results of the offline hyper-heuristic are thoroughly
analyzed. It is shown that OHHMOEA performs well and provides intriguing
results. The results highlight the advantage of hyper-heuristics in combining

several different strategies to solve optimization problems.
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1 Introduction and Motivation

Evolutionary Algorithms (EAs) are search methods that utilize higher-level
strategies, which aim to escape local optima, to perform robust search oper-
ations for a wide variety of optimization problems. EAs imitate principles of
biological evolution and belong to the family of meta-heuristics. When ap-
plied to problems with multiple objectives, these algorithms are called Multi-
objective Evolutionary Algorithms (MOEAs) [3, 6].

Optimization problems with enormously high computation power or time re-
quirements benefit significantly from the usage of EAs. EAs have also shown
promising results in many real-world applications such as cancer research [7],
wind turbine design [8], and aerodynamic drag optimization for high-speed
trains [9)].

Currently, there is a vast amount of existing MOEAs to solve multi-objective
optimization problems with a wide variety of strategies. The PlatEMO frame-
work, which is utilized in this thesis, currently supports 162 algorithms [10].
The combination of several different strategies can help to improve the gener-
ality of the optimization process and may improve the searchability on a set
of problems with diverse characteristics [1, 2.

Hyper-heuristics are high-level strategies, which aim to select the best heuris-
tic at different decision points to solve an optimization problem, and are one
method to combine several different strategies [1, 11].The literature to date has
focused mainly on the application of hyper-heuristics to combinatorial (non-
continuous) optimization problems, such as bin packing, scheduling, routing
and timetabling problems [1, 4, 12]. Far less focus has been given to continuous
multi-objective problems and even less attention was given to hyper-heuristics
using MOEAs [1, 3-5].

In literature, selection hyper-heuristics utilizing MOEAs have only been used
in combination with online learning to the best of the author’s knowledge |2,
4, 13-18].

Online learning is faced with computation budget constraints and is likely
based on sub-optimal decision-making since decisions are made ad hoc and
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following assumptions about the applied algorithms. Offline learning can over-
come these drawbacks by making decisions a posteriori based on the com-
plete results. In this thesis, the Offline Learning Hyper-Heuristic collaborative
Multi-objective Evolutionary Algorithm (OHHMOEA) is introduced. To the
best of the author’s knowledge, OHHMOEA is the first instance of an offline
selection hyper-heuristic using MOEAs. It shows remarkable results in optimiz-
ing of multi-objective problems. Moreover, the analysis of the offline learning
results gives important insights into the combination of different strategies in
optimization and hyper-heuristics.

1.1 Goals

The main objective of this thesis is to outline the concept for an offline
hyper-heuristic, named Offline Learning Hyper-Heuristic collaborative Multi-
objective Evolutionary Algorithm (OHHMOEA). The hyper-heuristic contains
a fixed set of MOEASs, which are optimized in a certain sequence to optimize a
given problem. The central objective of this thesis is to evaluate the results of
the hyper-heuristic based on the learned sequences by answering the following
questions:

1. Do certain sub-sequences of MOEAs occur more often than others?
2. Are the resulting sequences problem-specific?
3. How does the OHHMOEA perform compared to the selected MOEAS?

4. Are the results of the sequences ’stable’ if the population size, the func-
tion evaluations, the objective size, or decision variables are increased?

5. Are the learned sequences transferable to other problems?

6. Does the offline hyper-heuristic benefit from a reduced algorithm set?

1.2 Structure of Thesis

In Chapter 2, the fundamental knowledge, which is necessary for this thesis,
regarding Evolutionary Algorithms is explained. It will also introduce sev-
eral state-of-the-art MOEAs focusing on the main functionality and the differ-
ences. Afterward, an overview of the related work regarding hyper-heuristics




1.2 Structure of Thesis

is given in Chapter 3. Chapter 4 will explain the design and implementa-
tion of OHHMOEA. The results and the evaluation of the experiments on
OHHMOEA are presented in Chapter 5, followed by Chapter 6, which con-
tains the conclusion and future work to this thesis.







2 Evolutionary Multi-Objective
Optimization

In this chapter, the main components of evolutionary algorithms as they relate
to the topic of this thesis are explained. First, it will give a general introduc-
tion to Evolutionary Algorithms in Section 2.1. Afterward, quality indicators
are presented in Section 2.2. The various MOEAs utilized in this thesis are
introduced in Section 2.3. In Section 2.4, the chapter concludes with an intro-
duction to the benchmark problems utilized for the evaluation.

2.1 Evolutionary Optimization

Evolutionary Algorithms are optimization techniques that imitate principles
of biological evolution and belong to the family of meta-heuristics. Meta-
heuristics, especially Evolutionary Algorithms, do not guarantee to find an
optimal solution but usually find solutions with a sufficiently good quality [6].
Optimization problems are defined as displayed in Definition 2.1.

Definition 2.1 (Optimization problem [6]). An optimization problem consists
of the pair (€, f).

The search space of potential solutions 2 and an evaluation function f : 2 — R
that assigns a quality assessment f(w) to each solution w € €.

An element w is an exact solution of (Q, f) if it is a global optimum of f.
An element w is a global optimum of f if: Vw' € Q @ f(w) = f(w')

Where f(z) = f(z) means that x has a quality f better than or equal to f(z)

Evolutionary Algorithms usually contain four main parts. A fixed-size
population of solutions, a mating pool selection operator, a genetic operator,
and an environmental selection [6].

The mating pool selection operator selects two parent solutions from the
population. The genetic operator then uses the two parents to produce a
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child solution. The genetic operator usually combines the two parents via
crossover and mutates the produced child. This child gets added to the
population, and the environmental selection discards the worst solution. The
main functionality of environmental selection is to keep the population at a
constant size.

Algorithm 1 displays one basic Evolutionary Algorithm named Genetic
Algorithm. In this thesis, all algorithms following a similar scheme to the
displayed Genetic Algorithm are referred to as Evolutionary Algorithms. The
stopcondition in Algorithm 1 is usually satisfied after a specific amount of
iterations, generations, or function evaluations. Its truth value is evaluated
each time it is called. Definition 2.1 and also the Algorithm 1 assume that the

Algorithm 1 Genetic Algorithm
Input: Optimization Problem Z
Output: Population P

1: P < Initialization(Z)

2: P.CalculateFitness(Z2)

3: while stopcondition # True do

4: MatingPool <— FitnessSelection(P)
Offspring < GeneticOperator(MatingPool)
Offspring.CalculateFitness(Z)

P <+ EnvironmentalSelection(P, Offspring)
return P

problem is single-objective. With more than one objective, these problems
are categorized as multi-objective problems. Optimization problems become
more complex to solve when more objectives exist. The comparison of the
solutions in the selection process has to be changed because these problems
have different objectives, which usually compete with each other to some
degree. A solution can not be perfect in one objective while simultaneously
being very good in another objective if the objectives are conflicting. It is
necessary to find a trade-off between objectives.

Therefore, solutions to multi-objective problems are usually compared by
using Pareto-dominance, which is based on the definition of Pareto-optimality
in Definition 2.2. The definition of Pareto-optimality is related to the
definition of the global optimum in Definition 2.1.
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Definition 2.2 (Pareto-optimality [6]). A solution w is called Pareto-optimal
w.r.t. the objective functions f; with ¢ € 1,--- | k if there does not exist any
other w’ in the search space 2 for which these two properties are both true:

filw") = filw) Vil<i<k (2.1)
filw') = fi(w) Ji1<i<k (2.2)

Optimization algorithms do not consider the whole search space when com-
paring solutions to each other, so Pareto-dominance is used instead of Pareto-
optimality. Pareto-dominance (or non-dominance) only considers the known
solutions in the population. A solution s is considered non-dominated if there
does not exist any other solution s’ in the population for which the Equa-
tions 2.1 and 2.2 in Definition 2.2 are true.

The solutions in the population are usually mutually non-dominated to each
other, which means they are theoretically of equal quality in the objective
space. That is especially the case when methods based on Pareto-dominance
are utilized. That raises the question how the quality of a specific solution in
the population can be determined if not by Pareto-dominance. That is espe-
cially important when the goal is to compare different optimization methods on
benchmark problems. Usual qualities compared are diversity and convergence.
Diversity is meant to prevent premature convergence to specific suboptimal so-
lutions and also ensures that the solutions are spread in the objective space [6].
Convergence is usually measured in comparison to the Pareto-optimal front.
Convergence and diversity can be calculated by metrics called quality indica-
tors.

2.2 Quality Indicators

An important topic in MOEA is quality indicators, also called evaluation met-
rics, which are also used for the calculation of the quality contribution of spe-
cific solutions to the population [6]. These metrics can then calculate which
solutions to keep to minimize the quality loss. More importantly, these metrics
are used to compare two Pareto-front approximations with each other. This
comparison is usually performed with the Pareto-optimal front, which is a set
of Pareto-optimal solutions. Normally, convergence does not consider diver-
sity, which is why indicators that also measure diversity exist. Some indicators
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also measure the diversity in the decision space.

The quality indicators mentioned in this thesis are the HV, R2, the GD and
the IGD. For the evaluation of MOEAs, these quality indicators are used in
conjunction with benchmark problems.

Hypervolume

The hypervolume (HV) indicator is defined as the area or volume that is dom-
inated by a Pareto front approximation, with the boundary of that volume
defined by a reference point [6, 19, 20].

The hypervolume for a Pareto-set approximation A and a reference point 7 is
defined as follows:

HV(A,7) =V (U H(a, r)) , (2.3)

acA

were H returns the hyper-cubiod that is spanned between the objective vector
a and the reference point 7 and V returns the volume of the union of all
hyper-cuboids.

One of the first methods proposed to calculate the HV and the most widely
known is the Lebesgue measure [21]. However, its time complexity has been
shown to be exponential in relation to the dimension of the optimization
problem. Algorithms that calculate the HV with a lower time complexity have
also been proposed. If the exact HV values are not of a particular interest
the HV can also be approximated by Monte Carlo simulation, which is able
to provide values within a 0.2% error margin and with a much lower time
complexity in higher dimensions [22].

In Figure 2.1 an example for the hypervolume is shown. For the HV indicator,
Pareto front approximations that are further from the reference point have
larger hypervolume values. Furthermore, Pareto front approximations in
which the solutions are further apart produce larger hypervolume values,
than if the solutions are closer together. Hence the HV provides a qualitative
measure of convergence as well as diversity (spread in the objective space) [23].
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fa

ref

h

Figure 2.1: Example for the hypervolume indicator for two objectives. The
pareto set approximation are the points a,b,c,d and the reference
point is shown in red. The hypervolume is the green area.

R2 Indicator

The R2 indicator uses utility functions, which map an objective vector to a
scalar value. Utility functions may be based on the weighted sum and or
weighted Tchebycheff functions.

The R2 indicator for a solution set A with a set of utility functions U is defined
as [24]:

acA
uelU

R2(A,U) = —ﬁ > max{u(a)}. (2.4)
The R2 indicator summarizes the maximum utility function values in the so-
lution set and then builds the negative of the average. The above definition is
for the usage in minimization. In Figure 2.2 an example with weighted sum
functions is shown.
The HV and the R2 indicator are often compared to each other because they
have similar properties and have been shown to be highly correlated with each
other [24]|. The R2 indicator is often preferred over the HV because the runtime
of the HV calculation is exponential, and using the HV results in populations
that are biased towards the knee regions [25, 26]. However, the HV indicator
fulfills the important property of strict monotonicity, i.e., the HV of a set that
dominates another set has to have the better HV value. For the R2 indicator,
the values for such sets may be equivalent in some specific cases, which means
it is only weakly monotonic [24].
In Figure 2.2 an example for the R2 indicator is shown.
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fay

’
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////(,

e fi

Figure 2.2: Example for the R2 indicator using three weighted sum functions
as utility functions, which are displayed as dashed red lines. The
solutions closest to a dashed line maximize the respective weighted
sum function. The solutions that are selected are a, b and d.

GD and IGD

The Generational Distance (GD) and Inverted Generational Distance (IGD)
are related to each other. The equation to calculate both is similar with only
a minor change. For a Pareto-optimal set P and a Pareto-set approximation
A the GD and IGD are defined as follows [27]:

1/q

GD(P,A) = ﬁ (Z d(a, P)q) (2.5)
1/q

IGD(P, A) = ﬁ S d(7, 9) (2.6)

pepr

where d(g, X) returns the Euclidean distance of the objective vector § with
the closest member in the set X. The parameter ¢ is usually chosen as two.
Figure 2.3 displays an example for the GD and IGD. The GD reflects how far
the Pareto-set approximation is from the Pareto-optimal front and thus serves
as an indicator for the convergence [28]. The IGD also serves as a measure for
the diversity of the Pareto-set approximation by calculating the closest dis-
tance of the Pareto-optimal set to the Pareto set approximation [28].

For the application of both metrics, it is required that a sample of the Pareto-
optimal set of an optimization problem is known. Problems for which this is
the case are only test problems, and using these metrics for real-world prob-
lems proves to be rather difficult. However, methods to use the GD and IGD

10
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fa fa

S fi

(a) GD (b) IGD

Figure 2.3: The respective Euclidean distances as black and red lines used by
GD and IGD. The Pareto-set approximation is the set of points
a,b,c,d, and the red points are samples of the Pareto-optimal front.

for problems without a known Pareto-optimal front have been proposed, which
estimate the extreme points of the problem and then sample points on a hy-
perplane to generate a Utopian Pareto-optimal set [29].

2.3 Multi-Objective Evolutionary Algorithms

With multi-objective optimization and Pareto-dominance, the number of
mutually non-dominated solutions may exceed the population size. Non-
dominated solutions are theoretically of equal quality, and one problem that
arises is what strategy is applied to select solutions optimally and how optimal
is defined.

Since all solutions are theoretically equal, the naive solution is randomly cho-
sen. However, several strategies and selection mechanisms for evolutionary
algorithms have been contrived in the literature. MOEAs can also be catego-
rized into their approach to handling an optimization problem, such as Pareto
dominance-based, decomposition-based, and indicator-based [30].

Section 2.3 describes all MOEAs mentioned in this thesis. It will describe the
main aspects and show the major differences to the other algorithms.

Some of the selected algorithms are specially designed for specific problem use-
cases. One of that is many-objective optimization, which deals with problems
that have four and up to 20 objectives [31, 32]. With many objectives, the
problems get more complex to solve and also face the curse of dimensionality,

11
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which means simple Pareto-based approaches do not work well anymore [33].
Another aspect is large-scale multi-objective optimization, which usually re-
lates to problems with a large number of decision variables and is then referred
to as many-variable optimization. Many-variable optimization usually handles
problems with up to 5000 decision variables or more, with the lower end at
about 50 variables [34].

When the term Multi-objective Evolutionary Algorithms (MOEAs) is used,
it includes all the mentioned algorithms. In this thesis, the distinction be-
tween multi-objective, many-objective, and many-variable is more relevant for
classifying optimization problems.

SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) uses a regular popu-
lation and a continuously updated archive, which is limited in size [35]. SPEA2
gives each individual in the population and the archive a strength value, which
is the number of individuals it dominates. Then, a raw fitness value for each
individual is calculated, which is the sum of the strength values of all the dom-
inators of a respective individual. Afterward, a density estimation calculation
is performed based on the distance to the k-th nearest individual. Finally, the
resulting value of the density estimation and the raw fitness are summed to
calculate an individual’s fitness.

In each algorithm iteration, the non-dominated members (fitness lower than
one) of the population and the archive are copied to the successor archive. A
truncation operator is applied if the number of individuals in the archive ex-
ceeds the set size. The truncation operator iteratively removes the individual
with the smallest k-th distance until the set archive size is reached.

Finally, for the mating selection to create the next population, only archive
members are considered.

SPEA2SDE

Li, Yang, and Liu combined dominance and decomposition-based approaches
to develop SPEA2SDE, an extension to SPEA2 for many-objective optimiza-
tion. It uses a shift-based density estimation and focuses not only on the
diversity but also the convergence of the population [32].

The density estimation mechanism in SPEA2SDE shifts the position of other

12
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individuals in the population. For a specific individual for which the density
is calculated, every other individual that performs better than that individual
on an objective will be shifted to the same position on this objective, and
then the density is calculated. That means individuals, which initially had a
low density and a poor convergence, are assigned a high-density value through
the shifting method. That results in the algorithm preferring solutions with
low density (good diversity) and good convergence over low density and poor
convergence individuals.

NSGA-II

The Nondominated Sorting Genetic Algorithm II (NSGA-II) was first de-
scribed by Deb et al. in 2002 [36]. Its selection process creates different groups
for the solutions called fronts. The fronts are based on the number of times a
solution is dominated by other solutions, called the domination counter. That
means the first front contains all non-dominated solutions. The next front
contains all solutions that are non-dominated, not considering the solutions in
the first front.

The fronts are ranked, and the first n fronts that fit precisely into the pop-
ulation are taken. If the population still has remaining space left, the next
front is partially taken. The solutions from this front are selected based on
crowding distance. Crowding distance is a density estimation of the solutions
surrounding a particular solution. It is calculated based on the absolute dis-
tance in the specific objectives of the surrounding solutions. Solutions with
greater crowding distances are preferred, which maximizes the diversity of the
selection of solutions. Boundary points in the front are always selected first
because they get the highest crowding distance assignment.

NSGA-III

As an extension of NSGA-II, Deb and Jain developed a reference-point-based
many-objective algorithm named NSGA-III. NSGA-IIT emphasizes population
members who are non-dominated yet close to a set of supplied reference points.
The base algorithm of NSGA-III is the same as in NSGA-II. However, the
crowding distance operator is replaced with another approach [31].

The algorithm uses reference points, which are systematically determined and
evenly spread on a normalized hyper-plane with (M-1)-dimensions for an M-
objective problem. Then, reference lines are constructed by joining the points
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with the origin.

The selection mechanism normalizes the objective space, and each population
member is associated with the reference point to which reference line they are
the closest.

Each reference point gets a niche counter, which is the number of population
members from the already selected population associated with this point. The
last front members, which do not fit into the population, are then iteratively
selected based on the reference points with the smallest niche counts. The
niche counts are updated after every newly selected population member.

MOEA/D

The idea of MOEA /D is to decompose the multi-objective problem into several
single-objective problems, which are optimized simultaneously [37]. MOEA /D
aims to find different parts of the Pareto-front by solving these single-objective
problems. The creation of the single-objective problems is done via scalariza-
tion functions, which can be designed in various types. The simplest one is
using a weighted sum over the objectives of each individual, for which sev-
eral different weight vectors are utilized. Other more complex approaches
are the Tchebycheff and penalty-based Boundary Intersection approach. Both
approaches also use weight vectors and a reference point to calculate the scalar-
ization functions.

The Tchebycheff approach minimizes the maximum value in the resulting vec-
tor of the weight vector multiplied with the distance of the reference point and
an individual.

The penalty-based Boundary Intersection approach uses two vectors, an ideal
vector, and a direction vector, and the method minimizes the distance to both,
with the distance to the direction vector penalized. The ideal and direction
vectors are both based on the definition of the weight vector.

MOEA /D also defines a neighborhood structure to each weight vector and uses
the solutions in this neighborhood to optimize each single-objective problem.

MOEA /DD

MOEA/DD is an extension of MOEA /D for many-objective optimization,
which is also based on decomposition as MOEA /D and additionally also in-
cludes a dominance-based mechanism, which is related to NSGA-III [38|. The
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basic algorithm is similar to MOEA /D. It also uses weight vectors and scalar-
ization functions (penalty-based Boundary Intersection (PBI)) to divide the
problem into subregions and to measure the fitness value of a solution.

The mating selection also uses a neighborhood structure, with the added pos-
sibility to select from the whole population for possible parent solutions. Each
offspring is then iteratively added to the parent population, and then a solu-
tion is deleted based on non-dominated sorting, inspired by NSGA-III. If the
fronts do not fit exactly into the population, the algorithm employs density
estimation and scalarization functions to select from the last front. The most
crowded subregion is chosen, and the worst value based on the scalarization
function in that region is deleted. However, to preserve diversity, solutions in
an isolated subregion are not deleted, and instead, a solution from the whole
population is chosen, based on the most crowded subregion, to be deleted.

IBEA

The Indicator-Based Evolutionary Algorithm (IBEA) was developed by Zitzler
and Kiinzli to allow the flexible integration of preference information [39]. It
is a relatively simple algorithm that assigns each population member a fitness
rank using a binary function quality indicator. Based on this indicator, the
algorithm calculates the loss in quality if a specific solution is removed from
the population. The loss in quality is then used as the fitness of a solution.
The solution with the smallest fitness value is removed from the population
for the environmental selection, and the fitness ranks are recalculated. That
is repeated until the set population size is reached.

HypE

The HypE algorithm was developed by Bader and Zitzler and is similar to
IBEA. Both use an indicator function to calculate the fitness value for the
members of the population. However, HypE specifically uses the HV indicator
for this task [22].

The HV fitness is calculated by using the aggregate value of the HV contri-
butions of each individual. The calculation also does not require that the
members of the population are mutually non-dominating.

The algorithm applies a non-dominated sorting algorithm and ranks solutions
into fronts for environmental selection. In the last front, the selection is per-
formed by calculating the expected loss in HV if a solution is removed. The
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mating selection is made based on the scalar HV fitness values.

A major contribution of HypE is that it uses Monte Carlo simulations based
on sampling points to obtain an estimate of the exact HV values because using
the exact calculation is too computationally expensive for problems with more
than three objectives. The algorithm uses the exact calculation for less than
or exactly three objectives.

MOMBI-II

MOMBI-II is an indicator algorithm developed by Hernédndez Goémez and
Coello Coello using the R2 indicator, which is described in Section 2.2. It
is based on its predecessor, the MOMBI algorithm [40)].

MOMBI-II uses an R2 ranking scheme, which works similarly to non-
dominated sorting. A specific solution optimizes each utility function, and the
solutions are grouped according to which optimize the set of utility functions.
This set of solutions gets the best rank, are removed from the population, and
the second rank is determined similarly. That is repeated until all the solutions
are assigned a rank. When two solutions have the same quality, the Euclidean
norm is used instead [40, 41].

For the R2 indicator, MOMBI-II uses the achievement scalarizing function
(ASF) metric, which uses weight vectors and reference points, the ideal and
nadir point. Compared to MOMBI, MOMBI-II contains an improvement in
the calculation of the reference points.

ThetaDEA

ThetaDEA aims to improve the convergence of the NSGA-III algorithm by
using the fitness assignment scheme used in MOEA /D. The algorithm aims to
ensure not only convergence but also diversity [42]. ThetaDEA has parallels
to the way MOEA /DD works.

At first, the algorithm assigns the solutions to different subregions (called clus-
ters) represented by well-distributed reference points. The algorithm defines a
new dominance relation called §-dominance, which uses the information about
the clusters and the PBI values of the solutions. Solutions can only #-dominate
each other when they are located in the same subregion, and for the relation
inside the subregion, the PBI is utilized. For the environmental selection, 6-
non-dominated sorting is applied. The solutions from the last front are selected
randomly. For the mating selection, random selection is applied as well.
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GLMO

GLMO is the only large-scale multi-objective optimization algorithm men-
tioned in this thesis. It uses the Grouped Linked Polynomial mutation op-
erator. The Grouped Linked Polynomial mutation operator combines the
Grouped Polynomial mutation with the Linked Polynomial mutation. The
linked Polynomial mutation alters the decision vector based on a particular
distribution around the current vector, and which decision variables are mu-
tated is chosen uniformly random. The amount of change is the same, i.e.,
linked for all decision variables [43].

Grouped Polynomial mutation separates the variables into a predefined num-
ber of groups based on decomposition strategies. A group is randomly chosen,
and the mutation is then applied to the whole group. Contrary to Linked
Polynomial mutation, the amount of change for each variable in a group is not
linked. In Grouped Linked Polynomial mutation, the change for all variables
in a group is the same.

This new mutation operator can be used in an arbitrary MOEA. Zille et al.
used the operator in SMPSO, NSGA-IT and NSGA-III. In this thesis GLMO
is utilized in combination with NSGA-III.

2.4 Benchmark Problems

There are several problem sets available to benchmark MOEAs. Two classi-
cal scalable test suites in multi-objective optimization are the DTLZ [44] and
WFG [45] optimization problem test suites [46, 47]. The ZDT test suite is
another popular test suite [48].

Test problems can be classified in multiple ways, and one vital interest is in
the fitness landscape. Interesting characteristics here are the modality and the
geometry of the front. The modality can be either unimodal or multimodal.
Multimodal problems have several local optima and frequently can also be
deceptive when the majority of the search space favors a deceptive optimum.
Since multimodal problems have multiple local optima, they are more chal-
lenging to solve, and multimodal problems that are also deceptive make this
even more difficult by making the global optimum harder to reach [47].

The geometry can be described in various ways. The used problems in this
thesis are either linear, concave, degenerate, convex, mixed, or disconnected.
Mixed fronts have connected subsets that are convex, concave, or linear.
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Table 2.1: Properties of the DTLZ, WFG, and ZDT test problems utilized in

this thesis for the experiments.

Problem Geometry Modality
DTLZ1 linear multimodal
DTLZ2 concave unimodal
DTLZ3 concave multimodal
DTLZ4 concave unimodal
DTLZ7 disconnected multimodal
WFG1 convex unimodal
WFG2 || convex, disconnected unimodal
WFG3 linear, degenerate unimodal
WFG4 concave multimodal
WEFGH concave unimodal, deceptive
WFG6 concave unimodal
WFG7 concave unimodal
WFGS8 concave unimodal
WFG9 concave multimodal, deceptive
ZDT1 convex unimodal
ZDT2 concave unimodal
ZDT3 disconnected multimodal
ZDT4 convex multimodal
ZDT6 concave multimodal

M-dimensional optimization problems generally have (M-1)-dimensional
Pareto-fronts and if the "dimension" of the Pareto-front is smaller than M-
1, it is referred to as degenerate [49]. For example, a line in a 3-dimensional
space is considered degenerate, while a plane in a 3-dimensional space is not.
A disconnected front has several sets that are not connected. If the geometry is
disconnected, it can be challenging to ascertain if the front is concave, convex,
or mixed as this is not well defined for disconnected sets [47]. However, the
separate disconnected sets can be described in their geometry.

The properties of the test problems are listed in Table 2.1. The test problems
DTLZ5 and DTLZ6 are excluded from this thesis as their properties are un-
known with more than three objectives [47].

The DTLZ and WFG problems are scaleable, concerning the number of ob-
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jectives and decision variables. All ZDT problems have two objectives and are
not scaleable. The ZDT test suite is far from comprehensive because of its
non-scalability and the few numbers of objectives, which is not appropriate
for multi-objective optimization and neither many-objective optimization [47].
Most works related to this thesis often rely on the DTLZ and the WFG test
problems for these reasons.
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3 Hyper-Heuristics for
Optimization

A heuristic is a guided search for finding approximate solutions to specific
optimization problems of which only limited knowledge is available. Meta-
heuristics are search methods that utilize higher-level strategies, which aim to
escape local optima, to perform robust search operations for a wide variety of
optimization problems [3].

Hyper-heuristics are high-level strategies, which aim to select the best heuristic
(referred to as low-level heuristic) at different decision points to solve an opti-
mization problem [1]. A hyper-heuristic is essentially a heuristic for choosing
heuristics and does not directly operate on the underlying search space of the
optimization problem [3].

Burke et al. define a classification of hyper-heuristic using two considera-
tions. The hyper-heuristic search space and the feedback during learning.
Regarding the hyper-heuristic search space, hyper-heuristics can select or
generate. Hyper-heuristic selection methods choose existing heuristics while
hyper-heuristic generation methods generate new heuristics from specific com-
ponents [3].

The feedback during learning can be categorized into online learning, offline
learning, and non-learning. In online learning, the feedback is directly used
while the low-level-heuristic solves a problem. Offline learning is the opposite.
The feedback is used after the problem is solved, or there are training instances
from which knowledge can be gathered. A non-learning hyper-heuristic simply
chooses randomly or in a predefined order [3].

In the literature, selection hyper-heuristics are usually divided into two main
stages: the heuristic selection, and move acceptance strategy. The heuristic
selection decides which heuristic is applied next at a specific decision point.
The move acceptance decides if a solution produced by the applied heuris-
tic is accepted or not. That is mainly based on whether the solution quality
is improved, stays the same, or worsens and can be deterministic or non-
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deterministic [14].

The literature has previously mainly focused on applying hyper-heuristics for
combinatorial (non-continuous) optimization problems, such as bin packing,
scheduling, routing and timetabling problems [1, 4, 12|. Much less focus has
been given to continuous multi-objective problems and even less attention was
given to hyper-heuristics using MOEAs [1, 3-5].

In 2011, McClymont and Keedwell were among the first to present a hyper-
heuristic for multi-objective problems using the DTLZ test problems. They
developed a novel Markov chain hyper-heuristic with reinforcement learning
using low-level heuristics based on peturbative local search [15].

The work by Maashi, Ozcan, and Kendall is one of the first studies that in-
vestigated selection hyper-heuristics for MOEAs [18]. Since then other related
works have been published [2, 11, 13, 50, 51].

This chapter aims to give an overview of the most important related works in
the current literature about hyper-heuristics using MOEAs. In the end, a short
overview of some related works focusing on offline learning for hyper-heuristics
is given.

3.1 Selection Hyper-heuristic

Maashi, Ozcan, and Kendall were one of the first to use a selection hyper-
heuristic in the context of Multi-objective Evolutionary Algorithms. Their
work is based on previous achievements in the field of hyper-heuristics. How-
ever, which were previously exclusively used for optimization encompassing
non-continuous optimization problems such as combinatorial problems or with-
out the usage of MOEAs [1, 18].

For the selection strategy Maashi, Ozcan, and Kendall employ a ranking
scheme based on four performance metrics. They use the algorithm effort
(AE), the ratio of non-dominated individuals (RNI), the hypervolume (HV)
(see Section 2.2) and the Uniform distribution of the non-dominated popula-
tion (UD). The AE measures the computation effort of an algorithm, the RNI
determines the fraction of non-dominated individuals in the population, and
the UD measures the spread of the non-dominated solutions along the Pareto-
optimal front. Each available heuristic is ranked in each of these performance
metrics. Then, each heuristic is ranked based on how frequently it achieves
the best rank, which is the final rank of each heuristic. This final rank is then
combined with the RNI value. Finally, this result is weighted and combined
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with the number of CPU seconds elapsed since the heuristic was last called.
That emphasizes the exploration of heuristics that are rarely selected. The
hyper-heuristic then greedily selects the heuristic with the highest value, and
all heuristics share the same population.

The hyper-heuristic employs a move acceptance strategy that accepts all solu-
tions irrespective of their quality.

The hyper-heuristic utilizes NSGA-II, SPEA2, and Multi-Objective GA
(MOGA) [52] as the low-level heuristics in the selection. The hyper-heuristic is
evaluated with experiments using the WFG test suite (WFG1 to WFG9). The
results are compared to NSGA-II, SPEA2, and MOGA. Of the nine test prob-
lems, the hyper-heuristic produces the best HV in six out of nine instances,
with NSGA-II producing better results in the other three test problems [14].
The authors further extended their hyper-heuristic by including non-
deterministic move acceptance methods. They employ the great deluge al-
gorithm and the late acceptance method as move acceptance strategies. The
great deluge algorithm accepts solutions that perform better and only accepts
solutions of a worse quality if they are above a certain threshold. This thresh-
old is increased gradually during the execution of the algorithm. The late
acceptance method only accepts solutions of better quality but compares the
current solution to a solution in a previous generation [14].

The hyper-heuristic performed best regarding the HV when the great deluge
algorithm was used as the move acceptance method.

3.2 Reinforcement Learning Hyper-heuristic

Li, Ozcan, and John developed a new approach to hyper-heuristics with
MOEASs by including a reinforcement learning functionality [13].

In their hyper-heuristic, each MOEA has a certain probability of being cho-
sen next after another specific MOEA. These probabilities are learned during
the execution of the hyper-heuristic by a reinforcement learning scheme. The
learning is based on the transition between two MOEA, namely the preceding
and current MOEA and the performance of the result of the current MOEA.
The performance is calculated with the HV, and they use the change in HV
before and after applying an MOEA for a linear reward-penalty method.

The transition matrix is then used in conjunction with a selection method.
For this hyper-heuristic, e-roulette greedy selection is employed. The selection
method first focuses on exploring the transitions in the early stages and then
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becomes more and more greedy. In the beginning, it only applies roulette se-
lection based on the transition probabilities for a specific number of iterations.
Afterward, it utilizes greedy selection based on the linear increasing probabil-
ity e. At last, the decision to switch to another MOEA occurs if there is no
improvement in the HV compared to the previous iteration below a particular
threshold value. The new population of a selected MOEA always replaces the
current population.

Additionally, there are two versions of the hyper-heuristic. The first version
uses all available MOEAs, while the second version performs a pre-selection
mechanism based on the HV and excludes all MOEAs that perform worse
than the median MOEA. Both versions then work the same, with the dif-
ference that the second version only uses a reduced subset of the originally
available MOEAs.

For the hyper-heuristic, they use the low-level heuristics NSGA-II, SPEA2,
IBEA. The hyper-heuristic is benchmarked on the test suits WFG and DTLZ
and compared to the performance of the included MOEAs. Overall, the hyper-
heuristic did not perform best on all problems but, on average, performs better
than each of the MOEAs individually. The pre-selection of well-performing
MOEAs in the second version of the hyper-heuristic helped significantly to
improve the performance.

3.3 Collaborative Hyper-heuristic

Fritsche and Pozo described the Hyper-heuristic collaborative Multi-objective
Evolutionary Algorithm (HHcMOEA) in which they used a novel method
allowing the different MOEAs to collaborate with each other, which is not
present in traditional hyper-heuristic approaches [2].

The collaboration was achieved by giving each MOEA its own population.
In the hyper-heuristics introduced previously, one population was used for
all MOEAs. The new population then usually replaces the current popula-
tion completely. However, using a single population can destroy either non-
dominated solutions of different strategies if applied consecutively [11]. The
idea behind using this collaboration method in this hyper-heuristic is that
MOEAs use widely different strategies and characteristics to solve a problem.
By giving each MOEA its own population, they retain the specific features
in the solutions which they are searching for. That is the case with the algo-
rithms MOEA /DD, which uses diversity as its strategy, and NSGA-II, which
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uses Pareto-dominance.

The main aspect in this hyper-heuristic is that the MOEAs communicate with
each other, called the migration step. In the migration step, the population
generated by the currently executed MOEA is sent to the MOEAS in its neigh-
borhood. Fritsche and Pozo used a broadcast neighborhood, i.e., every MOEA
is a neighbor of all others. Each MOEA which receives a population from
another MOEA merges it with their own population and then filters the result
using their own environmental selection.

The selection method in the hyper-heuristic gives each MOEA the same initial
probability of being selected and the heuristic selection method then randomly
selects an MOEA based on those probabilities. The R2 indicator compares the
quality of the current and previous population. If the quality of the current
population is improved, the probability of the respective MOEA is increased
by a fixed amount, otherwise, it is decreased.

The MOEASs used in their implementation of HHcMOEA are MOEA /D,
MOEA /DD, MOMBI-II, NSGA-II, NSGA-III, SPEA2, and ThetaDEA. In
their experiments, they also compare two versions of HHcMOEA, with and
without the migration step. Both versions and all of the MOEAs were evalu-
ated with 12 optimization problems: DTLZ1, DTLZ2, WFG1, WFG2, WFG3,
and their inverted counterparts. They also used four different settings for the
number of objectives: 3, 5, 8, and 10.

The results were evaluated using the average HV based on 20 independent
runs and compared using a statistical significance test. The result shown that
HHcMOEA without the migration step achieved the best average HV in only
1 out of 48 problem instances and was the best or equivalent to the best in 30
problem instances. With the migration step, it achieved the best average HV
value for 34 problem instances. In 46 out of 48 problems, it was the best, or
equivalent to the best result.

The results show that the collaboration between the MOEAs presents a sig-
nificant improvement compared to a hyper-heuristic without the collaboration
method.
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3.4 Collaborative Hyper-heuristic for
Many-objective Optimization

Similar to the HHcMOEA algorithm described in Section 3.3, Fritsche and
Pozo developed the HH-CO algorithm, which is also based on the basic prin-
ciple that every MOEA has a population and exchanges information between
themselves [11]. Contrary to the previous Section 3.3, which focused on multi-
objective problems, they developed the algorithm to optimize problems with
a high number of objectives (many-objective problems).

The algorithm works almost identical regarding the collaboration of the
MOEASs, the migration step. Each MOEA has its own population, and when
it is selected for the optimization, it returns a new population, which is shared
with the other MOEAs. In this migration step, every MOEA updates its own
population based on its own environmental selection. That prevents an MOEA
from losing solutions that would qualify for their specific criterion but that an-
other MOEA would not consider.

A crucial difference to the algorithm in Section 3.3 is the credit assignment.
For this algorithm, all MOEASs receive a reward at every iteration. The reward
is computed using the R2 indicator and compares the population before and
after an MOEA is executed. The algorithm then greedily selects the subse-
quent algorithm with the greatest improvement in the last execution.

The MOEAS used in their implementation are HypeE, MOEA /D, MOEA /DD,
MOMBI-IT, NSGA-II, NSGA-III, SPEA2, SPEA2SDE, and ThetaDEA. For
the evaluation of the algorithm, they compared it to all the MOEAs men-
tioned above and to the hyper-heuristic presented in Section 3.2, abbreviated
with HH-LA. For the comparison, they used the MaF1 to MaF15 optimization
problems, with different settings for the number of decision variables. They
also used three different settings for the number of objectives: 5, 10, 15.

The results were evaluated using the average HV and the average IGD based
on 20 independent runs and compared using a statistical significance test.
The results show that HH-CO achieves the best or equivalent IGD values in 43
out of 45 problem instances. HH-LA achieved the best or statistically equiva-
lent to the best IGD values in only 10 problem instances, and the best value in
1 problem, while HH-CO achieved the best value in 16 problems. The values
for the HV show similar results.

Overall, HH-CO performed the best of all compared algorithms, while HH-LA
performed even worse than the best MOEA.
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Fritsche and Pozo also applied HH-CO to a real-world many-objective prob-
lem, the wind turbine design problem [8]. The wind turbine design problem is
a constrained real-world many-objective continuous problem and has five ob-
jectives, 32 decision variables, and 22 constraints. On the wind turbine design
problem, HH-CO achieved the second-best HV, with NSGA-III performing
best, but overall the hyper-heuristic did not perform statistically significantly
different.

3.5 Offline Learning Hyper-heuristic

Offline learning selection hyper-heuristics are a topic that has not received
much attention in the literature. The study by Yates and Keedwell is one
recent work that examines offline learning in regards to hyper-heuristics [53].
The base of their study is an online hyper-heuristic for combinatorial optimiza-
tion problems in four different problem domains. The online hyper-heuristic is
executed on these problems and can decide between several classes of low-level
heuristics to construct sequences. This online learning process is then saved in
a database and utilized to learn effective sub-sequences of low-level heuristics
statistically offline. The offline learning effectively finds sub-sequences that
work well in the same problem domain. However, across different problem
domains, offline learning could not generalize well and was examined to be not
suitable [53].

The authors further extended this work by not only relying on the statistical
connection between heuristics but also examining sub-sequences based on the
objective function value they produce on optimization problems [54]|. That
is done by comparing the logarithmic objective value difference after a sub-
sequence has been applied to a problem. Each sub-sequence is then categorized
according to that. They show that effective sub-sequences can construct selec-
tion hyper-heuristics to provide significant performance improvements.

They have also successfully applied their algorithm to a real-world problem in
a subsequent study. The performance improvement from offline learning was
statistically significant. Furthermore, they offline learned from a smaller com-
putationally inexpensive problem and successfully transferred the knowledge
to a larger, more computationally expensive problem [55].
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3.6 Parameter Optimization

Parameter optimization generally concerns the optimal setting or configuration
of optimization and learning algorithms. This process is known as hyperpa-
rameter search or hyperparameter optimization in machine learning. Hyper-
parameters are the parameters of the machine learning algorithm, while the
machine learning algorithm optimizes different parameters in the underlying
model. Hyperparameters configure various aspects of the algorithm and sub-
stantially affect the resulting model and its performance. Hyperparameter
search is also very commonly practiced because the learning process in these
methods is influenced heavily by this set of parameters, and they must be set
appropriately to maximize the learning result [56].

Hyperparameter optimization is conventionally done manually or by evaluating
a set of parameters based on a priori knowledge. In contrast to these labor-
intensive methods, automated methods, such as local or exhaustive search
algorithms and genetic algorithms, can also be applied [30, 56].

Parameter optimization is also relevant in the field of Multi-objective Evolu-
tionary Algorithms (MOEAs). In MOEAs there are certain parameter config-
urations that are known to generalize well on a number of different problem
domains, while others settings are dependent on the problem domain and some
parameters are highly dependent on each other [57-59]. An optimal selection of
parameters has also shown to greatly influence the performance of MOEAs |30,
58-61].

If each configuration of an MOEA is considered its own instance of an algo-
rithm, it can be interpreted as finding the MOEA in a set of MOEAs which
best optimizes a specific optimization problem. Algorithms that optimize these
parameters can then be considered offline hyper-heuristics and hence are re-
lated to offline selection hyper-heuristics. Parameter optimization algorithms,
or offline hyper-heuristics for MOEAs differ from selection hyper-heuristics in
the crucial aspect, that they do not try to find a combination of MOEAs but
one single configuration of a MOEA that performs best [30, 57].

A recent example is the parameter optimization of MOEA /D using a genetic
algorithm by Pang, Ishibuchi, and Shang [30]. Optimizeable parameters are
the population size, the type of scalarization function and sub-parameters for
these functions, the type of crossover and mutation operators, and the proba-
bilities of the crossover and mutation operators. A genetic algorithm is used
a the optimizer for the offline hyper-heuristic and is configured with a 54-bit
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binary string encoding, a population size of 100, and executed for 300 gener-
ations. Each algorithm configuration is run for 10.000 function evaluations.
In the experiments, the hyper-heuristic was evaluated independently on the
three-objective test problems DTLZ1-4 and WFG1-6. The fitness to evaluate
the parameter settings is the normalized HV on the resulting population of
solutions for the test problems. The experiments obtained better performance
results with the optimized parameters for all test problems. The authors fur-
ther analyzed the ability of the parameters to be scalable concerning the num-
ber of objectives for the test problems by increasing them from three to five
objectives. Overall, the performance of the optimized parameters decreased
and is worse in two test problems compared to the performance of the original
MOEA /D without optimized parameters [30].

Based on the work by Pang, Ishibuchi, and Shang two similar studies were
conducted using MOEA /D with a solution selection framework, an addition
to MOEAs using an external archive to save solutions from which the solu-
tions are selected in the end [60, 61|. A parameter optimization algorithm very
similar to [30] was then applied to MOEA /D with and without the addition
of the solution selection framework. MOEA /D achieved significantly better
results with the solution selection framework and the optimized parameters.
The experiments also suggest that the optimal parameters differ substantially
when using an external archive |60, 61].
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4 Proposed Offline Learning
Hyper-Heuristic

In the previous Chapter 3, different approaches to constructing hyper-
heuristics were introduced. All approaches that used MOEAs as low-level
heuristics had in common that their design used online learning as an
approach. The offline approaches either did not use MOEAs or are more
similarly to parameter optimization i.e., using only one MOEA with different
configurations.

Online learning here refers to the procedure that while the hyper-heuristic is
running and solving an optimization problem, it has to decide ad hoc which
algorithm to execute next. That presents the hyper-heuristic with the difficult
task of choosing the best algorithms to solve the problem. As evidently shown
by the hyper-heuristics in Chapter 3 they perform well enough to produce
better average results than the original MOEAs used.

All the presented algorithms use some kind of reward function for that
task, and the selection of the following algorithm is often based on a greedy
approach or probabilistic choosing.

The hyper-heuristics assume that a certain algorithm is better than the others
by using these reward functions. The algorithm is executed, and afterward,
the next algorithm is chosen, which might be the same algorithm as before
if it performed well enough. Moreover, at the beginning of the execution of
these hyper-heuristics, no knowledge is available about the MOEAs. That
will cause the hyper-heuristics to make sub-optimal choices in the beginning.
The hyper-heuristics may also make sub-optimal choices during the execution
with a certain error percentage by relying on the assumptions made. In the
analysis of the HHcMOEA hyper-heuristic on the wind-turbine problem,
Fritsche and Pozo have shown that HHcMOEA takes the longest time to
converge compared to all the other MOEAs [8]. This behavior will likely
get worse the more algorithms are contained in the pool, which makes it
worthwhile to investigate offline hyper-heuristics.
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There also is the question of whether the reward functions used accurately
determine the next best algorithm. Most approaches outlined in the previous
chapters compare their hyper-heuristic only to a baseline hyper-heuristic,
which decides randomly on the next used algorithm. The different approaches
to a reward function also indicate that there may be an enormous amount
of possible reward functions, which work well. Mathematically, there are
even an infinite amount of reward functions possible. Some reward functions
may not even work for certain MOEAs, especially if considering MOEAs
designed explicitly for problem instances like many-objective or many-variable
problems. Since the user always chooses the reward functions, they may also
be biased.

That is why the reward function and the mechanism of choosing the sub-
sequent algorithm present a vulnerability in these hyper-heuristics and a
significant point of debate. A possibility to overcome this drawback in these
hyper-heuristics is to apply offline learning instead of online learning. In
offline learning a reward function is not needed.

The Offline Learning Hyper-Heuristic collaborative Multi-objective Evolu-
tionary Algorithm (OHHMOEA) presents an instance of an offline-learning
hyper-heuristic. In this chapter, OHHMOEA is described in its detail. It
first begins with an explanation of the theoretical design of the algorithm in
Section 4.1. In Section 4.2 the fitness metric used by the hyper-heuristic is
introduced, followed by Section 4.3, which describes how the algorithm was
implemented in the PlatEMO framework [10].

4.1 Algorithm Design

The base design of OHHMOEA is a simple hyper-heuristic algorithm. It is
based on the algorithms presented in the Sections 3.3 and 3.4, that is, it also
uses the migration step between the MOEAs. Algorithm 2 presents this base
algorithm in pseudocode, here named HHAlgorithm. The HHAlgorithm is
designed as an optimization algorithm, which takes the Sequence of MOEAs
0. The sequence of MOEAs ¢ is a list of indices with the length ¢. Each
index in the list corresponds to one specific MOEA in the predefined pool of
available MOEAs ®. As an input, the HHAlgorithm also gets an optimization
problem Z, which the sequence 0 is executed on. In Lines 2 and Line 3 all
the MOEAs are initialized with a population for the optimization problem
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Algorithm 2 HHAlgorithm

Input: Optimization Problem Z, Sequence of MOEAs §

Output: Population of Solutions for Z
1: ® < Pool of MOEAs > hard-coded value
2: for each MOEA ¢ € ® do
3: ¢.Population < InitializePopulation(Z)

4: for each index 7 € § do
¢ = ©.Get(7)
newPop «+ ¢.Execute(Z, ¢.Population)
for each MOEA o € ¢ do
oldPop < «a.Population
9: a.Population a.EnvironmentalSelection(oldPop, newPop)

10: ¢ < ®.Get(d.Last)
11: return ¢.Population

Z, which they retain through the execution of the algorithm. Each initial
population is random and distinct from each other.

Afterwards, from Line 4 to Line 9 the Sequence of MOEAs is executed. At
first, the specific MOEA ¢, which is represented by the integer number i, is
obtained from the pool. With its current population, the MOEA ¢ is executed
on the optimization problem Z. The result of that execution is saved in the
variable newPop and then used to update all populations of the MOEAs in the
pool, each with their respective environmental selection. That is the migration
step.

When the execution of the sequence is finished, the algorithm returns the
population of the last MOEA in §.

Each MOEA that is executed runs for at least one generation. That means
the length ¢ of the Sequence § is limited by the number of generations for
the algorithm, which is usually defined as the maximum number of function
evaluations divided by the population size. Usually, a MOEA is given the
maximum number of functions it can evaluate until it shall terminate, which
can be more than one generation. For simplicity’s sake, this mechanism is
omitted here. That is further elaborated on in the following Section 4.3.

The main step in OHHMOEA is to learn the optimal Sequence of MOEAs ¢
in Algorithm 2 with an offline learning algorithm. This can be thought of as
an optimization algorithm, which optimizes another optimization algorithm.
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Algorithm 3 OHHMOEA
Input: Optimization Problem Z, Length of Sequence ¢, Evaluation Repetitions A

Output: Population P of Sequences
1: P < Initialization(¢)
2: for each Sequence § € P do
3: d.Fitness «+— HHFitness(Z, A, 0)

4: while stopcondition # True do

5 MatingPool < FitnessSelection(P)

6: Offspring < GeneticOperator(MatingPool)
7 for each Sequence § € Offspring do

8 0.Fitness <— HHFitness(Z, A, 0)

9: P <« EnvironmentalSelection(P, Offspring)

10: return P

That is analogous to parameter optimization as described in Section 3.6. How-
ever, the parameter to be tuned here is the sequence of MOEAs ¢ that are ex-
ecuted. The design of OHHMOEA is displayed in Algorithm 3 and applies the
fitness definition HHFitness from Algorithm 4, which is defined in Section 4.2.
OHHMOEA takes an optimization problem Z, the length of the Sequence /,
and the number of repetitions A\ for the HHFitness as an input. The popula-
tion P of the algorithm consists of individuals, which contain a specific order
of MOEAs with the fixed-length ¢. Each generated sequence is then evaluated
with the fitness metric HHFitness as defined by Algorithm 4. The HHF'itness
applies the HHAlgorithm (Algorithm 2) with the supplied sequence § and re-
turns a singular quality value for the sequence.

The evaluation is applied in Lines 3 and 8. The algorithm design intends the
offline learning algorithm to optimize a single-objective problem with each in-
dividual having a singular fitness value, which is why Algorithm 3 is based
on the Genetic Algorithm in Algorithm 1. However, changing the design to a
multi-objective problem would be easily achievable. That would then require
a MOEA to the base of the hyper-heuristic optimization.

The usual steps of fitness selection, genetic operation, and environmental se-
lection are applied in Lines 5, 6, and 9. These are the same as in the genetic
algorithm in Algorithm 1 in Section 2.3. When the stop condition is reached,
the algorithm returns the population of sequences P with their fitness as a
result.
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4.2 Fitness Metric

One intricacy in the hyper-heuristic algorithm is, that each evaluation of a
sequence is in itself an evaluation of an optimization problem with a resulting
population of solutions to the given problem Z. The resulting populations to
the problem Z have to be evaluated in some manner to produce a fitness value.
This is done by the metric defined by Algorithm 4.

For the evaluation of these populations the quality indicators described in
Chapter 2 are utilized. All MOEAs use randomness, which is why each se-

Algorithm 4 HHFitness
Input: Optimization Problem Z, Evaluation Repetitions A\, Sequence of MOEAs §
Output: Fitness F of ¢
1: L + List of Fitness Values
2: while A # 0 do
3: d.Population +— HHAlgorithm(Z, 9)
4 F < —HV/(8.Population, 1)
5: if 7 =0 then
6: F + GD(é.Population, 0)
7
8
9:

L.append(F)
Ae—A—-1
return Median (L)

quence is evaluated a fixed number of times denoted by A, and then the median
result is taken as the fitness. The user sets the number of repetitions. The
fitness calculation is also illustrated in Figure 4.1.

At first, the HHAlgorithm with the optimization problem Z and the specific
sequence ¢ is executed. The resulting population is then evaluated with the
normalized hypervolume (HV) indicator, which uses normalized objective val-
ues. Larger HV values indicate a better performing population. In OHHMOEA
minimization is performed, which is why the negative HV is used. The HV
utilizes a reference point for the computation and if a solution does not per-
form well enough i.e. is outside the reference point, the HV value results in
zero. That makes sequences, which perform this poorly, incomparable to each
other. Even sequences that perform very poorly should be compared with each
other because having a flat fitness landscape is detrimental to the evolutionary
process. It could also occur that all solutions in the population have a fitness
of zero, resulting in a random search. This is why the fitness is designed to
calculate the GD in these cases. Smaller GD values correspond to better solu-
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tions, and since the GD values are all positive, individuals using the GD will
always be worse in comparison to individuals using the negative HV.
The HV metric used in this thesis normalizes the objective values of the solu-

f2 f2
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b b
® refuv
a’ ) C C
a .bc’ °
° d d
d’ O
°
T‘(if(; D f1 fl
(a) Areas for HV and GD colored (b) Calculation for GD

Figure 4.1: Example for the calculation of the fitness for OHHMOEA. In Fig-
ure 4.1(a), in the blue area, the HV is calculated, while for popula-
tions that are completely outside of this area, the GD is calculated.
The area for GD is colored in green. In Figure 4.1(b) an example
for the lengths used by the GD indicator is shown.

tions before the calculation and uses a vector of all ones as a reference point.
The GD uses a vector of all zeros, i.e., the origin of the objective space, as a
single reference point. For GD that essentially means that the resulting value
is the average of the lengths of the solution vectors. Since the value of GD is
to be minimized, the population will be converging towards the origin. That
is until the population produces a HV value that is larger than zero. By using
GD the fitness focuses on convergence for poor quality results until it produces
acceptable results and then uses the HV to focus on diversity and convergence.
In Figure 4.1(b) the calculation of the GD is displayed. In Figure 4.1(a) the
calculation of the whole fitness is visualized. For the points a’, b’, ¢’, and d’
in the bluish area the HV is calculated and in the green area for the points a,
b, ¢, and d the GD is calculated.

Using a combination of the HV and the GD works well for this use-case and
creates an increasing discontinuous fitness landscape. Figure 4.2 shows the
fitness values generated by one single point in the objective space. The figure
clearly shows the discontinuity in the fitness landscape, which is, however, not
an issue. The fitness landscape will certainly look different with more than
one point but likely similar.
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Figure 4.2: Fitness landscape for singular points in the objective space using
the point 0.0 as the reference point for GD and the point 1.0 as
the reference point for the HV.

4.3 Implementation

For the implementation of the algorithm the PlatEMO framework, version 3.2,
developed in MATLAB is chosen [10]. It contains more than 150 evolutionary
algorithms, more than 300 benchmark problems, and several other useful tools
and implementations related to evolutionary multi-objective optimization.
The implementation follows the algorithm design from the previous Section 4.1.
However, there are smaller differences or specifics to the PlatEMO framework,
which are explained here in further detail.

In Figure 4.3 the hyper-heuristic algorithm as it is implemented in the
PlatEMO framework is displayed as a flow-chart. From the algorithm de-
sign, it becomes clear that the base of the hyper-heuristic is an optimization
problem, which needs to be solved. That is named the HHProblem and mainly
contains the fitness definition from Algorithm 4. The HHAlgorithm is its own
MOEA definition inside the PlatEMO framework and based on Algorithm 2.
The HHProblem is optimized by a Genetic Algorithm. The sequence length
¢ of the hyper-heuristic is defined by the number of integer decision variables
for the HHProblem. The HHProblem then runs the HHAlgorithm for every se-
quence in the population of sequences, which it gets as input from the Genetic
Algorithm. The resulting population for the SubProblem from the HHAlgo-
rithm is then evaluated with the HHFitness and saved as the objective value
of the specific sequence.
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Figure 4.3: Flow-Chart diagram of the hyper-heuristic algorithm.

Theoretically, all MOEAs contained in PlatEMO can be utilized for this hyper-
heuristic. Unfortunately, they do not work out of the box, and in order to use
them, they need some minor adaptions to their code. The algorithms have
to include the migration step after every generation and a separate update
function for receiving other offspring and the execution of the environmental
selection in the migration step.

In this implementation, it was decided to use ten different MOEAs: GLMO,
IBEA, MOEA/D, MOEA /DD, MOMBI-II, NSGA-II, NSGA-III, SPEA2,
SPEA2SDE, and theta-DEA. The algorithms use the default parameters from
the PlatEMO framework.

The algorithms GLMO, MOEA /D, MOEA /DD, MOMBI-II, NSGA-III, and
theta-DEA do not exactly use the set population size. The reason is that
these algorithms require uniformly distributed points, and because of the need
for uniformity, the population size may be slightly smaller. In order to not
give these algorithms a disadvantage because of the smaller population size,
the hyper-heuristic calculates the population size necessary to have uniformly
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distributed points beforehand and takes this number for the population size of
all algorithms.

One aspect of the algorithm that was not further elaborated on is the length
of the sequence of MOEAs ¢, which is defined by the user. Algorithms
in PlatEMO terminate when they reach the maximum function evaluations
FE maz set by the user. That is why the hyper-heuristic needs to calculate the
maximum function evaluations each algorithm gets (FE&,) for its run, which is
related to the parameter (. FE&,,., is equally divided among all algorithms in
the sequence, and F¢&,, is determined by the formula denoted in Equation 4.1.

‘Fgmam
£, = - 41
F M— KJ P (4.1)

The variable £ is the length of the sequence of MOEAs and |P)| is the population
size of the SubProblem in the hyper-heuristic. The intended effect is, that each
algorithm gets exactly as many function evaluations for an integer number of
generations and that the number of generations is equally divided. If |P|- ¢ is
a divisor of FE&,,.. the equation can be simplified to Equation 4.2.

]:gmaa: J

(4.2)

e, = |7

However, that |P| - ¢ is a divisor of F& 4, can not be guaranteed. Using the
Equation 4.2 for instances where |P|-{ is not a divisor of FE&,,,, the algorithm
would use more function evaluations than it should and the hyper-heuristic
will overall use more function evaluations than intended, but at maximum
|P| - £ more function evaluations. This is because each MOEA in the sequence
can at maximum execute one additional generation (|P| function evaluations)
before finishing. Because this is an unwanted behavior the number of
function evaluations per algorithm is determined by the formula denoted in
Equation 4.1.

Because of the usage of the rounding down function, it may lead the hyper-
heuristic to use fewer function evaluations than set by the user, which is
why the last MOEA in the sequence uses the remaining function evaluations
available. That may still result in the hyper-heuristic using more function
evaluations than set by the user, but at maximum, only as much as one
generation. However, this is mainly due to the way it is implemented in the un-
derlying PlatEMO framework and not because of the way the hyper-heuristic
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is implemented. Each MOEA in the PlatEMO framework shares this behavior.

4.4 Discussion

OHHMOEA utilizes a user-defined fixed-length sequence with length ¢. Each
element in that sequence is one MOEA, which runs for at least one generation.
MOEASs are usually not implemented to run for less than one generation, e.g.,
one half of a generation. The maximum length ¢ in the hyper-heuristic is
hence also the maximum number of generations for the optimized SubProblem.
However, the maximum length is not desirable as the search space would get
too large to solve the problem in a reasonable time.

The search space of the hyper-heuristic equals the number of available MOEAs
to the power of the sequence length. For a population size of 100 and with
10000 maximum function evaluations, the maximum sequence length results
in 100. If the maximum number of function evaluations is increased to 50000,
the maximum sequence size increases to 500. The search spaces for both
values are respectively 109 and 10°%°, using a pool size of 10 MOEAs. The
number of solutions the hyper-heuristic can evaluate in a reasonable time is
orders of magnitude lower, usually similar as for the SubProblem. That means
usually 10000 or 50000 evaluations (10% and 5 - 10* respectively).

A user-defined length makes it possible to set the length ¢ to lower values
than the maximum length, which makes the hyper-heuristic more likely to
find an approximate optimal solution.

The alternative to a fixed-length is a dynamic-length sequence. However, a
dynamic-length sequence would open up the possibility of a sequence with
the maximum length, which is not desirable. This would necessitate an upper
limit for the dynamic length. It is also not really clear how the hyper-heuristic
should behave with dynamic lengths regarding the optimization of the
SubProblem. A dynamic length would create more issues that need to be
solved. Another reason for a fixed-length sequence is the genetic operator
crossover. Most crossover methods in literature are designed with fixed-length
individuals in mind.

In Section 4.2 the fitness metric for OHHMOEA is presented.  The
metric calculates the HV, and if the HV value is zero, the GD is calculated
instead. Ultimately, the reference points for the calculation of the HV should
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be chosen in a way that zero values should not occur, and the reference point
has to be identical for all populations in the hyper-heuristic. It would be
possible to take the nadir point of all populations and then take the worst one
as the reference point for the calculation of all HVs. However, this produces a
computational overhead and makes fitness values between hyper-heuristic runs
incomparable. Using the GD instead represents a solution to this problem.
Furthermore, solutions that have a HV value of zero are generally speaking of
such a low quality that they pose no real interest to the user. At least, that
is true for how the calculation is implemented in this thesis.

The selection of the fitness metric is also likely subject to debate and is as
much biased as the reward functions used in online hyper-heuristics. Here,
the HV is mainly chosen because it simultaneously measures convergence and
diversity. As described, the main drawback of the HV is that it can result in
zero values for solutions of a very low quality. Other indicators such as the
R2 indicator might be more suitable. At last, what indicator is used for the
hyper-heuristic is also user-dependent. For individual optimization problems,
specific properties of the Pareto-set approximation might be of interest, and
as such, the metric that is best suited differs in regard to what purpose the
optimization has. The modularity of the presented OHHMOEA allows to
exchange the fitness calculation with an arbitrary quality indicator easily.
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In this chapter, the proposed Offline Learning Hyper-Heuristic collaborative
Multi-objective Evolutionary Algorithm (OHHMOEA) is evaluated. This
chapter’s main goal is to statistically analyze the resulting sequences of the
hyper-heuristic and evaluate the best sequences of the hyper-heuristic on
benchmark problems. The following questions are central to this chapter:

1. Do certain sub-sequences of MOEAs occur more often than others?
2. Are the resulting sequences problem-specific?

3. How does the OHHMOEA perform compared to the selected MOEAS?

4. Are the results of the sequences ’stable’ if the population size, the func-
tion evaluations, the objective size, or decision variables are increased?

5. Are the learned sequences transferable to other problems?
6. Does the offline hyper-heuristic benefit from a reduced algorithm set?

In Section 5.1 the utilized benchmark problems are presented, and their
properties are explained. The experimental settings for the test problems
and the offline hyper-heuristic are introduced in Section 5.2. The offline
selection hyper-heuristic is executed to learn suitable sequences for bench-
mark problems, and the results are thoroughly evaluated in Section 5.3.
In Section 5.3.1 the resulting sequences for the test problems are statisti-
cally examined. The performance of the sequences is finally evaluated in
Section 5.3.2 and compared to the utilized MOEAs in the hyper-heuristic,
namely, GLMO, IBEA, MOEA /D, MOEA /DD, MOMBI-II, NSGA-II, NSGA-
ITI, SPEA2, SPEA2SDE, and theta-DEA. In Section 5.3.3 the scalability of
the resulting sequences is evaluated regarding the population size, function
evaluations, objective size, and the number of decision variables. Next, it is
examined in Section 5.3.4 whether the learned sequences can be transferred to
unseen test problems from the DTLZ and WFG benchmark suites. At last,
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the offline hyper-heuristic is re-evaluated with a reduced subset of MOEAs in
Section 5.4.

5.1 Benchmark Problems

From the DTLZ and WFG optimization problem test suites, the test problems
DTLZ1, DTLZ2, DTLZ3, WFG3, WFG4, WFG5, and WFG6 are used.
Additionally, two test problems (ZDT1, ZDT2) from the ZDT test suite are
utilized [46, 47].

The problems WFG1 and WFG2 were not chosen for the experiments because
the random generation of the points on their Pareto-front takes significantly
more computation time than for the other test problems. It takes more
time due to the usage of a sorting function in the implementation of this
calculation, which is not present in the other problems. That it takes more
time is usually not a problem in MOEAs because they have to generate the
Pareto-front only once. However, in this thesis, the hyper-heuristic creates
each test problem anew for every sequence evaluation and every repetition of
a sequence evaluation. On a small scale evaluation of the hyper-heuristic, the
WFG1 and WFG2 problems have been shown to take about 60 times longer
than the WFG5H and WFG6 problems (~600 seconds vs. ~10seconds).

The other optimization problems from the test suites are not used because
of the experiments’ limited time and computation power. For that reason, a
smaller subset of the test suites is decided on.

The properties of the test suits are listed in Table 2.1. DTLZ1 is a problem
with a linear multimodal Pareto-optimal front. DTLZ2 and DTLZ3 both have
a concave Pareto-front but differ in their modality. DTLZ2 has a unimodal
front, while DTLZ3 has a multimodal front.

WFG3 has a linear degenerate unimodal Pareto-optimal front, while WFG
4 to 6 have concave Pareto fronts. WFG4 is multimodal, WFG5 deceptive
and WFG6 has a unimodal front. The ZDT1 and ZDT2 test problems are
unimodal, and the Pareto-front of ZDT1 is convex, and the Pareto-front of
ZDT2 is concave.
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5.2 Experimental Setup

The relevant parameter settings for the hyper-heuristic are shown in Table 5.1.
There are settings for the Genetic Algorithm (GA) and the HHProblem, the op-
timization problem the GA is trying to solve. Cp is the probability of crossover,
and Mg is the expectation of the number of mutated variables. The param-
eters Cp and Mg are set to the default values of the PlatEMO framework.
The parameters remain unchanged for all test problems. The GA algorithm

Table 5.1: Experiment settings for the OHHMOEA Algorithm and the values
they are set on.

Class Parameter | Value
GA [P 100
FEmaz 10000
Cp 1
Mg 1
P 36
HHProblem 14 10
Fmaz 4032
A 3

has other crossover and mutation parameters, which are not relevant because
they are only used for real encodings, and the encoding for the HHProblem is
integer. The sequence length / is identical to the number of decision variables.
The value 10 for ¢ was chosen for several reasons. The algorithms need to have
a low granularity to apply their specific strategy for searching in the objective
space. With this configuration, each algorithm will have about 11 generations.
Another reason is the search space size of the sequence, which was already
mentioned in Section 4.1. With a sequence length of 10, the search space has
a size of 10'° possible combinations, which results in 10 billion. Compared to
the maximum possible combinations the genetic algorithm can evaluate, which
is 10000, the search space already seems large. However, evolutionary algo-
rithms are designed to find approximate solutions to such problems. Finally,
the number of MOEASs in the pool is 10. Theoretically, each algorithm can be
applied at least once with a sequence length of 10.

The population size |P| and the maximum function evaluations F&,,,, for GA
are arbitrarily chosen but in the range of values that are commonly used in
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literature |31, 61-63|. However, for the HHProblem smaller values are chosen.
Lower values for these parameters result in the hyper-heuristic using less time
and resources to evaluate each sequence. In theory the results of the hyper-
heuristic should be scaleable in relation to |P| and F& 4. This hypothesis is
further examined in the experiments.

At last, A is the number of repetitions for the evaluation of the underlying
optimization problem in the HHProblem. The value of A\ is a multiplicative
factor influencing the computation time of the hyper-heuristic. It was set to
the lowest number acceptable. An odd number is chosen to have the median
as a member of the set. Higher values for A such as five or seven are likely
preferable. To accurately reflect the distribution, A > 10 is likely necessary as
a minimum |64]|. Fortunately, very precise numbers are not needed in evolu-
tionary algorithms, and approximations of the true values suffice [6].

With this configuration, the hyper-heuristic performs 10000 evaluations of se-
quences, with each being an optimization of the HHProblem, which itself solves
another underlying optimization problem with the configuration. The overall
number of evaluations can be determined by multiplying F&,,., of both GA
and the HHProblem and then multiplying the result with A. That results in
120960000 function evaluations by the hyper-heuristic, and 10000 evaluations
of the GA for each population.

The measured run time of preliminary experiments with the introduced con-
figuration was one day on average. Larger settings would result in longer run
time and therefore go beyond the scope of this thesis.

Initially, the population size of the HHProblem was set to be 40. However, as
mentioned earlier in Section 4.3, the algorithms require uniformly distributed
points. That is why internally, the hyper-heuristic reduces the population size
to 36. Which means the first nine algorithms in the sequence are applied
for 396 function evaluations or 11 generations (See Section 4.3), and the last
algorithm in the sequence is applied for 436 function evaluations (12.111 gen-
erations). Since the number of function evaluations of the last algorithm is
not dividable by the population size without remainder, the last algorithm is
applied for an additional generation, resulting in 13 generations. That results
in the hyper-heuristic using 4032 function evaluations instead of the planned
4000. Optimally, these values should be selected so that each algorithm is
executed for the same number of generations.

There are problem-dependent settings like the number of decision variables
for the test problems, which change based on what problem is being currently
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run. These are shown in Table 5.2. Based on preliminary experiments, the
number of decision variables are chosen either higher or lower than the default
parameters to enhance the hyper-heuristic evaluation and to produce usable re-
sults. Because of the number of decision variables, some of these problems can

Table 5.2: Experiment settings for the test problems.

Problem || Objectives | Decision Variables
DTLZ1 3 )
DTLZ2 3 40
DTLZ3 3 )
WFG3 3 50
WFG4 3 20
WFG5H 3 12
WFG6 3 12
ZDT1 2 30
ZDT2 2 30

be considered many-variable problems. That is the case for DTLZ2, WFGS3,
WFG4, ZDT1, and ZDT2.

5.3 Offline Learning Result

In this Section, the offline learning experiments on OHHMOEA are analyzed.
This chapter aims to answer the first two questions outlined at the beginning
of this chapter. These are:

1. Do certain sub-sequences of MOEAs occur more often than others?
2. Are the resulting sequences problem-specific?

With the configuration from Section 5.2, the hyper-heuristic is executed 21
times for each of the selected test problems. The experiments were executed
on a remote server with 40 CPU cores. However, only 20 cores were utilized
for the duration of the experiments. The experiments took several weeks to
finish.

The time of the hyper-heuristic to optimize the sequence for a single test prob-
lem is visualized in Figure 5.1. DTLZ1 takes the most time of all the problems.
DTLZ2, DTLZ3, and WFG3 take a similar amount of time, about 20 to 24
hours. The problems WFG4, WFG5, ZDT1, and ZDT2 took noticeably less
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Figure 5.1: Boxplot of the run times of the hyper-heuristic for each test prob-
lem.

time than the other problems. As mentioned in Section 5.1, one factor that
influences the time of the hyper-heuristic is the generation of the points on the
Pareto-optimal front. Another factor related to the test problems is calculating
the population’s objective values for each solution. This was also explained in
Section 5.1 and is the reason why some test problems are not included.

The selected MOEAs for the sequences of the hyper-heuristic exerts an influ-
ence on the run time. The two slowest algorithms in the hyper-heuristic are
MOEA/D and MOEA/DD. MOEA/D is measured to take about 2 seconds
on average to solve the complete SubProblem on its own, and MOEA /DD
is measured at about 5 seconds. In comparison, the two fastest algorithms
(MOMBI-IT and NSGA-II) take about 0.3 seconds. The other algorithms are
measured at about 0.4 to 0.5 seconds, while SPEA2SDE takes a little longer
with an average of 0.9 seconds.

For each test problem, the best solution of the population from each of the
21 independent runs is selected. From these 21 selected solutions for each
test problem the median solution is selected. Furthermore, the respective IQR
values are calculated. The values are displayed in Table 5.3. The values are
calculated with the fitness metric of the hyper-heuristic, which is determined
via the HV and the GD indicators. Because all values are negative, they are
identical to the negative HV values. The IQR values can indicate how much
the population in the hyper-heuristic is converged, with lower values meaning
more convergence, i.e., the population is less diverse. However, the IQR values
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Table 5.3: For each test problem the median fitness result of the best solutions
of the 21 runs and the resulting IQR values. The problems in the

table are sorted by their IQR values.

Problem Median IQR

ZDT1 -7.125e-01 | 2.129e-04
ZDT2 -4.365e-01 | 2.668e-04
DTLZ2 -5.247e-01 | 6.834e-04
WFGH -4.847e-01 | 8.489¢-04
DTLZ1 || -8.108e-01 | 9.388e-04
DTLZ3 || -5.285e-01 | 1.653e-03
WFG4 -4.791e-01 | 2.128e-03
WFG6 -4.935e-01 | 2.717e-03
WFG3 -3.449e-01 | 4.255e-03

can also give an insight into the robustness of the sequence, with lower values
associated with more robustness. That is why Table 5.3 is sorted according
to the IQR values. The ZDT1 problem has the lowest IQR, and the WFG3
problem has the highest IQR.

The absolute median fitness values do not indicate much if compared between
test problems, as the lowest HV possible can vary significantly between prob-
lems. However, a lower fitness generally can be interpreted as more convergence
and diversity regarding the Pareto-optimal front. The best fitness values are
achieved in the DTLZ1 and ZDT1 problems and the worst in the WFG3 and
ZDT2 problems.

The offline learning of the hyper-heuristic on the test problems DTLZI,
DTLZ3, WFG6, and ZDT1 is additionally displayed with the respective con-
vergence plot in Figure 5.2. The data is based on the population’s fitness after
every 1000 evaluations. These figures show that DTLZ3, and ZDT1 show a
good convergence behavior, with the relatively monotonous fitness curve in the
last generations. The same can not be stated about the test problems DTLZ1
and WFG3. They likely will need more evaluations for convergence, and their
results will likely have room for improvement. Additionally, WFG3 has the
highest IQR of all the test problems. The issue for this problem could be that
the Pareto-optimal front is degenerate, and a high number of decision variables
(50) was chosen for this problem (see Table 5.2). In Figure 5.2, DTLZ3 has
very good convergence behavior. However, the resulting IQR value is higher
than the other test problems shown.
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Figure 5.2: Convergence plots for the hyper-heuristic on each of the displayed
test problems. The blue line shows the median solution in each
generation, and the blue area is the (IQR) range between the 25th
and 75th percentile.

5.3.1 Sequence Analysis

Each of the 21 independent runs executed on each test problem will result in
a population of 100 sequences of length ¢. The length ¢ is identical to the
number of decision variables of the HHProblem and was set to 10. Each pop-
ulation contains a sequence with the best fitness. That sequence is selected
for each population and further analyzed. The resulting analysis is shown in
Figure 5.3. It displays a heatmap showing the percentage of each MOEA that
was executed on a specific test problem. The outer right column shows the
usage percentages of the MOEAs among all test problems.

First, it shows that specific test problems invoke a preference for specific
MOEAs. The GLMO algorithm was most often used for DTLZ2, WFG3,
ZDT1, and ZDT2. GLMO is developed for large-scale problems, problems
with a high number of decision variables, which are also named many-variable
problems [34]. All of the mentioned problems have considerably more decision
variables than the other problems and a disproportion between the number of
objectives and decision variables (See Table 5.2). Surprisingly, WFG4 also has
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many decision variables but very rarely utilizes GLMO. Another observation
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Figure 5.3: The Heatmap is showing the MOEAs together with the test prob-
lems. FEach box displays the percentage (rounded down to 1 deci-
mal) of the specific MOEA used on a test problem. The percentage
is calculated based on the frequency of the MOEA divided by the
total number of occurrences in the column. The right column shows
the absolute percentages among all test problems.

that can be made is that MOMBI-II was very frequently used for the problems
WFG4, WFG5, and WFG6. It is unclear why exactly that is. MOMBI-II is an
indicator algorithm using the R2-indicator with achievement scalarizing func-
tions as utility functions [40|. It could signalize that this strategy is beneficial
for these problems.

Some test problems in the selection do not inhibit an obvious picture of which
algorithms they prefer the most. That is especially visible in DTLZ1, with the
most used algorithm only preferred for 25%. Another test problem with simi-
lar behavior is DTLZ3. All other test problems either have one algorithm with
a majority preference or a small group of algorithms they prefer the most. For
DTLZ1 and DTLZ3, the only preference is SPEA2SDE, and the distribution
over the other algorithms seems somewhat random. The reason in the case of
DTLZ1 could be that the problem is too easy to solve. In Table 5.3 DTLZ1
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has achieved the highest HV among all test problems. This will result in the
selection pressure to fade, and the selection of algorithms being irrelevant be-
cause all of them work relatively equally well. The test problems likely prefer
SPEA2SDE because it boosts the diversity and convergence of the population.
To some extent, the same is likely true for DTLZ3. Both test problems also
have the lowest number of decision variables.

IBEA is an indicator algorithm and is frequently utilized among a diverse
set of test problems. That is likely because the indicator used in the algo-
rithm is based on the HV concept [39]. Since the fitness in the hyper-heuristic
is based on the HV, selecting IBEA will help in improving the fitness. An-
other algorithm frequently used is SPEA2SDE, which follows a dominance and
decomposition-based approach with a focus on diversity and convergence [32].
The HV indicator also measures convergence and diversity, which is likely why
SPEA2SDE is preferred here over other algorithms.

Another interesting property of these sequences is, that it is possible to examine
the position at which a MOEA was most frequently used. This is displayed in
Figure 5.4. In this Figure, the numbers in each column represent the percent-
age for each MOEA to be in this position, compared to the other algorithms.
In each column the percentages sum up to 100. Over 50 percent of all used

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1

GLMO 2 Ky 24| 23 15 55 0
IBEA 14 17 21 15 |26 | 26
MOEAD 06 25 37 61 18 55 55 55 25 49
MOEADD 61 61 25 25 12 06 25 0 18 12
mowmei-i 10 (18 |19 20 [22 (20 14 15 14 o
NSGAJl 74 06 25 37 49 37 49 25 18 0
NSGAIl 37 25 18 18 12 12 12 31 18 12
SPEA2 61 31 25 25 31 49 49 43 43 37
SPEA2SDE 18 14 12 74 18 12 |17 | 19 | 21
DEA 55 31 18 06 25 25 18 49 37 43

Figure 5.4: Heatmap showing the MOEAs together with the positions in the
sequence. Each box displays the percentage (rounded down to 1
decimal) of the specific MOEA used on a position in the sequence.
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MOEAs at the last position are SPEA2SDE, which is not surprising as using
this algorithm at last helps in increasing diversity in an already converged
population. The same is true for IBEA. Both algorithms were frequently used
at the last place or the second to last.

Finally, knowledge can be gathered about which algorithms work well together
based on their frequency of switching to one another. That is shown in Fig-
ure 5.5. Some algorithms switch most often to themselves. That is the case
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¥ ¥ ¥ ¥ ¢ ¢ g

I I I I I I I I I I
GLMOﬂ 30 EN 1 49 21 11 15 96 12

BEA | 18 220 08 12| 23 15 23 NN 22
MOEAD 48 83 12 34 12 72 39 10 5.9
MOEA/DD 12 87 33 15 48 36 58 | 18 35
MOMBLI 72 14 33 16 39 3 35|18 37
NSGAIl 16 14 87 31 18 67 36 61 | 20 49
NSGANI 95 17 83 35 16 44 61 64 | 19 10

SPEA2 12 13 10 31 16 53 35 94 | 28 5
SPEA2SDE 13 18 81 26 15 41 29 59 4.2
tDEA 7.9 15 7 33 14 4 6.1 62 | 21 15

Figure 5.5: The Heatmap shows the pair-wise frequencies of MOEAs. The
values are normalized row-wise. Each box displays the percentage
(rounded down to 1 decimal) for a MOEA on the y-Axis to transi-
tion to a MOEA on the x-Axis.

for GLMO, IBEA, and MOMBI-II. That is likely because they are the best
performing algorithms in the selection. In this Figure, clear preferences are
visible for the algorithms GLMO, IBEA, MOMBI-II, and SPEA2SDE. All
other algorithms most frequently switch to either of these four. That is no
surprise as they are the MOEAs, which seem to work best on the selected test
problems. A fascinating observation is that GLMO and IBEA seem to work
very well together. Both algorithms very frequently switch to one another.
As previously observed, GLMO is most often used for problems with many
decision variables. From Figure 5.3 it is visible that whenever GLMO is used
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for a problem, IBEA is used as well. That behavior is also reflected in this
Figure. GLMO seems to work well for convergence, but because it internally
uses NSGA-III, it seems to lack in producing a diverse set of solutions. This
drawback is overcome by selecting IBEA at the last or second to last places in
the sequence, which is visible in Figure 5.4.

Because of these observations and the preference of the test problems, it can
be assumed that there are three clusters in the test problems, which can be
categorized based on their algorithm preference. The first group is DTLZ1
and DTLZ3. The second group, which contains many-variable problems, is
DTLZ2, WFG3, ZDT1, and ZDT2. The last group is WFG4, WFGb5, and
WFG6. Other problems which are similar to these groups likely illicit similar
sequence frequencies.

It is possible to construct best performing sequences for the above groups if
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1 2 3 4 5 6

| 1 | | | |
oo EAEIEAEARIER

10 32 15 19 15 85)

IBEA

MOEA/D 0 0 0 0 0 0 0 0 0 0
MOEADD 15 8.8 0 1.5 0 0 0 0 0 0
MOMBI-II 10 44 15 0 1.5 44 0 4.4 0 0
NSGA-Il 5.9 0 0 0 0 0 0 0 0 0
NSGA-l 44 15 0 0 0 0 0 0 0 0
SPEA2 29 15 0 0 15 15 0 0 0 0

SPEA2SDE 19 88 15 15 88 44 29 15 44 40‘

tDEA 1.5 0 0 0 0 1.5 0 0 0 0

Figure 5.6: The Heatmap is showing the MOEAs together with the positions in
the sequence. Each box displays the percentage (rounded down to
1 decimal) of the specific MOEA used on a position in the sequence.
Only for the problems DTLZ2, WFG3, ZDT1, and ZDT2.

the frequency for the positions is analyzed separately. For the many-variable
problems the percentages for each position are displayed in Figure 5.6. In this
Figure, the numbers in each column represent the percentage for each MOEA
to be in this position. The percentages in each column sum up to 100. From

o4
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this heatmap, the MOEA to be chosen for each position is decided greedily
based on the percentages. That selection results in GLMO utilizing the posi-
tions 1 to 7 and IBEA using the positions 8 to 10.

For simplicity’s sake, the remaining two groups were merged into one group,
which now contains the following problems: DTLZ1, DTLZ3, WFG4, WFG5,
WEFGG6. The result is displayed in Figure 5.7. The same strategy for the other

1 2 3 4 5 6 7 8 9 10
1 | | 1 1 | | | 1 |

GIMO 18 74 42 42 11 32 21 32 21 0
BEA 16 |26 | 19 22 15 20 12 74 15 53
MOEAD 11 42 63 10 32 95 95 95 42 84
MOEADD 95 42 42 32 21 11 42 0 32 21
momeli 10 |27 ['32 ‘ 4 30 24 23 23 0
NSGAJl 84 11 42 63 84 63 84 42 32 0
NSGAIl 32 32 32 32 21 21 21 53 32 21
SPEA2 84 42 42 42 42 74 84 74 74 63
SPEA2SDE 17 17 20 12 | 24 | 17 | 26 |82 m
DEA 84 53 32 11 42 32 32 84 63 74

Figure 5.7: Heatmap showing the MOEAs together with the positions in the
sequence. FEach box displays the percentage (rounded down to
1 decimal) of the specific MOEA used on a position in the se-
quence. Only for the problems DTLZ1, DTLZ3, WFG4, WFG5,
and WFG6.

group is applied, and the resulting sequence is: GLMO first, then from 2 to 6
MOMBI-II, and then from 7 to 10 SPEA2SDE. These sequences will be eval-
uated in Section 5.3.4.

Furthermore, it would be possible to initialize the population of the hyper-
heuristic based on these learned percentages. Currently, the sequences are
initialized randomly. Instead, the percentages could be handled as probabil-
ities for each position. Additionally, the statistics from Figure 5.3 and 5.4
show that some algorithms are used very infrequently, which indicates that
some algorithms are not of use to the hyper-heuristic. The authors of [13]
used a reduced subset for their hyper-heuristic based on preliminary experi-
ments. Overall, their hyper-heuristic performed better with the reduced sub-
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set. Therefore, the experiments conducted in this section are repeated with a
smaller selection of MOEAs in Section 5.4. Producing this reduced subset of
MOEASs does not have to come from experiments of the hyper-heuristic. Li,
Ozcan, and John build the pre-selection of MOEAs by running direct experi-
ments for each algorithm on the test problems [13]. In light of the time needed
to run experiments directly in the hyper-heuristic, this could save time. Using
a reduced subset has the potential to significantly boost the hyper-heuristic’s
convergence and run time.

5.3.2 Performance Analysis

The goal of this section is to answer the third question, how the performance
of the learned sequences of OHHMOEA compare to the used MOEAs.

From each of the 21 runs on each test problem a representative with the best
fitness is selected. From these 21 representatives the solution with the median
fitness is further selected as the final sequence for the evaluation. The se-
quences are listed in Table 5.4. The sequences are evaluated on the respective

Table 5.4: The sequences used for each respective test problem. The numbers
are the indices of the MOEAs: (1) GLMO, (2) IBEA, (3) MOEA/D,
(4) MOEA/DD, (5) MOMBI-II, (6) NSGA-II, (7) NSGA-III, (8)
SPEA2, (9) SPEA2SDE, (10) tDEA

DTLZ1 |10 |10 | 5 6] 9 [ 339|193
DTLZ2 || 9 |1 |1 |1,9(|1|1/2|2]9
DTLZ3 || 5 | 5 [10/5| 2 [3|9[3|4]9
WFG3 | 1 |9 |1 [2|1|2[|2|2]|2]2
WEG4 || 4 | 5 | 5|25 |5|5|5[5]9
WEGS5 || 6 | 5|5 |5/10/5|5/9|12/|9
WEG6 || 3 |2 | 1|55 [9]2|5[9]2

ZDT1 9 (1 |1 |12 |1|1|1]2]2

D12 1141 (1)1 (1(1/1|1]9

nine test problems for 31 independent runs, and the HV, GD, and IGD values
are calculated. The maximum function evaluations and the population size
are identical to the offline hyper-heuristic OHHMOEA. The Mann—Whitney
U rank test is used to determine if the differences in the distribution of the
results are significant. All tests are conducted with a p-value of 0.01 and
pair-wise with the hyper-heuristic.
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Table 5.5: Median sequence of the offline selection hyper-heuristic evaluated with the HV, GD and IGD in the bench-
mark problems with the settings of the OHHMOEA. Values in bold indicate the best value. Values that
have a colored cell indicate no significant statistical difference to the hyper-heuristic method OHHMOEA.

| GLMO | IBEA | MOEA/D | MOEA/DD | MOMBII | NSGA-IT | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA |
DTLZ1 || 6217 | .1862 | 3345 2530 6576 4887 5616 | 7451 7693 7339 4437
DTLZ2 | 4876 | .4830 | .3128 3004 4708 3257 3593 | .3643 AT76 3801 5150
DTLZ3 || 1737 | 2189 | .0000 0870 4238 2690 0000 | 1557 4291 .0000 0975
WFG3 || 2248 | .3082 | .1389 1124 2602 2217 2264 | 2189 2710 2369 .3176
HV | WFG4 || 4198 | 4550 | .3664 3921 4065 4041 4285 | 4176 4608 4356 4621
WFG5 || 4699 | 4674 | .4363 4442 A159 4411 4686 | .4615 A724 4724 4729
WFG6 || 4215 | 4537 | .4020 4041 4008 4089 4319 | 4368 4589 4416 4475
ZDT1 | 6640 | .6704 | .0438 4705 5231 6126 5762 | 5837 6282 5602 .6929
ZDT2 || .0909 | .0722 | .0000 1363 1085 2731 1500 | 2730 1836 1392 .3138
DTLZ1 || 0616 | .0037 | .0568 0889 0186 10589 0549 | 0074 | .0027 0213 10590
DTLZ2 | .0052 | .0047 | .0226 0247 0054 0181 0179 | .0184 0058 0160 .0023
DTLZ3 || 1657 | .0063 | 1813 2153 L0050 1695 1726 | 1916 | .0041 1732 1669
WFG3 || .0906 | .0429 | .1739 1541 0670 1122 0863 | .1196 0457 0711 .0367
GD | WFG4 | .0317 | 0202 | .0425 0342 0205 0285 0201 | .0311 0202 0268 .0195
WFGH || .0147 | .0138 | .0204 0164 0141 0166 0149 | .0166 0141 0142 0144
WFG6 || .0325 | .0205 | .0343 0296 .0193 0299 0284 | .0289 0205 0256 0240
ZDT1 || 0002 | .0049 | .1352 0326 .0069 0131 0177 | 0157 0099 0181 .0002
ZDT2 || .0000 | .0333 | .1123 0498 0187 0127 0376 | .0161 0131 0378 .0001
DTLZ1 || .1004 | 2762 | 2154 2455 .0960 1535 1074 | .0579 .0519 0625 1509
DTLZ2 | .1019 | .1271 | .1684 1796 1302 1676 1533 | .1505 1309 1454 1203
DTLZ3 || 3500 | 4837 | 1.0354 4401 .1694 3545 | 1.0252 | .6070 1782 1.0445 4047
WFG3 || 4481 | 2518 | .6454 6889 4100 4730 4569 | 4473 2799 4146 2218
IGD | WFG4 || 4160 | .4935 | .4686 4422 4969 AT713 4091 | .4036 5078 4043 5172
WFG5 || .3765 | 4879 | .4103 4025 4858 4435 3773 | .3654 4985 3763 5112
WFG6 || .4206 | 5035 | .4632 4496 5089 A749 4093 | .3989 5239 4029 5067
ZDT1 | 0880 | .0394 | .7278 2133 2539 0798 1157 | 1041 0705 1276 .0366
ZDT2 | .6095 | 5129 | .7385 2784 4020 1344 2792 | .1360 2294 3218 1252
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The median value of the 31 independent runs and the result of the tests are
displayed in Table 5.5. The best values in the table are visualized in bold,
and non-significantly different results to the hyper-heuristic are highlighted
with a grey cell. The last column shows the result of the hyper-heuristic.
The corresponding interquartile (IQR) values are listed in Table 6.1 in the
Appendix.

What immediately stands out from the table is that almost all algorithms are
not significantly different for DTLZ1 and DTLZ3. That is especially the case
for the HV and IGD values. In Section 5.3.1 it was assumed that there is an
issue with these problems and that the selection pressure is not high enough
to produce usable results. The fact that most algorithms are not significantly
different for these problems seems to support this.

For the HV the hyper-heuristic produces outstanding results. It produces the
best results in six out of nine problems. SPEA2SDE is a strong contender,
having the best results in three of the nine problems. However, the statistical
test indicates that the results are not significantly different.

The results displayed in Table 5.5 for the GD and IGD values are not as great
as for the HV. For the GD indicator, the hyper-heuristic performed in four test
problems the best, with non significantly different values in one test problem.
For the IGD indicator, it produced for three test problems the best value, with
no significantly different values in two test problems. However, this is not an
indication that the hyper-heuristic does not work, but is rather an indication
that the fitness of the hyper-heuristic (see Section 4.2) might not be optimal.
The fitness is partially calculated with the HV indicator, which is intended as
a metric to measure convergence and diversity. GD serves as an indicator for
the convergence, and the IGD serves as a measure for the diversity [28]. The
hyper-heuristic fulfilled its goal to find a sequence that produces great results
for HV metric.

For each experiment series, the critical difference (CD) is calculated. These are
displayed in the Figures 5.8, 5.9, and 5.10, respectively for the metrics HV, GD,
and IGD. Each algorithm is associated with its average ranking over all test
problems in the critical difference plots. The performance of two algorithms is
significantly different if the corresponding average ranks differ by at least the
critical difference, which is determined based on the pair-wise Nemenyi test,
with a p-value of 0.1 [65]. The algorithms connected by a bold horizontal line
are considered statistically equivalent. The critical difference plot for the HV
shows that the three best performing algorithms are also the algorithms that
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CD
2 3 4 5 6 7 8 9 10 1
SPEA2SDE  — MOEA/D
OHHMOEA -—— MOEA/DD
IBEA MOMBI-II
GLMO NSGA-II
tDEA NSGA-III
SPEA2

Figure 5.8: Critical Difference Plot for HV

were identified as being the most used in the sequences in Section 5.3.1. These
are SPEA2SDE, IBEA, and GLMO. MOMBI-II did not perform as expected if
used singularly on the test problems. However, this is different for the critical
difference plot for the GD values in Figure 5.9. There, MOMBI-II performs as
the third-best MOEA, behind IBEA and SPEA2SDE. That likely means that
MOMBI-II is very well usable for producing converging solutions but lacks in
producing diversity. That is also likely why MOMBI-II was rarely selected in
the last positions of the sequence. In Section 5.3.1 in Figure 5.7, it is visible
that MOMBI-II is used at the beginning of the algorithms, and in the end,
SPEA2SDE was selected.

CD
2 3 4 5 6 7 8 9 10 1
IBEA ———— MOEA/D
SPEA2SDE ——— MOEA/DD
OHHMOEA ——M— SPEA2
MOMBI-I  —MM—— NSGA-II
GLMO NSGA-III
tDEA

Figure 5.9: Critical Difference Plot for GD

This is also highlighted in the critical difference plot for the IGD values in
Figure 5.10, in which MOMBI-II has a relatively worse rank. Surprisingly
good performing algorithms in Figure 5.10 are SPEA2 and tDEA, which were
rarely used by the hyper-heuristic. Overall, the hyper-heuristic performed
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CD
3 4 5 6 7 8 9
SPEA2 ——M— — MOEA/D
GLMO MOEA/DD
tDEA IBEA
OHHMOEA MOMBI-II
SPEA2SDE NSGA-II
NSGA-III

Figure 5.10: Critical Difference Plot for IGD

worse in the IGD indicator and rarely applied algorithms, which performed
very well in the IGD indicator. That can be interpreted as the fitness metric,
which uses the HV indicator, having a stronger preference for convergence
than diversity. It could also be interpreted that the hyper-heuristic prefers
algorithms which can deliver both, such as GLMO and SPEA2SDE. On
average, both algorithms performed very well in GD, and IGD.

The correlation between the diversity and the HV indicator was studied in
[66]. They investigated three different diversity indicators in relation to the
HV indicator and found no significant correlation. Their results suggest that
the effect of the convergence of the Pareto-approximation set has a greater
impact on the HV values than the diversity of the set.

At last, this is also an issue that depends on the user’s goal and whether
the goal is more diversity or more convergence, or perhaps both. The fitness
function of the hyper-heuristic should be designed to fit the user’s needs.
There is no one-fits-all solution for this problem.

Another fitness function for the hyper-heuristic could be a weighted sum
function between an indicator metric for diversity and convergence, making
the hyper-heuristic more flexible for different needs. The different metrics
could be weighted according to what the user wants. Nevertheless, the HV
is universally acclaimed as a metric for MOEAs and produces satisfactory
results. A major drawback of the GD and IGD indicator is, that once the
solutions are on the Pareto-front their values approach zero, which makes
these populations incomparable.

Generally, the average rank of all algorithms is worse for IGD in Figure 5.10.
That can be interpreted in all used algorithms here lacking the ability to
produce solutions of high diversity over a wide range of different problems.
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The hyper-heuristic OHHMOEA does not show a critical difference re-
garding the ranks in neither HV, GD, nor IGD, in Figures 5.8, 5.9, and
5.10. However, there is a considerable overlap in most groups in all three
diagrams, which means the experimental data is not sufficient and the test
is not powerful enough to reach any conclusion regarding these algorithms [65].

5.3.3 Scalability

The population size |P| and the maximum function evaluations FE&,,,, for the
HHProblem are chosen unusually small for test problems. They are chosen
smaller due to the high computation time of the hyper-heuristic. Because
of that one of the evaluation goals is to find out if the results of the hyper-
heuristic are scalable, especially in regards to the function evaluations and the
population size. That is question four at the beginning of this chapter. Other
scalability parameters that are investigated are the number of objectives and
decision variables.

The scalability of the hyper-heuristic likely boils down to the scalability of the
inherent MOEAs used. If the utilized MOEAs are scaleable, that sequence
will likely be scalable as well. There are certain scenarios in which specific
MOEA are more sensitive towards scaling. That is especially true for Pareto-
based algorithms such as NSGA-II. With increasing objectives, Pareto-based
algorithms will suffer the curse of dimensionality and work less efficiently. In-
creasing the objective size will also cross the line from multi-objective to many-
objective problems. The same corresponds to the number of decision variables.
The problem will be considered a many-variable problem with increasing de-
cision variables, and different strategies will be needed to solve the problem.
The previous Section 5.3.1 has shown that the number of decision variables
heavily influences the choice of MOEAs. For that reason, the scalability of the
decision variables is generally only investigated for the problems which already
have a high number of decision variables. In Section 5.3.1 it was already de-
termined that the test problems could be divided into two groups. The test
problems for which the decision variables are scaled are DTLZ2, WFG3, ZDT1,
and ZDT2. For the other problems, only the objectives are scaled.

For the evaluation the experiments of the previous chapter as presented in
Table 5.5 are repeated with scaled values for the HHProblem. At first, the
same experiments from the previous section are repeated with |P| = 105 and
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FEmaz = 10500 and then with |P| = 210 and F&,,4, = 21000. These two
experiments will be called PF; and PF;. These unique numbers occur be-

Table 5.6: Experiment settings for the test problems. M stands for the number
of objectives and D for the number of decision variables. The table
heads state which settings are utilized by which experiment.

| PF |
PF MD
Problem || |P| | F€maz || M | D || |P| | Fémaz || M| D
DTLZ1 3 5 6 5
DTLZ2 3 | 40 3 80
DTLZ3 3 5) 6 5
WFG3 3 | 50 3 | 100
WFG4 105 | 10500 3 | 50 || 210 | 21000 6 50
WFEG5 3 | 12 6 12
WFEFG6 3 | 12 6 12
ZDT1 2 130 2 60
ZDT2 2 130 2 60

cause the hyper-heuristic and other algorithms need well-distributed points in
the population. If the population size were set to 100, some algorithms would
use an actual population size of 91, while others would use 100, which gives
them an unfair advantage. A population size of 105 is perfectly distributable,
and all algorithms will use the same population size. The same is true for the
population size 210.

Afterward, the experiments are repeated with the number of objectives, and
the decision variables doubled for the respective algorithms. The number of
decision variables is doubled for DTLZ2, WFG3, ZDT1, and ZDT2, and the
number of objectives is doubled for DTLZ1, DTLZ3, WFG4, WFG5, and
WEFG6. The population size and the maximum function evaluations are set to
|P| = 210 and FE,,4, = 21000, since test problems get more difficult to solve
with an increasing number of objectives or decision variables. This experiment
is named MD. That leaves us with the settings as displayed in Table 5.6. The
head of the table displays the experiment, which uses the settings in the re-
spective columns.

The median value of 31 independent runs and the result of statistical tests are
displayed in Table 5.7. The Mann-Whitney U rank test is used to determine
if the differences in the distribution of the results are significant.
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Table 5.7: Median sequence of the offline selection hyper-heuristic evaluated with the HV in the benchmark problem
with three different scalability experiments. Values in bold indicate the best value. Values that have a
colored cell indicate no significant statistical difference to the hyper-heuristic method OHHMOEA.

| GLMO | IBEA | MOEA/D | MOEA/DD | MOMBLII | NSGA-IT | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA |
DTLZL || .8117 | .5532 | .8296 8231 .8379 8166 8318 | .8349 8341 8361 8364
DTLZ2 || 5389 | .5485 | .4820 4948 5426 AT76 5008 | .5040 5444 5060 .5540
DTLZ3 | 5111 | .2463 | .5272 5105 5546 5233 5414 | 5528 |  .5583 5485 5520
WFG3 || 2711 | .3557 | .1929 1280 3281 2834 2784 | .2768 3427 | 2963 3472
PF; | WFG4 || 4649 | .5182 | 4161 4624 4975 4525 A723 | 4782 5096 | .4796 5098
WFG5 || 5063 | 5099 | 4813 4988 4884 4852 5062 | 5031 5132 | 5100 5115
WFG6 || 4652 | .4999 | 4447 4573 4802 4482 A786 | 4811 4954 | 4739 4960
ZDT1 | 7171 | .7160 | .5896 6616 6887 7080 6902 | .7070 7105 6966 7194
ZDT2 || 4397 | 3188 | .0990 3802 3938 4262 3856 | .4233 4299 4028 .4439
DTLZ1 || .8409 | .6503 | .8490 8479 .8514 8384 8497 | 8501 8488 8509 8507
DTLZ2 | .5593 | .5692 | .5286 5385 5651 5205 5359 | 5441 5654 5402 5701
DTLZ3 || .5597 | .2483 | .5617 5632 5739 5540 5706 | 5714 | 5748 | .5700 5727
WFG3 || 2994 | .3705 | 2275 2433 3632 3232 2974 | 3120 3640 | .3228 3656
PF, | WFG4 || 4859 | .5451 | 4425 4951 5298 4799 4973 | 5021 5303 | .5021 5319
WFG5 || 5202 | .5317 | .5025 5176 5146 5013 5235 | 5219 5290 | 5216 5282
WFG6 || 4852 | .5216 | .4687 4889 5060 4741 4991 | 5005 5121 | 4976 5170
ZDT1 || 7220 .7211 | .7012 6998 7168 7181 7116 | 7174 7198 7142 7219
ZDT2 || .4466 | 4428 | .2696 A175 4396 4420 4283 | 4410 4427 4311 4465
DTLZ1 || 9905 | 9842 | .9880 19896 9758 9868 9905 | .9917 9816 19903 19893
DTLZ2 | .5506 | .5352 | .2623 3512 5203 4051 3862 | .4383 5072 4081 .5635
DTLZ3 || .8608 | .8724 | .8600 8605 8568 7953 8611 | .8530 8706 8612 8661
WFG3 || 2550 | .3462 | .1909 1551 3200 2591 2420 | 2535 3280 2774 3397
MD | WFG4 || .6632 | .7691 | .4088 6373 7127 5649 6691 | .6138 7266 6813 7517
WFG5 || 7581 | .7995 | .5092 7157 6699 6088 7630 | .7026 7655 7687 7632
WFG6 || 7127 | 7945 | 3162 6772 6809 6132 7261 | 6778 7483 7312 7975
ZDT1 || .7215 | .7045 | .5483 6105 6935 6928 6505 | .6865 6917 6667 7210
ZDT2 || .4460 | 2019 | .0871 2990 3958 3957 3137 | .3878 3933 3341 4456
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5 Evaluation

All tests are conducted with a p-value of 0.01 and pair-wise with the hyper-
heuristic. The best values in the table are visualized in bold, and non-
significantly different results to the hyper-heuristic are highlighted with a grey
cell. The corresponding interquartile (IQR) values are listed in Table 6.2 in
the Appendix.

For the experiment PF}, an immediate observation is that the results of the
hyper-heuristic generally decreased in quality compared to the other algorithms
and compared to the results in Table 5.5. Before, the hyper-heuristic produced
the best results in six out of nine test problems, and now, the results are only
the best in three test problems. However, in two test problems the hyper-
heuristic is not performing significantly differently from the best result. The
results are very close but significantly different in the other two problems. The
quality of the results decreases even further with the experiments PFy. The
results of PF; and PF5 indicate that IBEA benefits greatly from an increased
number of individuals in the population and more function evaluations.

PF, and MD use the same population size and function evaluations. The re-
sults show that most algorithms are relatively insensitive to the changes in the
number of objectives and decision variables presented here.

Overall, from these results, it has to be stated that the sequences of the
hyper-heuristic are generally not very stable regarding changes in the prob-
lem settings. However, what can be stated is that the performance of the
hyper-heuristic is exceptionally robust in the performance.

CD
1 2 3 4 5 6 7 8 9 10
OHHMOEA '— MOEA/D
SPEA2SDE —M8M8M8—— L—— MOEA/DD
IBEA L—— NSGA-II
MOMBI-II NSGA-III
tDEA GLMO
SPEA2

Figure 5.11: Critical Difference Plot for PF;

This is visible in the critical difference plots using the HV for all three ex-
periments in the Figures 5.11, 5.12, and 5.13. Each algorithm is associated
with its average ranking over all test problems in the critical difference plots.
The performance of two algorithms is significantly different if the correspond-
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CD
2 3 4 5 6 7 8 9 10
OHHMOEA — — MOEA/D
SPEA2SDE MOEA/DD
IBEA —M8M8M8 — —— NSGA-II
MOMBI-| —M8 NSGA-III
SPEA2 GLMO
tDEA

Figure 5.12: Critical Difference Plot for PF,
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OHHMOEA — MOEA/D

IBEA L——— MOEA/DD

GLMO —MM8— L—— NSGA-II
SPEA2SDE —M8M8™M—- SPEA2

tDEA NSGA-III

MOMBI-II

Figure 5.13: Critical Difference Plot for MD

ing average ranks differ by at least the critical difference, which is determined
based on the pair-wise Nemenyi test, with a p-value of 0.1 [65]. The algorithms
connected by a bold horizontal line are considered statistically equivalent. In
all three experiments, the hyper-heuristic has the best average performance.
At last, these experiments show that the hyper-heuristic should be learned on
the test problem settings on which it will later be evaluated or used. As men-
tioned previously in this chapter, the hyper-heuristic can significantly benefit
if a reduced algorithm set is used to learn the hyper-heuristic, which results in
less computation time or earlier convergence.

5.3.4 Transfer Learning

The second last question of the evaluation, question five, asks whether the
learned sequences of the offline hyper-heuristic can be transferred to other
problems. The offline hyper-heuristic learned distinct sequences, or rather a
population of sequences, for each respective problem. That makes it difficult
to accurately answer this question, as it is unclear how the learned sequences
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should be transferred to other problems. In Section 5.3.2, experiments were
conducted by using one distinct sequence for each of the respective problems.
It would be possible to identify similar optimization problems for each of the
utilized problems in that experiment. However, simply transferring learned
sequences to other problems or problem domains is likely not feasible. First, it
is difficult in the first place to decide which group or problem domain a problem
belongs to. And even if that is possible, a sequence might not work well
because of some other properties of the problem. For example, in Section 5.3.2
the identified MOEAs that work well on the many-variable problems DTLZ2,
WEFG3, ZDT1, and ZDT2 do not work well on the problem WFG4, which also
has a large number of decision variables. Additionally, the hyper-heuristic has
learned a sequence for the problems DTLZ1 and DTLZ3, but it is likely not
usable because the problems have too low evolutionary pressure.

In Section 5.3.1, results were separated between two identified optimization
problem categories. The categories identified are many-variable problems and
those which are not, i.e., normal multi-objective problems. For these two
problem categories, a respective sequence is identified by greedily choosing the
MOEA which was chosen most often for each position in all sequences in the
last populations overall. In Section 5.3.1, for the many-variable problems in
Figure 5.6, the sequence positions 1 to 7 are used by GLMO and 8 to 10 by
IBEA. For the remaining problems in Figure 5.7, the multi-objective problems,
GLMO is used at first, then from position 2 to 6 MOMBI-II, and then from 7 to
10 SPEA2SDE. The sequences are displayed in Table 5.8. Whether sequences

Table 5.8: The sequences used for each respective problem category. MVP
stands for many-variable problems and MOP for the multi-objective
problems. The numbers are the indices of the MOEAs: (1) GLMO,
(2) IBEA, (5) MOMBI-II, (9) SPEA2SDE

| Position [ 1[2[3[4[5]6][7[8]9]10]
MOP [[1]5]5]5[5[5/9]9]9]9
MVP [[1[1][1]1]1]1][1]2]2]2

can be transferred to other problems can be answered by experimenting with
these sequences and with problems of a similar nature. For the evaluation
of these sequences, the optimization problems of the test suites DTLZ and
WEFG are utilized. Only the test problems are used, which have not been used
in the offline hyper-heuristic to learn these sequences. The experiments are
conducted using the population size and functions evaluations utilized by the
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offline hyper-heuristic. The population size is 36, and the number of function
evaluations is 4032. To simulate the same problem characteristics as identified
in the initial experiment of the offline hyper-heuristic in Section 5.3.2 similar
problem settings are chosen.

At first, the test problems and their default parameters are used to test the
sequence for the multi-objective problems. That means all test problems have
three objectives, and the definition of the respective problems determines the
number of decision variables. Afterward, the sequence for the many-variable
problems is evaluated. For that experiment, the decision variables are increased
to 40 for the DTLZ problems and 50 for the WFG problems. The objective
size stays the same for all experiments and all test problems. The number of
decision variables is chosen lower for the DTLZ problems because the initial
HV values indicate that they are harder to solve for the algorithms. The
experiment settings for the test problems are displayed in Table 5.9. The

Table 5.9: Experiment settings for the test problems and for the experiments
for multi-objective problems (MOP) and for the many-variable
problems (MVP). M stands for the number of objectives and D
for the number of decision variables. The table heads state which
settings are utilized by which experiment.

MOP MVP
Problem | M | D | M | D
DTLZ4 12 40
DTLZ5 12 40
DTLZ6 12 40
DTLZ7 22 40
WFG1 3 11214 3 |50
WFG2 12 50
WFG7 12 50
WFGS 12 50
WFG9 12 50

results of the experiments are displayed in Table 5.10, and the algorithms are
evaluated using the HV indicator. The Mann-Whitney U rank test is used
to determine if the differences in the distribution of the results are significant.
All tests are conducted with a p-value of 0.01 and pair-wise with the hyper-
heuristic.
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Table 5.10: Median sequence of the offline selection hyper-heuristic evaluated with the HV in the benchmark problem
with different sequences for multi-objective problems (MOP) and for the many-variable problems (MVP).
Values in bold indicate the best value. Values that have a colored cell indicate no significant statistical
difference to the hyper-heuristic method OHHMOEA.

| GLMO | IBEA | MOEA/D | MOEA/DD | MOMBIII | NSGA-II | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA
DTLZ4 || .3255 | .3391 | .0909 5174 3306 3377 5192 | .3399 3398 3107 .5269
DTLZ5 || .1823 | 1932 | .1699 1701 1771 1914 1792 | 1917 1939 | 1719 1933
DTLZ6 || .1643 | .1868 | .0000 .0000 1671 .0000 0000 | .0000 1710 | .0000 1681
DTLZ7 || .2216 | .2297 | .1024 0879 2146 1618 1421 | 1762 2455 | .1616 2351
MOP | WFG1 | 4170 | .6669 | .3791 2305 5781 5831 5058 | 5666 6418 5403 5897
WFG2 || .8746 | .8874 | .7564 8352 8305 8532 8753 | .8727 8753 8802 8844
WFGT || 4713 | 5132 | 3524 4058 4532 4466 4703 | 4680 5171 | 4927 535
WFGS || 3952 | .4254 | .3526 3645 3594 3729 4002 | .3939 4216 | 4029 4197
WFGY || 4174 | 4704 | 2925 3592 4262 3733 4186 | 4226 A772 | 4507 A776
DTLZ4 || .4409 | 3251 | .0897 2631 3092 2843 2538 | 2753 3019 2545 3329
DTLZ5 || .1790 | .1704 | .0709 0385 1543 1070 1018 | .0864 1659 0875 .1882
DTLZ6 || .0000 | .0000 | .0000 .0000 .0000 0000 0000 | .0000 .0000 .0000 .0000
DTLZ7 || .2230 | .1198 | .0113 .0000 0675 0200 0194 | .0134 0907 0268 2430
MVP | WFGL || .3034 | .3867 | .1994 2004 2l 3454 3349 | 3618 3768 3454 3446
WFG2 || .7762 | .7948 | .6376 6619 7277 7371 7576 | .7665 7795 7654 .8094
WFGT || .3357 | .4468 | 2337 2449 3902 2850 3081 | .3243 4382 3533 3994
WFG8 || .3914 | 4050 | .3035 3173 3306 3454 3733 | .3696 3965 3820 4079
WFGY || 3198 | .4068 | .1403 1748 3376 3038 3251 | 2871 4000 | .3107 3877
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The best values in the table are visualized in bold, and non-significantly dif-
ferent results to the hyper-heuristic are highlighted with a grey cell. The cor-
responding interquartile (IQR) values are listed in Table 6.3 in the Appendix.
For the multi-objective problems (MOP) in Table 5.10, the hyper-heuristic
performed best in two problems and performed not significantly different from
four other algorithms, which performed better than the hyper-heuristic. For
two test problems, other algorithms performed better and were significantly
different. While the hyper-heuristic did not perform best in most problems, it
performed statistically equal in most problems.

For the many-variable problems in Table 5.10, the hyper-heuristic performed
best in four test problems and significantly different in three test problems.
The performance is a great achievement and highlights the power of hyper-
heuristics in combining different strategies to deliver better results than sin-
gular MOEAs. Nevertheless, the hyper-heuristic performed significantly worse
in three other test problems. The same as for the MOP problems is true
here as well that the MOEAs, which performed best on the original problems,
also perform well on the unseen problems. Test problem DTLZ6 is an outlier,
which was too difficult to solve for all algorithms and generally resulted in a
HV value of zero. This shows the importance of including the GD indicator in
the fitness metric of the hyper-heuristic.

From these results, it can be concluded that the sequences can generally not
be directly transferred to other problems. However, the learned sequences of
other problems can be a great starting point for hyper-heuristic optimization
in other problems. The hyper-heuristic should be optimized offline for better
results in other unfamiliar test problems.

For two selected test problems, separate independent runs were conducted.
From these runs, the HV over the number of evaluations is displayed in Fig-
ure 5.14. The Figure depicts a comparison between the hyper-heuristic and
two MOEAs. The left diagram in Figure 5.14 shows the DLTZ4 problem with
the MOP settings. The hyper-heuristic is compared to a run with MOMBI-II
because MOMBI-IT uses the earlier positions in the sequences for the MOP
problems.

In the first few evaluations for MOP-DLTZ4, both algorithms behave almost
identical. In the diagram, it is easily discernible at which evaluation step
the hyper-heuristic changes algorithms. The hyper-heuristic changes from
MOMBI-II to SPEA2SDE at evaluation step seven. Using only MOMBI-II,
the algorithm converges and does not improve anymore. In the hyper-heuristic,
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Figure 5.14: The HV indicator plotted over the number of evaluations for two
selected test problems and two algorithms per test problem.

the switch to SPEA2SDE improves the HV value significantly. That is because
the solutions are likely already on or close to the Pareto-front. Changing to
SPEA2SDE at this point in the evaluation will improve the diversity of the
already very well optimized solutions.

The right diagram in Figure 5.14 shows the DTLZ7 problem with the MVP set-
tings and the hyper-heuristic compared to the GLMO algorithm. For the MVP
problems, the first seven positions in the sequence are used by the GLMO algo-
rithm. In the last three positions, IBEA is utilized. A similar effect as noticed
in MOP-DTLZ4 is observable in the last evaluation steps in MVP-DTLZ7,
although less severe.

From these observations, it can be concluded that changing to another MOEA
will increase the diversity and prevent convergence to some degree. Both IBEA
and SPEA2SDE are designed to improve the diversity in the population. The
performance highlights how beneficial a change in strategy during optimiza-
tion can be to overcome converging behavior and increase the population’s
diversity.

5.4 Reduced Algorithm Set

The goal of the last experiment is to investigate the behavior of the offline
hyper-heuristic with a reduced algorithm set. More specifically, the question is
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whether the hyper-heuristic does benefit from a carefully selected reduced set
of MOEAs. The reduced set of MOEASs is identified by analyzing the result-
ing sequences from the first experiment in this chapter in Section 5.3.1. From
these sequences, the MOEAs, which have been used most, is determined by
calculating their usage percentage. This is displayed in the beginning of Sec-
tion 5.3.1 in Figure 5.3. The algorithms that are overwhelmingly most used
are IBEA (25%), GLMO (22%), SPEA2SDE (19%), and MOMBI-II (15%).
All the other algorithms in the selection are applied almost equally as often
with around 3%. An application of only 3% can be considered insignificant
and interpreted as statistical noise. That is the reason why these algorithms
are not included. With the selected four MOEAs the offline hyper-heuristic is
re-evaluated on the test problems. The experiment is conducted identical as
outlined in the experimental setup in Section 5.2. One difference is the number
of function evaluations FE&,,,, for the Genetic Algorithm, which has been set
to 5000. That is half the size of the original experiment, which used 10000
function evaluations. That can be justified by having fewer algorithms and,
because of that, a smaller search space. The size of the search space is one
million times smaller, 10* instead of 10'°.

The results of the experiment with the reduced set are compared to the original
experiment in Table 5.11. The results in Table 5.11 show almost no difference

Table 5.11: For each test problem the median fitness result of the best solu-
tions of the 21 runs and the resulting IQR values for the original
experiment and the experiment with the reduced data set.

original set reduced set ‘
Problem || Median IQR Median IQR
DTLZ1 || -.81084 | 9.388e-04 || -.80877 | 3.003e-03
DTLZ2 || -.52473 | 6.834e-04 || -.52464 | 8.898e-04
DTLZ3 || -.52847 | 1.653e-03 || -.52738 | 1.972e-03
WFG3 -.34492 | 4.255e-03 || -.34251 | 3.072e-03
WFG4 -47914 | 2.128e-03 || -.47942 | 1.757e-03
WFG5 -.48475 | 8.489e-04 || -.48567 | 9.801e-04
WFG6 -.49353 | 2.717e-03 || -.49669 | 2.176e-03
ZDT1 -.71252 | 2.129¢-04 || -.71255 | 2.651e-04
ZDT2 -.43650 | 2.668e-04 || -.43648 | 3.510e-04

in the median values. In some test problems, the values are even down to the
third decimal identical. More significant differences might have been expected,
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but the results seem reasonable when it is noted that the values in the table
stem from the best solution in each population. The best solutions likely will
have less difference and are subject to less variation than the whole population
of each run since the best solution in each population might stay constant
throughout several generations.

For further evaluation, the results of the reduced set are subjected to the
Mann—Whitney U rank test to determine whether the differences in the distri-
bution of the results are significant. All tests are conducted with a p-value of
0.05. The test shows significant differences in the results of the test problems
DTLZ1, DTLZ3, WFG5, and WFG6. The MOEA application distribution
in the original experiment can explain the significant differences in DTLZ1
and DTLZ3. In the original experiment, the resulting sequences for these test
problems contain a substantial amount of the MOEAs that are not selected
for the reduced set, e.g., MOEA/D ( 12% and 15%) and SPEA2 (12% and
10%). Since these algorithms are not contained anymore in the reduced set,
these positions have to be filled by other MOEAs. That explains why the
distributions are now significantly different. The same seems to be true for
WFG5 and WFG6. Although the distributions for these test problems are not
as varied as for DTLZ1 and DTLZ3, they are still more varied than the other
test problems.

Only half the amount of function evaluations are utilized for this experiment
than for the original one, resulting in significantly less computation time while
simultaneously delivering results almost identical to the original set. That
shows that the hyper-heuristic can significantly benefit from a reduced algo-
rithm set. However, that can also result in drawbacks in the performance of
some test problems. The reduced set in this experiment was derived from
statistics over all the test problems. Some test problems could be outliers and
might require different MOEASs in their optimization to yield good results than
the majority of test problems. That highlights the need for individual evalua-
tions on specific optimization problems when using the hyper-heuristic with a
reduced set.

5.5 Summary and Discussion

In this chapter, the Offline Learning Hyper-Heuristic collaborative Multi-
objective Evolutionary Algorithm (OHHMOEA) was thoroughly evaluated on
nine different optimization problems from three different benchmark suites.
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The resulting sequences of the offline hyper-heuristic show a distinct behav-
ior towards problems of specific characteristics. The characteristics identified
are many-variable problems, and multi-objective problems. For each of the
test problems, the sequences are further analyzed regarding their performance
compared to the MOEAs. The hyper-heuristic delivered results of high qual-
ity regarding the HV. However, comparing the results with the GD and IGD
indicators, the performance quality fades.

Next, the scalability of these sequences was evaluated regarding the popula-
tion size, function evaluations, objectives, and decision variables. Afterward,
whether the results of the offline hyper-heuristic can be transferred to other
test problems is examined. The MOEA sequences that perform best on the
test problems on average are identified, and evaluated on unseen test prob-
lems. At last, a reduced algorithm set was created from the results of the
offline hyper-heuristic. The reduced algorithm set is re-evaluated on the test
problems.

The selection of test problems for the evaluation of the hyper-heuristic can be
improved upon. More specifically, the number of test problems for the evalu-
ation can be increased and the diversity of the test problems expanded. The
selected test problems especially lack a diversity in the number of objectives.
Additionally, the size of the population and the number of function evalua-
tions for the test problems was chosen relatively small. These values could be
increased to further enhance the validity of the evaluation.

The experiments contain test problems that are labeled as many-variable prob-
lems. However, the number of decision variables is set to a value, which the
literature would consider at the lower end for many-variable problems [67].
Nevertheless, the problems that are labeled as many-variable problems in this
chapter have shown a distinct behavior in the selection of MOEAs they prefer,
compared to the multi-objective problems.

In the experiments, the average ranking of the algorithms is compared in crit-
ical difference plots. It is questionable how the average rank should be inter-
preted. One issue is that the hyper-heuristic is a meta-algorithm. Therefore
the comparison between the average rank of an algorithm with the rank of a
meta-algorithm is unreasonable. If a simple single choice hyper-heuristic would
be used, which hypothetically always chooses the best algorithm, it could beat
the hyper-heuristic in all experiments regarding the average ranking. A good
performing sequence-based selection hyper-heuristic should perform equally
as well or even better than other algorithms. Having a better average rank-
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ing than other algorithms is not sufficient. Nevertheless, the average ranking
can be utilized as a performance measure of how well the hyper-heuristic has
learned.

The computation cost of the offline hyper-heuristic and the gain in performance
on the test problems is a point of discussion. Applying hyper-heuristics makes
sense if the results are significantly better or if insights can be gained into
the collaboration of different optimization strategies. The implication is that
a great application area of offline hyper-heuristics is for problems, in which
heuristics fail to find well-performing solutions or the user’s goal is to optimize
the solutions subject to certain evaluation metrics such as the HV.

In Section 5.4 a reduced subset of MOEAs is utilized. The reduced subset is
based on the initial experiment evaluated in Section 5.3.1. Instead of a reduced
algorithm set, which requires that the algorithms are evaluated before, the
hyper-heuristic itself could implement such an evaluation step. That could be
done by altering the method of how the population of sequences is initialized.
Instead of initializing the population completely randomly, a specific amount
of sequences could be initialized with just one and the same MOEA at each
position. If these sequences perform well, they would automatically have a
higher chance of being selected in the evolutionary process. Additionally, the
mutation operator could be altered to include a probability for each MOEA to
be selected as the replacement. Currently, this is done uniformly at random.
The probability for each MOEA could be based on their performance.
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6 Conclusion and Future Work

In this chapter, the thesis is summarized, and conclusions regarding the ques-
tions from Chapter 1 are provided. At last, some promising topics for future
research are presented.

In Chapter 2, the fundamental knowledge regarding Evolutionary Algorithms
is explained. The quality indicators HV, R2, GD, and IGD are introduced.
Afterward, 11 state-of-the-art MOEAs are presented, and their differences are
explained. At the end of the chapter, the popular benchmark suites DTLZ,
WFG, and ZDT are presented.

An overview of the related work regarding hyper-heuristics is given in Chap-
ter 3. The chapter focused on selection hyper-heuristics and gave an introduc-
tion to offline hyper-heuristics, including parameter optimization.

Chapter 4 provided an overview of the theoretical design and implementation
of the Offline Learning Hyper-Heuristic collaborative Multi-objective Evolu-
tionary Algorithm (OHHMOEA). To the best of the author’s knowledge, the
OHHMOEA is one of the first offline selection hyper-heuristics using MOEAs.
The evaluation and the results of the experiments on OHHMOEA are pre-
sented in Chapter 5. The offline hyper-heuristic is evaluated on nine different
optimization problems. The resulting sequences of the offline hyper-heuristic
are the key element of the evaluation chapter. Central to the evaluation chap-
ter and this thesis are the following six questions, which have been introduced
in Chapter 1:

Do certain sub-sequences of MOEAs occur more often than others?
The evaluation in Section 5.3.1 has shown that certain sub-sequences occur
more often than others. That is especially the case for the best performing
MOEAs in the selection, which occur very frequently. Besides that, there
are distinct pairs of MOEAs which seem to work quite well in collaboration.
GLMO and IBEA, and MOMBI-II with SPEA2SDE were often selected to-
gether. An interesting observation is that MOEAs have a specific place in the
sequence. MOEAs which optimize towards diversity are most often chosen at
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the end. The beginning of the sequence is most often occupied by MOEAs
applying distinct strategies for specific problem classes, such as many-variable
problems.

Are the resulting sequences problem-specific?

In Section 5.3.1, the sequences are analyzed based on their properties towards
being problem-specific. The sequences could be separated between multi-
objective problems and many-variable problems. Each of these problem classes
has shown to tend towards specific MOEAs. However, each benchmark prob-
lem maintains its unique sequence that works best. These sequences are often
only slight variations from each other.

How does the OHHMOEA perform compared to the selected
MOEASs?

The hyper-heuristic is compared to the utilized MOEAs in the hyper-
heuristic in Section 5.3.2. The utilized MOEAs are GLMO, IBEA, MOEA /D,
MOEA /DD, MOMBI-II, NSGA-II, NSGA-III, SPEA2, SPEA2SDE, and
theta-DEA. For the HV, the hyper-heuristic produced outstanding results,
while the quality of the results regarding the GD and the IGD indicator di-
minished. The major achievement of the hyper-heuristic is that it produced
significantly better results in some benchmark problems. The results highlight
the advantage of hyper-heuristics in combining several different strategies to
solve optimization problems.

Are the results of the sequences ’stable’ if the population size, the
function evaluations, the objective size, or decision variables are
increased?

The results from Section 5.3.3 show that the hyper-heuristic can generally
not be considered stable towards these parameters. On average, the hyper-
heuristic still performs very well. To achieve better performance, the offline
hyper-heuristic needs to be evaluated with the problem settings it will be
evaluated with later. Generally, the performance of the hyper-heuristic on
other problem settings can be utilized as a starting point for further learning.

Are the learned sequences transferable to other problems?

It is examined whether the results of the offline hyper-heuristic can be trans-
ferred to other test problems in Section 5.3.4. The MOEA sequences that
perform best on the test problems on average are identified and evaluated on
unseen test problems. It is shown that the sequences can generally not be
directly transferred to other problems. However, the learned sequences still
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perform quite well and can be a starting point for offline learning of the hyper-
heuristic. It is also shown how switching to different MOEAs during optimiza-
tion can have significant impacts on the performance in terms of diversity and
convergence.

Does the offline hyper-heuristic benefit from a reduced algorithm
set?

At last, a reduced algorithm set was created from the results of the offline
hyper-heuristic. The reduced algorithm set is re-evaluated on the test prob-
lems in Section 5.4. The re-evaluation results have shown no significantly
different results in five out of nine test problems. While the results are sig-
nificantly different in the other four test problems, it can be expected that
their performances are likely very similar to the original algorithm set since
the median values of the results do not differ very much. The main advantage
of using a reduced algorithm set is that less computation time is required for
the convergence of the hyper-heuristic.

6.1 Future Work

Although the OHHMOEA has been shown to perform well and produced fas-
cinating results, improvements are still possible. The hyper-heuristic design
presented in this thesis can be used as a starting point for promising future
work.

The integer encoding used in the hyper-heuristic worked well. However, other
implementations are imaginable. The implemented encoding is fixed in length.
It would be possible to develop an encoding with a dynamic length or to in-
crease fixed-length size.

The fitness metric designed for the hyper-heuristic is a major improvement
point but likely also subject to the user’s preference.

The hyper-heuristic should be evaluated on test problems with even more deci-
sion variables or objectives than presented in this thesis to accurately evaluate
the hyper-heuristic. Further research on the topic of many-variable and many-
objective problems is needed.

Comparing the OHHMOEA to an online learning hyper-heuristic is one major
point of interest that has not been addressed in this work.

7
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The selection of MOEAS for the hyper-heuristic can be made more meticulous.
The selection was made based on the related work to this thesis, on previous
experiences of the author, and more or less arbitrarily. It is shown that the
MOEAs for the hyper-heuristic could be broken down into four relevant al-
gorithms. That means some MOEAs in the hyper-heuristic can be regarded
as redundant. A more diverse set of MOEAs with distinct strategies to solve
optimization problems could also potentially benefit the performance of the
hyper-heuristic.

Finally, one major future work is the application of the offline hyper-heuristic
to real-world problems.
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Table 6.1: Corresponding IQR values for Table 5.5

| LMo IBEA MOEA/D | MOEA/DD | MOMBLII | NSGA-II | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA

DTLZ1 || 6.013¢-1 | 3.016¢-1 | 6.098¢-1 | 4.977e-1 | 6.314e-1 | 6.956e-1 | 7.032¢-1 | 5.217c-1 | 6.513e-1  6.543¢-1 | 6.488¢-1
DTLZ2 || 837le-3 | 1.660e-2 | 6.14le-2 | 5287e-2 | 1.633e-2 | 3.073e-2 | 5.011e-2 | 5.490e-2 | 1.836e-2 | 6.160e-2 | 4.885e-3
DTLZ3 | 3.920e-1 | 2.377e-1 | 3.054e-1 | 2.560e-1 | 4.284e-1 | 4.363e-1 | 3.372e-1 | 4.109¢-1 | 4.901le-1  2.820e-1 | 4.588e-1
WFG3 || 1.305¢-2 | 1.959¢-2 | 3.127¢-2 | 4.522¢-2 | 2.015¢-2 | 2.474e-2 | 1.404c-2 | 1.770e-2 | 2.731e-2 | 2.192¢-2 | 1.480e-2

HV | WFG4 | 6.093¢-3 | 1.376e-2 | 2.482¢-2 1.625¢-2 | 1.670e-2 | 1.393e-2 | 1.179%e-2 | 1.616e-2 | 7.106e-3 | 6.128¢-3 | 8.122e-3
WFG5 || 4.4866-3 | 5.460e-3 | 1.113e-2 | 5.991e-3 | 1.238¢-2 | 1.214e-2 | 5.923¢-3 | 7.700e-3 | 6.595¢-3  8.747¢-3 | 7.707e-3
WFG6 || 2.781e-2 | 2.185e-2 | 2.808¢-2 | 4.237c-2 | 2.884c-2 | 2.929¢-2 | 1.892¢-2 | 2.605¢-2 | 2.284e-2  3.355¢-2 | 2.211e-2
ZDT1 || 4.235¢-2 | 2.366e-2 | 7.363e-2 | 6.372e-2 | 9.843¢-2 | 4.841e-2 | 6.588¢-2 | 4.639¢-2 | 5.339e-2 | 5.935¢-2 | 3.903e-2

ZDT2 || 2.110e-1 | 1.187e-1 | 0.000e+00 | 5.900e-2 | 9.980e-2 | 1.568e-1 | 1.859e-1 | 2.358e-1 | 2.087e-1 | 1.890e-1 | 2.948e-1
DTLZ1 || 6.531e-2 | 1.235e-1 | 6.156e-2 | 8.824c-2 6.074e-2 | 7.186e-2 | 7.233¢-2 | 5.622¢-2 | 5.613e-2  6.192¢-2 | 5.888¢-2
DTLZ2 || 1.278¢-3 | 1.508e-3 | 5.872e-3 | 6.082e-3 | 1.826e-3 | 4.585e-3 | 5.354e-3 | 6.628¢-3 | 2.106e-3 | 6.396e-3 | 4.119e-4
DTLZ3 || 2.685e-1 | 3.054e-1 | 2.612e-1 | 2.94le-1 1.540e-1 | 2.194e-1 | 2.534e-1 | 7.796e-1 | 1.655e-1  2.155e-1 | 1.739e-1
WFG3 || 1.062¢-2 | 8.819¢-3 | 1.348¢-2 | 2.321e-2 | 1.247¢-2 | 1.517e-2 | 1.434e-2 | 1.478¢-2 | 8.014e-3 | 1.057¢-2 | 5.863e-3

GD | WFG4 | 1.922¢-3 | 2.876e-3 | 8.890e-3 | 5.296e-3 2.855e-3 | 2.491e-3 | 3.764e-3 | 3.882e-3 | 2.510e-3 | 2.261e-3 | 2.507e-3
WFG5 || 1.308¢-3 | 4.568e-4 | 4.208¢-3 1.966¢-3 1.086e-3 | 1.970c-3 | 8.386¢-4 | 2.036¢-3 | 4.989e-4  1.154e-3 | 5.945¢-4
WFG6 | 8.044e-3 | 5.897e-3 | 6.281e-3 1.142¢-2 | 9.119e-3 | 8.804e-3 | 5.572e-3 | 7.655¢-3 | 7.462e-3  9.071le-3 | 6.064e-3
ZDT1 | 1.885¢4 | 3.470e-3 | 4.414e-2 1.051e-2 | 4.492e-3 | 6.026¢-3 | 7.011e-3 | 6.527¢-3 | 7.821e-3 | 7.730e-3 | 9.093e-5

ZDT2 | 1.053e-4 | 4.012e-2 | 9.780e-2 | 2.023¢-2 | 1.644e-2 | 8.844e-3 | 2.941e-2 | 7.441e-3 | 1.506e-2 | 1.929¢-2 | 1.965¢-4
DTLZ1 || 2.475e-1 | 2.812¢-1 | 2.719e-1 | 2.478e-1 | 2.554e-1 | 3.060e-1 | 2.934e-1 | 2.116e-1 | 2.583e-1  2.575e-1 | 2.666e-1
DTLZ2 || 3.993e-3 | 7.355¢-3 | 2.783¢-2 | 2.711e-2 | 1.444e-2 | 1.832e-2 | 2.952e-2 | 2.760e-2 | 8.790e-3 | 2.682¢-2 | 4.773¢-3
DTLZ3 | 6.598e-1 | 5.327e-1 | 9.210e-1 | 8.540e-1 | 3.791e-1 | 9.108e-1 | 9.005e-1 | 9.15%e-1 | 8.933e-1  8.680e-1 | 9.30le-1
WFG3 | 3.816e-2 | 4.374e-2 | 1.453e-1 1.054e-1 | 3.172¢-2 | 4.365¢-2 | 3.702¢-2 | 4.998¢-2 | 7.694c-2 | 4.974¢-2 | 2.774e-2

IGD | WFG4 || 6.587e-3 | 2.826e-2 | 2.639%-2 1.711e-2 | 1.748¢-2 | 3.026e-2 | 9.944e-3 | 9.645e-3 | 2.153¢-2 | 6.235¢-3 | 4.37le-2
WFG5 || 7.053¢-3 | 2.056e-2 | 5.920e-3 | 8.165¢-3 | 2.436e-2 | 3.135¢-2 | 5.553¢-3 | 7.635e-3 | 3.528e-2 | 4.499¢-3 | 2.650e-2
WFG6 || 3.156¢-2 | 2.66le-2 | 2.555¢-2 | 4.371e-2 254162 | 3.621e-2 | 1.301e-2 | 1.990e-2 | 4.049¢-2 | 1.873¢-2 | 3.254e-2
ZDT1 || 7.885¢-2 | 1.873e-2 | 1.913¢-1 5.795¢-2 | 1.89le-1 | 4.390e-2 | 7.343e-2 | 4.106e-2 | 5.004e-2 | 6.390e-2 | 6.893e-2

ZDT2 | 4.710e-1 | 2.96le-1 | 1.623e-1 9.517e-2 | 2.11le-1 | 1.805e-1 | 2.692e-1 | 3.217e-1 | 3.161e-1 | 4.588¢c-1 | 4.248e-1
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Table 6.2: Corresponding IQR values for Table 5.7

GLMO IBEA | MOEA/D | MOEA/DD | MOMBEII | NSGA-IT | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA

DTLZL || 1.163e-2 | 5.866e-2 | 1.229e-2 | 2.186e-2 | 6.060e-3 | 1.241e-2 | 8.495¢-3 | 7.897e-3 | 4.358¢-3 | 3.736e-3 | 5.072e-3
DTLZ2 || 3.073e-3 | 3.310e-3 | 2.742¢-2 | 1.310e-2 | 3.402e-3 | 1.426e-2 | 1.239e-2 | 1.271e-2 | 3.171e-3 | 1.296e-2 | 1.791e-3
DTLZ3 | 3.567¢-2 | 4.021e-3 | 5.531e-2 | 5.927¢-2 1.444¢-2 | 1.521e-2 | 1.755¢-2 | 1.231e-2 | 5.377e-3 | 2.088¢-2 | 1.781e-2
WFG3 || 1.215e-2 | 7.111e-3 | 3.463¢-2 | 2.820e-2 | 9.827e-3 | 2.257¢-2 | 1.386e-2 | 1.538e-2 | 1.275e-2 | 1.006e-2 | 1.072e-2

PF, | WFG4 || 4.110e-3 | 3.809e-3 | 1.512e-2 | 6.97le-3 | 7.042e-3 | 8.095e-3 | 4.366e-3 | 8.046e-3 | 6.286e-3 | 4.536e-3 | 3.583e-3
WFG5 || 6.153e-3 | 8.463¢-3 | 8.145¢-3 | 4.806e-3 | 6.563e-3 | 7.540e-3 | 6.423e-3 | 7.708¢-3 | 9.677e-3 | 8.640e-3 | 7.056e-3
WFG6 || 2.310e-2 | 2.149e-2 | 2.135¢-2 | 4.150e-2 | 1.916e-2 | 1.665¢-2 | 1.505¢-2 | 1.315¢-2 | 1.440e-2 | 1.544e-2 | 1.801e-2
ZDT1 9.528¢-3 | 2.082¢-3 | 5.667e-2 | 1.027¢-2 | 3.64le-2 | 3.076e-3 | 9.462e-3 | 3.876e-3 | 3.590e-3 | 7.89le-3 | 4.781e-4

ZDT2 1.099e-1 | 2.028¢-1 | 3.413¢-2 | 1.735¢-2 | 1.272¢-1 | 5.335¢-3 | 3.007¢-2 | 9.825¢-3 | 5.913¢-3 | 2.536¢-2 | 5.107e-4
DTLZ1 || 4.618¢-3 | 4.517e-2 | 4.817e-3 | 4.714e-3 | 1.578e-3 | 5.058¢-3 | 2.042¢-3 | 2.120e-3 | 2.155¢-3 | 1.814e-3 | 1.530e-3
DTLZ2 | 1.369e-3 | 7.90le-4 | 9.555¢-3 | 5.209e-3 | 1.521e-3 | 8.599e-3 | 5.477e-3 | 4.111e-3 | 2.341le-3 | 5.762¢-3 | 1.022e-3
DTLZ3 | 6.652¢-3 | 7.731e-4 | 1.468¢-2 | 8.809¢-3 1.261e-3 | 5.811¢-3 | 3.987¢-3 | 3.841e-3 | 1.668e-3 | 2.727c¢-3 | 3.409¢-3
WFG3 || 8.047e-3 | 6.511e-3 | 3.739e-2 | 2.045e-2 8.137e-3 | 1.47%-2 | 1.115e-2 | 9.952¢-3 | 8.885e-3 | 9.112¢-3 | 7.265¢-3

PF, | WFG4 || 3.019¢-3 | 1.973e-3 | 1.162¢-2 | 4.217¢-3 4.152¢-3 | 5.739¢-3 | 3.659¢-3 | 5.431e-3 | 1.960e-3 | 3.079¢-3 | 4.068¢-3
WFG5 || 5.070e-3 | 1.047e-3 | 3.627e-3 | 7.699e-3 | 6.615e-3 | 6.155¢-3 | 5.750e-3 | 7.389e-3 | 1.272e-3 | 7.419¢-3 | 3.40le-3
WFG6 | 1.202¢-2 | 1.462e-2 | 2.191e-2 | 1.731e-2 | 1.327¢-2 | 1.275¢-2 | 1.421c-2 | 1.583¢-2 | 1.496e-2 | 1.147c-2 1.492¢-2
ZDT1 | 2.987e-4 | 4.325¢-4 | 1.933¢-2 | 4.255¢-3 | 2.845¢-3 | 1.258¢-3 | 3.668c-3 | 1.009¢-3 | 1.064e-3 | 2.294e-3 | 1.051e-4

ZDT2 | 7.507e-5 | 2.265¢-2 | 1.634e-1 | 6.542e-3 | 2.427e-3 | 1.847e-3 | 5.370e-3 | 1.803¢-3 | 1.567¢-3 | 3.642¢-3 | 8.898¢e-5
DTLZI || 1.565¢-4 | 3.448¢-3 | 8.075e-4 | 5.265e-4 | 1.520e-2 | 6.190e-4 | 1.465¢-4 | 1.565e-4 | 1.789¢-3 | 1.700e-4 | 4.510e-4
DTLZ2 | 1.530e-3 | 5.248¢-3 | 5.505¢-2 | 2.431e-2 | 9.229¢-3 | 2.652¢-2 | 3.130e-2 | 1.951e-2 | 1.629¢-2 | 2.570¢-2 | 1.279e-3
DTLZ3 || 8.610e-4 | 1.181e-3 | 6.135¢-4 | 8.130e-4 | 2.258¢-3 | 6.633¢-3 | 6.685¢-4 | 3.801e-3 | 2.254e-3 | 6.710e-4 | 3.545¢-3
WFG3 | 7.105¢-3 | 8.893e-3 | 2.932¢-2 | 2.64le-2 | 1.126e-2 | 7.343¢-3 | 8.484e-3 | 1.220e-2 | 6.391e-3 | 8.770e-3 | 6.269¢-3

HV | WFG4 || 6.353¢-3 | 7.696e-3 | 6.558e-2 | 1.603e-2 | 1.191e-2 | 2.089e-2 | 9.940e-3 | 1.618e-2 | 8.204e-3 | 1.368e-2 | 9.958¢-3
WFG5 || 3.046e-3 | 3.057e-3 | 3.263¢-2 | 5.700e-3 | 1.742¢-2 | 1.741e-2 | 6.348¢-3 | 1.620e-2 | 6.308¢-3 | 3.485¢-3 | 4.803¢-3
WFG6 | 3.612e-2 | 3.006e-2 | 3.587e-2 | 3.97le-2 | 2.293e-2 | 5.789e-2 | 3.129e-2 | 3.349¢-2 | 2.858¢-2 | 2.359¢-2 | 3.199e-2
ZDT1 | 3.637e-4 | 5.290¢-3 | 8.310e-2 | 2.865¢-2 | 5.566¢-3 | 5.608¢-3 | 2.075¢-2 | 1.000e-2 | 7.536e-3 | 9.072¢-3 | 2.034e-4

ZDT2 || 2.364e-4 | 2.642e-1 | 6.786e-3 | 3.095e-2 | 1.245¢-2 | 1.386e-2 | 3.375e-2 | 1.280e-2 | 1.278e-2 | 1.335e-2 | 3.475e-4
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Table 6.3: Corresponding IQR values for Table 5.10

| GLMO | IBEA | MOEA/D | MOEA/DD | MOMBLII | NSGA-II | NSGA-III | SPEA2 | SPEA2SDE | tDEA | OHHMOEA

DTLZ4 || 2.070e-1 | 1.828e-1 | 2420e-1 | 2.144e-1 | 1.935e-1 | 3.974e-1 | 2.002e-1 | 4.187e-1 | 4.312e-1 | 1.430e-2 | 1.896e-1
DTLZ5 | 3.678¢-3 | 1.399e-3 | 1.08%e-3 | 1.040e-3 | 1.136e-4 | 1.252e-3 | 3.335e-3 | 1.745e-3 | 8.285e-4 | 3.905¢-3 | 9.996e-4
DTLZ6 || 1.291e-1 | 4.404e-2 | 0.000e+00 | 0.000e+00 | 1.028e-1 | 1.556e-2 | 3.133e-2 | 1.598e-1 | 9.298e-2 | 1418e-1 | 1.4l6e-1
DTLZ7 || 2.505¢-2 | 2.890e-2 | 6.096e-2 | 3.926e-3 | 3.203e-2 | 4.027e-2 | 5.883e-2 | 4.685e-2 | 2.458e-2 | 3.500e-2 | 2.658¢-2

MOP | WFGL || 3.833¢-2 | 5.124e-2 | 6.939-2 | 3.17le-2 | 1.367e-1 | 5.366e-2 | 8.944e-2 | 6.988e-2 | 5.692¢-2 | 7.214e-2 | 8.37de-2
WFG2 || 7.764e-3 | 1.502e-2 | 6.734e-2 | 2.580e-2 | 6.346e-2 | 1.889e-2 | 1.846e-2 | 2.367e-2 | 3.565e-2 | 2.797e-2 | 1.235¢-2

WFGT || 2.356e-2 | 5.642e-3 | 4.073¢-2 | 4.398¢2 | 1.245¢-2 | 6.257e-2 | 3.040e-2 | 4.118e-2 | 5.304e-3 | 1.024e-2 | 5.548¢-3

WFGS | 7.775¢-3 | 6.901e-3 | 2.494e-2 | 2.622¢-2 | 6.745e-3 | 1.262e-2 | 9.024e-3 | 9.283e-3 | 8488¢-3 | 1.257e-2 | 7.239%e-3

WFGY || 5.600e-2 | 1.192¢2 | 7.771e-2 | 8.610e-2 | 2.642e-2 | 6.619e-2 | 7.739%e-2 | 4.804e-2 | 1.546e-2 | 5.088¢-2 | 2.404e-2
DTLZ4 || 1.721e-1 | 1612e-1 | 2.156e-1 | 4.076e-2 | 1.373e-2 | 9.040e-2 | 2.364e-2 | 2.112e-1 | 2.301e-1 | 1.209e-1 [ 1.722e-1
DTLZ5 | 5.962e-3 | 5.34le-3 | 4.258¢-2 | 2.92le-2 | 9.313e-3 | 3.814e-2 | 3.003e-2 | 3.327e-2 | 7.490e-3 | 3.560e-2 | 2.323e-3
DTLZ6 || 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0 | 0.000e+0
DTLZ7 | 1.963¢-2 | 6.744e-2 | 1.617e-2 | 1.952e-2 | 7.744e-2 | 3.095¢-2 | 1.659¢-2 | 1.491e-2 | 4.380e-2 | 3.324e-2 | 2.532e-2

MVP | WFGL || 1.427e-2 | 3.253e-2 | 8.126e-2 | 2.162e-2 | 4.265e-2 | 2.271e-2 | 1.782-2 | 1.681e-2 | 1.839%e2 | 1.929e-2 | 1.886e-2
WFG2 || 14582 | 243le-2 | 6.420e-2 | 4.108¢-2 | 4.580e-2 | 6.788¢-2 | 6.369e-2 | 5.627e-2 | 3.654e-2 | 8.869¢-2 | 1.461e-2

WFGT || 3.227e-2 | 2.218e-2 | 3.193¢-2 | 291le-2 | 2:220e-2 | 1.563e-2 | 2.130e-2 | 3.510e-2 | 2.652e-2 | 3.827¢-2 | 3.530e-2

WFGS | 1.282¢2 | 9.976e-3 | 1.997e-2 | 2.558¢-2 | 1.74le-2 | 6.095¢-3 | 1.359e-2 | 9.575¢-3 | 9.306e-3 | 1.444e-2 | 1.284e-2

WFGY | 5.092e-2 | 2.989e-2 | 3.448e¢-2 | 5.83le-2 | 2.204e-2 | 1.032e-1 | 1.048e-1 | 8.368¢-2 | 2.748e-2 | 6.269¢-2 | 3.320e-2
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