
OTTO-VON-GUERICKE UNIVERSITY MAGDEBURG

FACULTY OF COMPUTER SCIENCE
Institute for Intelligent Cooperating Systems

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

MASTER THESIS

Multi-objective Procedural Level
Generation for General Video

Game Playing

Author: Jens Dieskau
Supervisors Prof. Dr. Sanaz Mostaghim

Dr. Diego Perez-Liebana
Date: 08.12.2016

Abstract

This thesis presents a new way to automatically generate levels for arbitrary
games that are described in the Video Game Description Language (VGDL).
A large number of different approaches to procedural generated content have
emerged in recent years. Most of these generators are specialized towards a
specific level design. They either need some manual adjustments or utilize a
lot of specific rules to generate reasonable levels for different kinds of games.
Using them in the context of general game playing would not be possible
immediately. Therefore, a more flexible method to generate a wide variety of
vastly different level layouts is proposed here. A handful of parameters can be
used to control the generated level design.

To realize this, a set of different “Likeliness-Matrices” are used to guide the
algorithm where game objects should be placed in a level. Each matrix encodes
one specific property of the desired level. Some properties can be directly
extracted from the game description, whereas others must be either set by hand
or chosen randomly. In order to avoid manual interaction, an Evolutionary
Algorithm (EA) was used for the experiment to automatically find suitable
values to fill out the missing information.

The experiment used 20 different games that are provided by the GVG-AI

framework to demonstrate the performance of this approach. The results
confirm that the proposed method is expressive enough to generate a large
variety of playable and interesting levels.

Contents

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Structure . 2

2 Related Works 3
2.1 Combination of pre-made parts . 3
2.2 Search-based Methods . 4
2.3 Noise Generators . 5
2.4 Constraint-based Methods . 6
2.5 Grammar-based Methods . 7
2.6 Constructive Methods . 7
2.7 Discussion . 8

3 Background 10
3.1 Evolutionary Algorithm . 10
3.2 General Game Playing . 12

3.2.1 Agents . 13
3.2.2 GVG-AI . 17
3.2.3 Video Game Description Language 18

4 Procedural Level Generation 20
4.1 Limitations . 20
4.2 Algorithm Overview . 21
4.3 Retrieve game information . 21
4.4 Likeliness-Matrices . 22

4.4.1 Placeable-Matrix . 23
4.4.2 Cluster-Matrix . 24
4.4.3 Pattern-Matrix . 24
4.4.4 Constraint-Matrix . 26

4.5 Genotype-Phenotype Mapping . 27
4.6 Evolutionary Algorithm . 28

4.6.1 Initial Population . 28
4.6.2 Breeding Operations . 29
4.6.3 Fitness Function . 30

5 Experiment 33
5.1 Parameterization . 33

5.1.1 Fitness Function . 33
5.1.2 Mapping Function . 35

ii

Contents

5.1.3 Evolutionary Algorithm . 36
5.2 Distributed Computation . 37
5.3 Analysing Levels . 38
5.4 Results . 39

6 Conclusion 43

7 Future Work 45

A Detailed Results 46
A.1 Set 1 . 47

A.1.1 Aliens . 47
A.1.2 Boulderdash . 50
A.1.3 Butterflies . 53
A.1.4 Chase . 55
A.1.5 Frogs . 57
A.1.6 Missile Command . 60
A.1.7 Portals . 63
A.1.8 Sokoban . 65
A.1.9 Survive Zombies . 67
A.1.10 Zelda . 70

A.2 Set 2 . 73
A.2.1 Camel Race . 73
A.2.2 Dig Dug . 76
A.2.3 Firestorms . 78
A.2.4 Infection . 81
A.2.5 Firecaster . 84
A.2.6 Overload . 86
A.2.7 Pacman . 89
A.2.8 Seaquest . 91
A.2.9 Whackamole . 93
A.2.10 Eggomania . 95

B Interim Experimental Results 98
B.1 Experiment - Fitness Reliability . 99

B.1.1 Averaged Fitness . 101
B.1.2 Centred Averaged Fitness . 103
B.1.3 Centred Averaged Fitness with Average Feasible-Bonus 104

B.2 Experiment - Mapping Reliability . 105

Bibliography 108

Statutory Declaration 113

iii

Contents

List of Abbreviation

AI Artificial Intelligence . 1

API Application Programmable Interface . 17

ASP Answer Set Programming . 6

EA Evolutionary Algorithm . 2

GA Genetic Algorithm . 28

GGP General Game Playing . 1

GUI Graphical User Interface . 17

GVG-AI General Video Game AI Competition . 12

HV Hypervolume. 16

MCTS Monte Carlo Tree Search . 14

MO Multi-Objective . 2

PCG Procedural Content Generation . 1

RWS Roulette Wheel Selection . 11

SDK Software Development Kit . 12

SEM Standard Error of the Mean. .99

SO Single-Objective . 2

SUS Stochastic Universal Sampling . 11

TS Tree Search . 13

UCB1 Upper Confidence Bound . 15

VGDL Video Game Description Language . 17

iv

Introduction

1. Introduction

In the ever-growing market of computer games [Vid16], there is an insatiable thirst for more and
novel game content. This is aggravated by the fact that modern game development needs more
and more money. A game for the original PlayStation took around $800,000 to $1.7 million to
develop, whereas games for its successor PlayStation 2 needed a budget of $5 to $10 million
[LW05]. Games for more recent consoles, like PS3 or XBox 360, cost between $20 and $30
million [Gib09] – rising tendency. Traditionally, besides marketing expenses, one of the biggest
parts of a game budget is allocated to developers and game designers.

A remedy could be to either reduce the need of additional employees or to increase their
efficiency – and this is where Procedural Content Generation (PCG) comes into play. PCG
is a way to automatically generate new game content or even to design complete new games.
This means, it is an algorithmic way to create novel game elements with limited or without any
user interaction. Game content could be anything a player can interact with in a video game,
directly or indirectly, e.g. from levels, maps, textures to vegetation, music or even complete
storylines. This greatly helps to reduce the needed number of artists and opens an opportunity
for smaller teams to develop competitive video games. PCG can also be used as a way to help
guide an artist or novice user, to find new and innovative designs or simply use it as a source of
inspiration.

This thesis will focus on automatically creating game levels. To be more precise: to generate
game levels in the context of General Game Playing (GGP). GGP is part of the wide area of
Artificial Intelligence (AI) research and focuses on creating programs (called agents) that are
able to play different kinds of games without prior knowledge about the specific game rules.
Therefore, the level generator should be able to create levels for multiple kinds of different
games without any special adjustments.

1

Introduction

1.1. Problem Statement

The goal of this thesis is to create multiple levels for various games with the help of different
agents. At least one agent should be a Single-Objective (SO) agent and one should be a
Multi-Objective (MO) agent. Investigations should then be made between the levels to try
to identify distinct level characteristics. The main question is therefore: Can any apparent
difference in the level structure or design be determined between levels generated by different
kinds of agents?

Creating these levels consists of two parts – generating levels and testing them. For this, an
Evolutionary Algorithm (EA) is used. The level generation itself is an iterative constructive
algorithm, whereas the testing uses a simulation-based approach with the help of multiple
predefined agents.

1.2. Thesis Structure

The thesis starts with an overview of state-of-the-art related works in the level generation
research area. The next chapter will provide background information that is necessary to
understand the presented algorithms. A special focus is put on the used software from GGP.
Chapter 4 describes the components of the algorithm to create new levels, such as the EA or a
detailed explanation of the evaluation function. After all these theoretical information, the next
chapter will present the experiment. Both the setup and the results of the practical work are
shown here. This is followed by a conclusion and discussion, before the final chapter will give
the reader an outlook on possible future enhancements.

2

Related Works

2. Related Works

The main work of this paper revolves around procedural level generation. Therefore, this
chapter will review foundational work done in research as well as from industry projects
about PCG.

As already mentioned in the introduction, the interest in PCG is neither new nor untested in
the gaming industry. The first procedural games are quite old and were not even computer
games. They were analogue and a human player had to follow instructions to generate the
content [Smi15]. These can be seen as pioneers in the field of PCG. However, the interest here
lies more in digital games. The earliest were invented in the 80s. Well-known representatives
are Rogue [CMJ15] and Elite. They both use PCG to create the game environments for a
player. More recent examples are Darkspore (enemy generation) or Borderlands (weapon
creation). There are numerous more examples from middleware to generate realistic looking
trees (SpeedTree) to games that use whole generated universes (Elite Dangerous, No Man’s

Sky). Besides the interests of the game industry, it is also an active research area. The goal
here is not only to find completely new generating methods, but also try to find better ways to
control the involved random processes and make the outcome, on the one hand, more reliable,
but also more varying on the other hand.

One of the most detailed overviews about the topic was published as a survey by J. Togelius
et al. [TYSB11]. The authors also provide a excellent taxonomy. It is worthwhile to read
this paper to get an overview about the topic. Additionally, they list desired properties that a
procedural content generator should have. The later described algorithm will use this properties
to justify particular design decisions. Thus, details about this can be found in Section 4.

The next sections will briefly introduce different PCG techniques and provide useful references
for further details.

2.1. Combination of pre-made parts

One of the simplest and widely used methods to create novel content is to use pre-made parts
and combine them in a new way. This technique uses some kind of rules to define which parts
are repeated and where they are placed. Hao Wang invented Wang tiles in 1961 [Wan61] that
nowadays are used, amongst a lot of other things, to generate levels. Such tile is typically a
square with four different colors on each edge. A set of such tiles are arranged to form a pattern
without using any rotation or reflection. Neighbouring tiles must have the same color. The left

3

Related Works

image in Figure 2.1 shows eight such tiles that were invented by M. F. Cohen et al. [CSHD03].
The right image shows an example tiling created with these tiles. A similar method called
Occupancy-Regulated Extension was recently successfully used to create Super Mario levels
[MM10].

(a) An example set of eight Wang tiles
[CSHD03, Fig. 4b]

(b) A tiling created with the eight tiles
from (a) [CSHD03, Fig. 5]

Figure 2.1.: Wang tiles proposed by M. F. Cohen et al.

Another common method here is to use a rhythm based approach. Rhythm based methods try
to interpret level generation like a piece of music. Whereas music is composed of different
notes, a level also consists of small (atomic) pieces. This is especially useful for 2D platformers
[STWM09], since levels for this games are linear just like a song.

2.2. Search-based Methods

Search-based techniques try to find an optimal solution to an optimization problem. That
means, these kinds of algorithms search for an optimal solution throughout a search space.
The search space contains all possible solutions – good and bad ones. Furthermore, a fitness
function is needed to determine the quality of a solution. Implementing such methods is often
quite challenging. Finding a meaningful fitness function can be difficult. Additionally, a proper
encoding of a solution is needed. Such representation could be as simple as a vector of numbers
or up to a sequence of level parts or patterns. An common search method is an Evolutionary
Algorithm. A big disadvantage of such methods is their poor efficiency, especially for larger
search spaces. Metaheuristics like Evolutionary Algorithm or Genetic Algorithm have no
guarantee that they will find the global optimal solutions. In most cases they will only find
local maxima.

4

Related Works

Again, there are countless examples of successful applications of search-based methods to
generate levels. Valtchanov et al. encoded their solutions in a tree structure [VB12]. A node in
their tree represents a partial level (mostly rooms) and an edge represents a connection between
the rooms. A similar method was used for the game Super Mario. They used a sequence of
micro-patterns as the level encoding [DT14].

An interesting experiment was published by Ashlock et al. [ALM11]. They used four different
representations to generate maze-like levels. In their case, a direct representation (using bits
to encode where a wall is) resulted in more interesting mazes. They also experimented with
different fitness functions and their impact on the result. They found out that changes on the
fitness function had the biggest impact in comparison to other EA parameters.

Since the algorithm used in this paper will utilize an EA, a detailed explanation will later be
described in Section 4.6.

2.3. Noise Generators

Simply said, noise is just a series of random numbers and a noise generator is a function to
create (semi-)random data sets. Natural objects have almost always some kind of noise –
blurred or grainy images, noisy sound and so on. Noise is what makes natural objects to appear
natural. Therefore, to procedurally generate something that looks natural, noise is necessary.
Just using random numbers would not lead to the desired result in most cases. For example in
the case of level generators, placing objects at random positions is not what a designer would
do. A designer would group certain objects together and scatter others around the map. There
is a kind of regularity, a pattern, in which objects are arranged.

This is exactly the reason why Ken Perlin developed the first noise generator called Perlin noise

in 1983 [Per85]. It was one of the first algorithms used for procedural generation. The noise is
generated by generating a lattice of (pseudo) random values, which are then interpolated to
fill out the space between the lattices. Ken Perlin later developed the Simplex noise [Per01] to
resolve some disadvantages. Simplex noise has a lower computational complexity and more
importantly it does not suffer from noticeable directional artefacts. Details can be found in
[KKS08]. A slightly different version of Simplex noise is OpenSimplex noise. OpenSimplex

uses some smaller tweaks to avoid patent-related issues. The patent is mostly about the
tessellation function for higher dimensional noise generation. Therefore, 3D OpenSimplex uses
a tetrahedral-octahedral honeycomb instead of a tetragonal disphenoid honeycomb from the
3D version of Simplex noise.

Originally developed to generate textures, noise generators are now used for a lot of more

5

Related Works

(a) Perlin noise (b) Coloured noise (c) Noise with simulated
shadow

Figure 2.2.: Example Perlin noise used to create a landscape image.

content. For example, the texture could be interpreted as a height to create a landscape like the
one shown in Figure 2.2. The different noise values can also be used for placing game objects
or to determine different game areas. The famous game Minecraft uses such a technique to
define biomes and to ensure a smooth transition between them.

2.4. Constraint-based Methods

Constraint-based methods try to define desired properties of a solution instead of describing a
sequence of steps to reach a useful solution. Some algorithms can differentiate between hard
and soft constraints. Hard constraints must be fulfilled, whereas soft constraints are optional.
An advantage is that only feasible solutions are generated and a fitness function is not needed.
Additionally, the search space is way smaller compared to methods that can also produce
infeasible solutions. A disadvantage is that defining the constraints needs sufficient knowledge
of the game mechanics. Finding general constraints that are applicable to a lot of different
games and are able to produce playable levels is not an easy task.

Answer Set Programming (ASP) is a widely used method to generate new content. It uses a
declarative logic language called AnsProlog. AnsProlog can be used to describe how a solution
to a given problem should look like with the help of simple logic rules and statements. It
was already shown that this method is applicable in generating levels [NS16] [SM11], even
generating 3D structures is possible [RP04].

6

Related Works

2.5. Grammar-based Methods

Originally invented to describe natural language [Cho68], grammar-based methods are applied
to all kinds of problems in computer science nowadays. An alphabet and a set of rules are
needed to define a grammar. A rule describes which symbol of the alphabet must be replaced
with one or more other symbols. The rules are applied iteratively until a termination condition
is reached, i.e. until no symbol can be replaced anymore. A simple example of a result of such
a system from the works of O. Št’ava et al. can be seen in Figure 2.3.

A distinction is made between deterministic and non-deterministic grammars. Rules in the first
case are always unambiguous. However, non-deterministic grammars can have multiple rules
for the same symbol sequence.

Generating content with such methods is very efficient and therefore applicable in real-time.
However, a particular drawback is that the grammar must be customized for each game. There
are no general rules to cover several different games. Thus, using such techniques for GGP is
limited.

(a) (b) (c) (d)

Figure 2.3.: Branching-like structure generated with different rule systems [ŠBM+10, Fig. 1]

Nonetheless, grammars can be used to create a wide variety of different kinds of content.
From creating vegetation (e.g. SpeedTree 1), modelling buildings [MWH+06] up to creating
complete game missions [Dor10]. Levels have also been generated with such methods, e.g.
Super Mario levels [SNY+12] or dungeons [DB11].

2.6. Constructive Methods

Constructive-based methods generate content step-by-step. One run results in only one solution.
Therefore, there is no iterative process to re-evaluate and to improve the generated content.
Constructive algorithms can be differentiated into two categories: space partitioning and
cellular automata.

1http://www.speedtree.com/

7

http://www.speedtree.com/

Related Works

Space partitioning algorithms divide the 2D or 3D game space into smaller disjoint subareas
(cells). Sometimes the subdivisions are applied recursively. Thus, each cell can be split up in
even smaller cells. This results in a hierarchy of cells – a tree.

The basic concept of cellular automata was already discovered in the 1940s, but a real break-
through brought Conway’s Game of Life. It was developed by John Horton Conway in 1970
[Gar70]. A cellular automation is a self-organizing structure consisting of a regular grid of
cells. Each cell has a number of states, like on and off in the simplest case, and a reference of
their neighbour cells. They also have some initial state at the beginning (t = 0). At last, there
is a rule set (oftentimes a mathematical function) that defines the next state (t +1) of each cell
according to the current state. Repeatedly applying the function will result in different patterns.
The resulting pattern highly depends on the initial state, the rules and how many iterations were
performed. To actually use this as a level generator, the on / off states could be, for example,
interpreted as walls / free passage. Johnson et al. defined an automation to generate cave
like structures [JYT10] with just three states (floor, rock, wall) and two simple rules. Other
publications used similar rules to create dungeons [vdLLB14] or landscapes [Ols04].

Using cellular automata has several advantages. For one, the implementation is mostly simple
and the resulting algorithm quite efficient. It also has the advantage that infinitive levels can be
generated and due to its efficiency, it can also be done in realtime while the game is played. A
big drawback is the lack of direct control of such algorithms. For example, it is either very hard
or not possible to ensure that generated dungeons are reachable by the player. Single dungeons
could be cut off from the rest of the level. An additional method is needed to ensure that this
kind of cases gets fixed.

2.7. Discussion

As presented in the previous sections, there are many different techniques available to generate
content. The brief introduction is just to get an overview. Surveying all algorithms in detail is
out of the focus of this paper. The given references should be sufficient to start digging deeper
into the subject.

Most of the shown techniques are applicable for creating level designs, but none of the them is,
in general, really better than another. All of them have different pros and cons. J. Togelius et al.
described desirable properties that a PCG system should have: speed, reliability, controllability,
expressivity and diversity, creativity and believability [YT15]. These properties could be used
to categorize the presented approaches, but some of them are rather subjective and therefore
difficult to classify properly. However, one can easily recognize by this, that fulfilling all

8

Related Works

desired properties is almost impossible with the current state-of-the-art. Current algorithms
are only able to achieve some of these properties to a certain degree. An improvement can be
made by combining multiple methods to form a new approach. Almost all properties, besides
maybe speed, can be enhanced with such hybrid-methods. However, hybrid-methods also must
try to find a good balance between these quality characteristics.

Furthermore, J. Togelius et al. provide a detailed taxonomy for procedural content generators
[TYSB11]. This is useful to categorise or describe a content generator. Since this thesis wants
to find and describe differences between level generators that either use a SO or a MO agent,
this work could be useful. However, the used main approach is mostly the same here. Only a
small component of the whole system will be changed. Therefore, the categorisation according
to this taxonomy will (almost) be the same for both variants. Most other authors that propose
new generators usually compared their approach with other methods from relevant literature.
Unfortunately, most of the utilized comparison methods are specific for one use case.

9

Background

3. Background

This section explains some essential background information that are important to understand
this thesis. At first, an overview about the general functioning of an Evolutionary Algorithm is
provided. After that, a detailed explanation of GGP is given. This section also gives some in-
formation about the differences between Single-Objective- and Multi-Objective-agents, as well
as an introduction about their functionality. Further readings about specific implementations,
which are later used for the experiment, are also provided for the interested reader. At last, the
used framework for the implementation is presented.

3.1. Evolutionary Algorithm

An Evolutionary Algorithm is a metaheuristic optimization algorithm. It is loosely inspired
by the natural evolution process. Have a look at Figure 3.1 to see the most important compo-
nents.

Initial
Population

Evolutionary
Algorithm

FITNESS CALCULATIO
N

SELECTI
O

NR
EC

O
MBINATION

M
U

TA
TI

ON

Best
Solution

Figure 3.1.: Typical procedure of an evolutionary algorithm to solve an optimization problem.

Possible solutions are encoded in a chromosome and one particular chromosome belongs to an
individual. Every individual has a fitness that indicates how useful or good this solution is. A
set of individuals is called a population. A population undergoes various steps to generate a
new generation with slightly altered individuals. Different breeding operations, like mutation
and recombination, are responsible for these changes. A selection method chooses which
individuals are used for the next generation.

The basic idea is to pick already good solutions and change them to some extent to find a
marginally better variant. This method will find mostly only local maxima. Some mutations or

10

Background

recombinations are more disturbing to better explore the search space. An advantage of an EA
is the relatively simple implementation and its easy adaptability to all kinds of search problems.
On the downside, there is no guarantee that this method will find the global best solution;
but this is true for all metaheuristic algorithms and could only be avoided by reviewing each
possible solution.

The influential difficult part for every EA implementation is the fitness function. The fitness
function provides information how good or bad a solution candidate is. In most cases the
fitness is represented by a single value. One important property of this function is, that a
small change on an individual should also result only in a small change of the fitness value.
There is no general function or formula; the concrete implementation depends highly on the
specific problem. It is quite different for the breeding operations. The used methods here are
oftentimes the same and do not require that many adjustments besides some simple parameter
changes like the mutation rate. The same applies to the selection method, even if there are
far more different variants available. The later experiment will use Stochastic Universal

Sampling (SUS) [Bak87]. This method selects better individuals with a higher probability.
Nevertheless, worse individuals have also a small chance to get selected. This ensures that the
gene pool is sufficiently large.

Algorithm 3.1: Stochastic Universal Sampling

function SUS(population,N)
Ω ← {}
F ← fitness sum of population
∆ ← F/N
S ← random(0, P)
k ← 0
for i← 1 to N−1 do

P ← S+ i ·∆
while fitness sum of population[0..k]< P do

k ← k+1
Ω ← Ω∪{population[k]}

return Ω

SUS is very similar to Roulette Wheel Selection (RWS). Whereas RWS chooses multiple
solutions by spinning a roulette wheel numerous times, SUS is more like a roulette wheel with
multiple evenly spaced pointers that is only spun one time. Therefore, one wheel turn is enough
to select multiple candidates. SUS is consequently more efficient. For further details have a
look at Algorithm 3.1.

11

Background

3.2. General Game Playing

Most game playing computer programs are build and trained for exactly one game or at least
for one specific type of game. Such a computer program is often called a bot or agent. The
best known examples are probably the world’s best chess program "Deep Blue" from IBM
[CHFh01] or the far more recent example of "AlphaGo" from Google [SHM+16] that is able
to win against the best human Go players. This research area has a long track record and goes
way back to the 50s [Dys12, 315].

In contrast, GGP goes one step further and tries to build AI systems that are able to play
multiple different games [GLP05]. Not only that, but a general agent should also be able to
play a game without any prior training on this specific game. Therefore, the used algorithm can
not be trimmed to a specific set of game rules. They must be able to adapt to new environments
and learn on-the-fly how to react to completely new input. The next sub section will give an
overview about such agents and how they work.

These agents need two things to achieve all this: A computer readable formal game description
and a way to automatically play these games according to the provided rules.

All of these things make GGP an interesting and very challenging interdisciplinary research
area. The first concrete analyses are already from the 60s [Pit68] [Pit71]. Although, it really
picked up only in the last few years.

Nowadays, there are even international competitions for GGP researchers and amateurs. They
provide an incentive to implement novel ideas and to test their performance in comparison to
other concepts. One of the oldest is The International General Game Playing Competition 1

organized by the Stanford Logic Group of the Stanford University since 2005 [GB13]. Another
annually occurring event is the General Video Game AI Competition (GVG-AI)2.

This thesis uses the Software Development Kit (SDK) provided by GVG-AI for the experimental
part. Thus, a detailed explanation is given in the following section.

1http://games.stanford.edu
2http://www.gvgai.net

12

http://games.stanford.edu
http://www.gvgai.net

Background

3.2.1. Agents

As already mentioned, a simulation-based approach is used to evaluate the fitness of a solution
candidate. The simulation will use different kinds of agents that are able to play the generated
levels. The fitness value is based on the outcome of the simulation.

The task of an agent is to determine a suitable action at any given time in the simulation. That
means, the input for such an algorithm is the current state of the game and the output is the
action that the game character executes. Seen in the long term, the outcome should be positive
for the player. For most agents the positive outcome would be quite simple - winning the game.
Although, in some cases winning alone is not good enough. Other objectives could also be
relevant, like maximizing the game score, considering time constraints or collecting special
items. Therefore, the agent would have more than one objective to fulfil at the same time.
Nonetheless, the most common methods are using only one single value to define the quality
of a solution. They use a heuristic to map all these different goals to one number. In spite of
the fact that these agents have several objectives, their evaluation still uses only one objective –
maximizing this value. Consequently, these agents are further called SO-agents.

A problem with this approach is, that sometimes goals conflict with each other. A better way
to address this problem is to use a Multi-Objective method. This means that the optimization
problem tries to find a well balanced solution for multiple variables at the same time. As
recent research suggests, MO-agents have the potential to outperform their SO counterparts
[PlML16].

The experiment in this thesis will use both kinds of agents. Two different SO-agents – sam-

pleMCTS that just uses the MCTS algorithm and a more sophisticated one named random42.
Additionally a MO-agent called paretoMCTS will be used. The main algorithms that these
three agents utilize are described below.

i. Monte Carlo Tree Search

A common method for both approaches is to use a Tree Search (TS). The TS technique
iteratively builds up a game tree. Each node in the tree represents a game state and every edge
stands for an action. The nodes can also hold more information, like game statistics. A terminal
node (a leaf) expresses the end of a game and includes information whether the game has
been won or lost. The overall number of all possible game states can be huge. For almost all
non-trivial games it is either very difficult to evaluate each state or even impossible. Therefore,
a guided tree traversal method is needed. Traditionally, method like Minimax or α−β search
are often used for board or video games. More recently, Monte Carlo Tree Search has gained

13

Background

some momentum, mostly due to its outstanding performance in the game Go [SHM+16].

There are multiple variants and modifications for Monte Carlo Tree Search (MCTS) available
[BPW+12]. The basic idea is quite simple: There is not much information to gain from a single
randomly played game, but it is possible to come up with a good strategy if you play multiple
random games and gather some statistics. MCTS can be divided into four different steps as
shown in Figure 3.2.

MCTS starts with a single root node and expands the tree iteratively. Edges in this tree are
transitions from one game state to another. Each edges also holds information about which
action was performed in this step. In every node of the tree, some statistics are saved that are
continuously updated throughout the whole process. The statistics are how often an action was
performed from a state (N(s,a)), the number of times each action was played from here (N(s))
and the win/loss ratio according to the outcome when a given action was played in a certain
state (Q(s,a)).

Tree Selection Expansion Monte-Carlo Simulation Backpropagation

Figure 3.2.: The four steps of a Monte Carlo Tree Search.

Tree Selection A Tree Policy is used to navigate through the tree from the root up to the first
node that has at least one unpicked action left (known as a non totally expanded node). The
policy has the goal to find a good balance between exploitation (using actions that leaded to
good results) and exploration (using less promising actions to mitigate the effect of late reward
and simulation uncertainty).

Expansion Whenever the algorithm reaches a non-totally expanded node this state is added
to the tree and the Monte-Carlo simulation (roll-out) starts. A roll-out is a sequence of action
selections picked uniformly at random.

14

Background

Monte-Carlo Simulation The rest of the game uses the Default Policy to select the actions. In
the simplest case, all actions are weighted equally and a uniformly at random roll-out is played
until the game terminates or a given depth is reached. It is often useful to use a heuristic to
determine more promising actions instead of choosing them randomly.

Backpropagation As soon as the termination condition is reached, the backpropagation phase
is performed. The statistics are all updated on each visited node.

All these steps are repeated until an end condition is met (e.g. a time constraint). The actual
step for the real game is then chosen by the Recommendation Policy.

Each policy is interchangeable and can be adapted to the particular problem that the users
want to solve. The most influential policy is the Tree Policy. Every action decision in MCTS
needs to find a balance between exploitation and exploration. That means, the algorithm must
choose between selecting actions that lead to better outcomes (as far as known at this moment)
and selecting actions that it has not explored yet. A possible solution for this dilemma was
proposed by L .Kocsis C. Szepesvári [KSW06]. They demonstrated the usefulness of using
Upper Confidence Bound (UCB1). The equation to select a new action with UCB1 is:

a∗ = argmax
a∈A(s)

{
Q(s,a)+C

√
ln N(s)
N(s,a)

}

The first part Q(s,a) is for exploitation and the right side represents exploration. The constant
C is used to weigh both terms.

ii. Pareto MCTS

The goal of all optimization algorithms is to find a feasible non-dominated solution, i.e. a
solution were no single objective could be further improved without degrading the value of
another objective. Figure 3.3 illustrates this and also shows an example Pareto front. In most
cases, there are multiple non-dominated solutions. Single-Objective algorithms often try to
find a balance between the different objectives by weighing them somehow and adding them
up to a single value. This approach does not work properly for non-convex Pareto fronts.

A possible solution was developed by D. Perez-Liebana et al. [DPL15] and is called The Pareto

MCTS. They directly use the pareto front to find better solution candidates. The same author
also benchmarked his implementation and demonstrated that this algorithm is applicable in the
context of GGP [PlML16].

15

Background

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Objective 1

O
bj

ec
tiv

e
2

Pareto Front P
Dominated solution
Non-dominated solution

Hypervolume
of P

Figure 3.3.: Example Pareto front P for solutions with two different objectives.

Instead of using just one fitness value, this variant uses a vector r to represent m values for
each of the m objectives. Q(s,a) now contains such a vector to store the average award of each
objective. Instead of updating a single value, an approximation of the Pareto front is saved in
each node. Since each node has information about the Pareto front, the quality of the reachable
states starting from this point can be estimated. The backpropagation updates the Pareto front
by either adding a new non-dominated solution and removing all newly dominated ones or
by ignoring the solution if it is dominated by an already containing one. The second case can
actually also be used to stop the backpropagation at this child since all parents contain only
better or equally good solutions. For the same reason, the root node automatically contains the
overall best solution that was ever found in this search.

At last, the UCB1 equation must be adapted to use the new reward vector. The Hypervolume

(HV) of the stored Pareto from each node can be used as a quality measurement. HV is just the
objective space of a Pareto front. Figure 3.3 also shows an example HV. The HV can be used
to compare different sets of non-dominated solutions. Thus, HV (P)/N(s) can be used as the
exploitation term, resulting in the new equation:

a∗ = argmax
a∈A(s)

{
HV (P)
N(s)

+C

√
ln N(s)
N(s,a)

}

The experiment will use this algorithm to optimize two objectives. Ob jective1 is to maximize
the score. The heuristic uses the game score in conjunction with a bonus for winning the game
and a penalty for losing. The sampleMCTS controller utilize the same heuristic. Ob jective2

tries to maximize the exploration of the map. The heuristic function is nature-inspired and uses

16

Background

a kind of pheromone diffusion map. Further details can be found in [PDH+15].

iii. Return42

The last used agent is Return42. This agent has a high rank in the GVG-AI competition and
was created by Tobias Welther, Oliver Welther, Frederik Buss-Joraschek and Stefan Hbecker.
The agent uses a hyperheuristic. That means, it combines different heuristic functions and
selects one of them according to certain game characteristics. If a game is deterministic, it uses
an A∗-algorithm to select actions that lead to a higher score or (possible) wins. Random walks
with a handmade heuristic will be used if a game is stochastic. This heuristic takes the score,
resources and NPCs into account.

3.2.2. GVG-AI

The GVG-AI project provides two valuable things for researchers around the world. First, a
platform to show their current work and to prove or disprove its efficiency. Due to the relatively
low entry barrier and the good visualisation, this is also approachable to newcomers, especially
young students. It also greatly helps to introduce them to the wide research area of AI.

On the other hand, the GVG-AI framework itself is a great starting point for all kinds of
different AI related experimentations. For example, although that this work is not directly
about GGP, it nevertheless needs the same building blocks for the evaluation part. The provided
framework is an incredibly helpful tool for this.

The framework is written in Java. Its main purpose is to simulate games that are written in
Video Game Description Language (VGDL) and to provide an interface to write agents that
can play these games. It even has an optional Graphical User Interface (GUI) to give more
and easier to understand feedback to the developer. For testing purpose, it is also possible that
a human instead of a computer program plays these games. More recently it also has a native
interface built in to directly write level generators for VGDL.

The advantage of using this framework is, that, for one, VGDL is a fairly known language
in the scene and that the parsing of this language is already implemented. Hence, the level
generator has direct access to a high level abstraction to all relevant game information in
form of a Java API. Another big advantage are the included finished game descriptions. The
current version provides 72 usable single player games. This will greatly help evaluate the later
presented generator with sufficiently different game designs.

17

Background

3.2.3. Video Game Description Language

Video Game Description Language (VGDL) is a domain specific markup language to define
two dimensional arcade-like games. It was originally developed by Tom Schaul [Sch13]. The
language itself is very compact and allows to define a wide range of different games with just a
few lines of code. Have a look at the example description for the game Sokoban at Listing 3.1.
The whole game is defined in just 15 short lines. The details of the shown VGDL example are
not that important here. Thus, the following paragraphs will only briefly describe the basic
structure of the language.

Listing 3.1: VGDL description of the game Sokoban

1 BasicGame key_handler=Pulse square_size=50
2 SpriteSet
3 hole > Immovable color=DARKBLUE img=hole
4 avatar > MovingAvatar
5 box > Passive img=box
6 LevelMapping
7 0 > hole
8 1 > box
9 InteractionSet

10 avatar wall > stepBack
11 box avatar > bounceForward
12 box wall box > undoAll
13 box hole > killSprite scoreChange=1
14 TerminationSet
15 SpriteCounter stype=box limit=0 win=True

Each VGDL game definition is divided into four sections – SpriteSet, LevelMapping, Interac-

tionSet and TerminationSet.

The SpriteSet part describes all properties of each sprite. A Sprite is, in this case, a single
object in a game world. It could be a background tile, an enemy, an obstacle or something
useful to pickup. The most important sprite type that is always available is the avatar. This is
the player-controlled figure in a game. Sokoban has two more sprite types, hole and box. In
addition to that, the wall sprite is also always implicitly defined.

The InteractionSet section describes what happens when two sprites collide. The shown
example defines, amongst other things, that the player can move boxes around by colliding
with them and that putting a box into a hole will destroy the box and raise the players score by
one point.

The TerminationSet defines the winning and losing conditions. In this case the player would
win if there are no more boxes left. At this point it is worth mentioning, that there is always an
implicit losing rule in the implementation of GVG-AI. If the agent could not win the game after

18

Background

a certain amount of steps, he will simply lose the game. The competition uses a maximum of
2000 steps. Furthermore, if an agent exceeds the maximum allowed computation time per step,
he also gets disqualified and loses this round. The competition limit is set to just 40ms.

One last thing is missing to actually play a game like Sokoban: A level layout. A level is just a
description of the size of the map and all initial positions of the different sprites. This is the
reason for the LevelMapping section. It is used to define another text file, like the one shown
on the left side of Figure 3.4.

w w w w w w w w w w w w w
w w w w w
w w w 0 1 w w 1 w w
w w 1 w w
w w w w w w 0 w w
w w w w w
w w w w w A w w
w w w w w 0 w w
w w w w w w w w w w w w w

Figure 3.4.: A text-based description of a level for Sokoban is shown on the left side. An
image of the same level rendered with the GVG-AI GUI is displayed right.

The level description file has one letter at each position in the map. The letters are mapped
to sprites according to the definition from the LevelMapping section. One letter could also
stand for multiple sprites at once. Have a look at the right side of Figure 3.4 to see how the text
file would look like in an graphical representation. The letters A (avatar) and w (wall) need
not to be defined explicitly. They are predefined for each game and can therefore always be
used.

19

Procedural Level Generation

4. Procedural Level Generation

After having introduced all necessary background information, this chapter will describe any
algorithm to generate game levels. However, just before that, the first section will present
some restrictions and their justification. Right after that, an overview of the general procedure
methods will be given. This should help to better understand the latter details from the section
below.

4.1. Limitations

In regards to the usage case in this thesis, some restrictions to our algorithm can be formulated
beforehand. First, because the context of this work is GGP, no game specific rules should
be used. Although it would be totally okay to use such rules while generating levels, it
would make adjustments in the future much more difficult. Developing and using new game
descriptions in GGP is very common, oftentimes even necessary. A complex adjustment should
be avoided.

Also, prior knowledge of the games, besides their description, should not be used. For example,
the algorithm could use human made levels as a kind of template. Again, it would be fine to
do so, but in regards to simplicity, external dependencies should be used as little as possible.
Another reason to avoid this is to circumvent bias. Oftentimes, human already have a concrete
idea of how a level should look like – in their opinion; mostly based on prior experiences. A
computer program with little to no given human background information will be able to find
completely new solutions. Solutions no human ever thought about. A solution that nevertheless
works according to all given rules, but looks or feels totally different than anything from before.
It could then be used to inspire human designers. This is not really the focus of this work, but
it could nevertheless be adapted for this usage scenario.

The last restriction is not to use human interaction. A typical job for a person could be to
rate all generated levels. But this is highly subjective and would therefore require a lot of
manual work from different persons. Using a computer algorithm to solve all aspects of level
generation is, in this case, more straightforward.

20

Procedural Level Generation

4.2. Algorithm Overview

The level generator consists of three main stages. The first one is an one-time operation. In this
stage, all important information from the game description is parsed. The actual procedure is
explained below in Section 4.3.

After having basic information about the game, an indirect level representation gets created.
A new kind of heuristic is used here to guide the later explained placing algorithm. Further
explanation can be found in Section 4.4. The heuristic data and the game information from
the previous stage together form a level descriptor – an indirect representation of a level. In
regards to the later used EA, it is also called the genotype. With the help of this descriptor one
or more actual levels can be instantiated. To create such level instance, another algorithm is
needed. This one is explained in Section 4.5.

The last stage uses a metaheuristic to find suitable levels. This method tries to find usable
level descriptors by evaluating its generated level instances. This is an iterative improvement
process and takes the most calculation time. The end result will be a functional level for the
given game, optimized with regards to the chosen parameters.

4.3. Retrieve game information

At first we need to gain some general knowledge of the game. Since we do not want to use
any other input but the VGDL we have to parse the description and try to deduce as much
data as possible. The GVG-AI framework already has an implementation to read in most
information and provides them as Java objects. Information about which types of sprites exist,
the interactions among each other and the necessary conditions to win or lose a game is always
included. In some cases, depending on the game rules, even more information is available, like
the lifetime of sprites, speed or their movement direction.

There is other information that is only available indirectly. Some games have a background
sprite, a floor-like tile or a tile to represent space, for example. To find out if there is such
a sprite, we use the level mapping data from VGDL. The level mapping describes which
sprites we can set on the map and, more importantly, how we can stack different sprites. The
hypothesis here is, that if there is a sprite type that can be placed together with every other
sprite type, then this must be a background sprite.

Most games are surrounded by a wall, but that is not always true. We can deduce this property
indirectly from the game description. Namely, if the avatar sprite has no interaction with the
border of the map (called EOS in VGDL) he would be able to run "outside" of the map. Leaving

21

Procedural Level Generation

the level and going, for example, to a negative position should not be possible. Therefore, we
need some other obstacle to prevent this from happening. And this is always a wall.

Another important property of the VGDL are subtypes. That means that the same sprite can
have different characteristics. Only one subtype is active at any given time. Due to some
in-game effects, a sprite could transform from one subtype to another. This information is
also already parsed by the framework, but it is necessary to take this into account while the
algorithm looks at the properties of each sprite. Then there are also implicit information and
assumptions. For example, since we only evaluate single player games, we always need to set
exactly one avatar.

Unfortunately the game description tells us nothing about maximum or minimum size of a
level. Evaluating big levels will take a lot of time. Therefore, the size of the generated levels
must be restricted. There are 365 example levels provided by the GVG-AI framework. From
these human generated levels we can get an idea of typical level sizes. The width of all given
examples varies between 5 and 50. The height is between only 2 and 36. These parameters are
used here to define the size boundaries.

Although this is already a lot of information, there are still some knowledge gaps. It is in
no way enough to generate a whole new level. For example there is no clue about the actual
number of sprites in a game description or where we have to place each object. The reason
is simple, there is not one true number for this. Every level could be totally different. These
missing numbers are our parameters. The next task is therefore to find a good combination of
all the missing values in such a way that the result is a good and useful level.

4.4. Likeliness-Matrices

After having all necessary basic information at hand, we need to decide how to place a sprite
on a map. One possible solution would be to put down sprites at random positions. Do this
thousands of times and with some luck one would find a few good levels. This would be very
inefficient and time consuming. Therefore we need to guide our placing algorithm.

The solution here is to use a Likeliness-Matrix Mt,i[x,y] ∈ [0,1]. This matrix describes the
likeliness to place the sprite of type t on position x,y on iteration i. An example matrix can be
seen on the left side in Figure 4.1. There is one value for each position on the game level. For
this reason the dimension of the matrix is the same as the level size that we want to generate.
The values are between 0 (impossible to set sprite t here) and 1 (placing the sprite here would
probably be very good). It is important to realize that, although the values look like typical
probability values, they are not. Even a 1.0 does not mean that the algorithm will definitely

22

Procedural Level Generation

Figure 4.1.: Left: Example 30x12 Likeliness-Matrix
Right: Different sub-matrices that are used to compose the left matrix
(matrices shown as grayscale image; 0 to 1 are mapped between black and white)

place a sprite on this position. It also does not mean that this position is actually a good
position, only that it is probably a good one.

The matrix itself is a composition of different matrices as shown in Figure 4.1. All these
sub-matrices are multiplied element-wise to create the final matrix M. The sub-matrices have
different parameters that are encoded in the chromosome of an individual (see section 4.6).
The following subsections will describe all sub-matrices in detail.

4.4.1. Placeable-Matrix

The first one has actually just binary values (0 or 1). It describes if this type of sprite is
placeable on the corresponding position on the level at all. For example, for most games we
can only place the avatar sprite on a free position of the map. If the map is already surrounded
by walls (a very common characteristic for a lot of games) a matrix could look like the one
shown in Figure 4.2.

Figure 4.2.: Example 30x12 Placeable-Matrix. Black values mean 0 and white 1.

23

Procedural Level Generation

This matrix is important, because in some cases specific sprites can be stacked. The stacking
combinations are well defined in the VGDL.

4.4.2. Cluster-Matrix

The next matrix is the Cluster-Matrix. In contrast to the previous one, this one has a parameter.
This parameter defines how clustered (or chaotic) the values are distributed and therefore
determines the distribution of a sprite among the level.

The idea behind this matrix is, that for the same games, the same sprites are, more or less,
evenly spread throughout the whole map and others are more concentrated to only a few places.
An example is shown in Figure 4.3. This matrix has approximately three clusters. It is therefore
more likely that the associated sprite is placed within these clusters.

Figure 4.3.: Example 30x12 Cluster-matrix with roughly three clusters.

The data is generated by an OpenSimplex noise generator [Spe14]. The parameter that was
already mentioned describes a stretch factor. The value roughly correlates with the number of
clusters that the generator creates. For example, a value of 1 means that there is only one big
cluster. The matrix values would be evenly distributed. A value of 5 would generate around
five randomly positioned clusters.

In this case the 3-dimensional version is used. Instead of having only 2D clusters, the algorithm
actually generates 3D clusters. However, the actual matrix is only one slice from the 3D data.
The z-axis is determined by an additional second parameter. Small changes of this parameter
will only alter the resulting matrix minimally. This parameter is particularly useful for the EA
that is later used to generate the level (see Section 4.6).

4.4.3. Pattern-Matrix

The Pattern-Matrix has a similar objective as the Cluster-Matrix – to structure the placement
of a sprite in a particular way. Objects in human generated levels are often arranged in some

24

Procedural Level Generation

specific patterns. This matrix tries to archive exactly this behaviour.

Boulders Cave Caves Chess City maze

Clusters Endless maze Less rooms Maze Oblique

Quarter-black River Rooms Simple maze Rooms

Structured maze Thick walls Turns Cave + Maze

Figure 4.4.: 19 different sample patterns used to generate the Pattern-matrix.

At first we need some predefined patterns that a human would also use. An overview of all
used patterns is shown in Figure 4.4. The idea for using this was inspired from [Cha16]. These
patterns act as samples to generate patterns big enough to cover the whole map. The algorithm
used to archive this is called ConvChain [Mxg16]. It is based on a Markov chain Monte Carlo
simulation.

Figure 4.5.: Example Pattern-matrix using the "cave" sample.

25

Procedural Level Generation

An example is shown in Figure 4.5. This matrix was created from the "maze" sample pattern.
The actual likeliness of all non-pattern values is determined by another parameter. That means
that it is still possible to set sprites outside the pattern structure. This parameter is also subject
to the EA algorithm. A smaller parameter value would enforce a distribution according to the
pattern more than a higher value.

4.4.4. Constraint-Matrix

The Constraint-Matrix actually describes a whole series of another matrices. Some sprite types
have specific properties from which we can deduce placing constraints. These constrains are
more like a hypothesis than a given truth, because of the ambiguous nature of such implicit
deduced rules.

An example would be a moving sprite with a fixed direction. Imagine the sprite can only
move downwards. A logical conclusion would be that the sprite needs space to move into this
direction and should therefore be placed on top of the level. Obviously, only placing this sprite
on top is not a good solution, but nevertheless the preferred position to place this sprite should
at least be somewhere in the top region.

In this case we go even one step further and try to place a sprite as far away from its next
collision point as possible. Have a look at Figure 4.6 for an example. Here we have some
obstacles (e.g. a wall) in the center of the level. The sprite we want to place can only move
downwards and would collide with this obstacle. The shown matrix would ensure that we
would most likely not place the sprite directly in front of an obstacle.

Figure 4.6.: Example Constraint-Matrix for the directional constraint "down" and some
obstacles in the middle of the level.

Another interesting implicit information which we can represent with this kind of matrix is the
"free track" constraint. This means that there should be no non-moveable, non-transformable,
non-destroyable objects in the path of a movable sprite that has no defined effect on this object.
Otherwise this sprite would eventually collide with the other one and the result would be
undefined.

26

Procedural Level Generation

One important thing here is that these constrains can be inherited. For example, imagine a game
with some kind of portal that spawns sprites of type t1. These sprites have a fixed direction,
they can only move to the right side. Therefore, they would have a "right"-constraint. But since
they get spawned by another portal sprite, we have to hand this information down to this sprite.
Multiple inheritances are also possible. Consequently, a single sprite type can have multiple
directional constraints at once. Conflicting ones are cancelled out.

4.5. Genotype-Phenotype Mapping

Until now, we only have a vector of numbers (the chromosome) which describes some basic
properties of a level. This vector is often called Genotype. An actual level file like the example
from Section 3.2.3 is called Phenotype. There must be a method to transform this indirect
representation to a concrete level description. In this case, it means there is an algorithm
needed that determines how to place the sprite on a map according to the map size, quantities
and game rules. Additionally the just described Likeliness-Matrices will be used. Therefore,
the mapping function is basically a placing algorithm.

The used method works iteratively and begins with an empty map with a size given by the
chromosome. Furthermore, there is a set that contains all sprites and their corresponding desired
quantity. Again, this information is directly decoded from the individual’s chromosome.

In each step, for each remaining sprite in the set, the Likeliness-Matrices are updated. The
algorithm then finds a position, where, according to the Likeliness-Matrices from each sprite,
the difference between the most likely and the second most likely is maximized. The most
likely sprite on this selected position is then placed there. The equation to select a position is
therefore:

argmax
x,y

(max({Mt [x,y] : t ∈ T})−max2({Mt [x,y] : t ∈ T})

where max returns the maximum value of a given set and max2 the second largest value.

It is important to realize that this algorithm is completely deterministic up until now. Multiple
runs will output the exact same phenotype. However, the most important component of the
placing algorithm, the Likeliness-Matrices, is not able to provide a definitive prediction of a
good placement of a sprite. Its imprecise nature should be taken into account. Therefore, noise
is added to the final matrix. In this case, a 10% range of variation is allowed. This means, if
the second highest likeliness on a position is less than 10% lower than the absolute maximum,
then there is an chance that this value is chosen as the highest instead. This makes the output
stochastic. Every run will now yield in a slightly different level.

27

Procedural Level Generation

Noteworthy is, that it can happen that the given number of sprites can not be placed down fully.
In this situation the remaining sprites will just be ignored. In the worst case, it can even happen
that there is no avatar in the generated level. The next section will describe the EA algorithm
that will be used to screen out this kind of levels.

4.6. Evolutionary Algorithm

As already mentioned in the previous section, there are several different parameters for which
we need to find good values to actually generate meaningful levels. Each chromosome encodes
the following information:

• level width ∈ [5 . . .50]

• level height ∈ [2 . . .36]

• mutation variance ∈ [1.0 . . .10.0]

for each sprite type:

– quantity ∈ N

– pattern ∈ [0 . . .31]

– pattern receptor size ∈ [1 . . .4]

– pattern weight ∈ [0.0 . . .1.0]

– pattern temperature ∈ [0.0 . . .2.0]

– cluster ∈ [0.0 . . .10.0]

– cluster noise ∈ [0.0 . . .1.0]

Consequently, the search space is huge and it is not possible to try every single combination.
An EA is used to cover the search space as thoroughly as possible. To be more precisely, in this
case a Genetic Algorithm (GA) is utilised [Hol92]. Thus, initializing a population, selection
and both breeding operators (mutation and recombination) are more or less what you would
find in standard literature [SP94]. The following subsections will explain every component in
detail.

4.6.1. Initial Population

A uniform random number generator is used to generate an initial population. Every parameter
gets initialised with a random value. The range of the values has to take all restrictions into
account.

28

Procedural Level Generation

For some games and some parameters there are actually no restrictions given. The quantity of
a sprite is such a parameter. One way to solve this is to use an approximation. The absolute
maximum number of one sprite type equals the area of a level. But unfortunately, due to the
stacking possibility of sprites, this is not the maximum number of all combined sprites. The
quantity gets determined individually for each sprite in succession. For the first sprite, the
upper limit is the map area. For the next sprites, it is the map area minus the occupied space.
The occupied space is only an approximation. Not stackable sprites occupy exactly one tile.
Stackable sprites, however, sometimes consume no additional tile. Here we approximate the
occupied space with the quantity divided by the number of different stackable combinations
for this sprite. So that the same sprite type is not always able to get a high quantity number, the
order of the sprites is always random. Due to the approximation, it is possible that the sum
of all sprites is higher than what is really feasible. This means that it is not always possible
to place the given number of sprites. In the end, this is not a problem at all. The algorithm
explained before in Section 4.5 just ignores the surplus.

4.6.2. Breeding Operations

Finding new solutions is an important aspect of every EA. One possibility is just to add random
new individuals to the population. Although this is an adequate way to find totally new solutions
in a completely new area of the search space, we also need a more fine granular evolutionary
method. Hence, two different operations were used here to generate new individuals.

The first one is a simple one-point crossover. Two random, but different individuals are selected
to create a new one. Since the chromosome consists of parameters grouped by each sprite type,
the cutting point is between the two randomly selected sprites. Therefore, the new individual
has the parameters from some sprites from the first parent and the rest from the second.

Crossover alone is a very limited way to create new solution candidates. There are simply not
that many possible crossover points. To increase the diversity, a mutation operation is needed.
A mutation is an addition of a normally distributed value to a random selected parameter. The
variance of the normal distribution is adaptable. It is not trivial to find a good variance value. If
it is too high, then the generated individuals would be too different from their original. The
consequence would be, that the offspring could have a way worse fitness. A too low variance
will have almost no effect on the fitness. For this reason, the variance itself is a parameter
which is influenced by the EA.

29

Procedural Level Generation

4.6.3. Fitness Function

The last ingredient for a working EA is a fitness function. A fitness function defines how well
an individual performs. In this case, it means that it measures how good our generated level is.
Finding a proper definition of what makes a level a good one is complicated. The definition
will always be incomplete and subjective. Yet, an approximation is good enough for the fitness
function.

The fitness function simulates the game with a given level and draws conclusions from this.
The simulation uses different skilled agents – computer programs that are able to play the
game. Three fairly simple agents, one that does only random actions, one that looks just one
step into the future and the sampleMCTS that is provided by the GVG-AI framework. And
then, there will be one more advanced agent depending on the experiment (see Section 5.1 for
more information).

PLAYABLE / CONSISTENT

WINNABLE

CHALLENGING

BALANCED

FUN

Figure 4.7.: Pyramid of desirable qualities of a game level.
Most important and easier to accomplish qualities are at the bottom; every step
upwards is harder to implement, but (most times) also less important.

There are at least three immediately available attributes that are usable to create a fitness
function – the score of each agent, the number of steps they needed and if they won or lose.
To define the fitness function, have a look at Figure 4.7. It is loosely based on the works of
Togelius and Hartzen [TH12, 2]. This pyramid shows some desirable properties that a level
should have. At the bottom is the most important feature a good level should always have. With
every step upwards, the property gets less important and at the same time harder to achieve.
This pyramid is helpful to actually understand the objective behind every part of the fitness
function. Additionally, the whole fitness function can be seen as pseudocode in Algorithm 4.1.
As shown in line 1, three different agents are used to compute the fitness value. The goodAgent

is one of the three previously explained agents (see Section 3.2.1). For the naiveAgent the
sampleonesteplookahead-Agent from the GVG-AI framework was chosen. The randomAgent

30

Procedural Level Generation

selects just a random action in each step. The simulation is done in line 3-5 and the results are
stored in corresponding objects. Each agent is run multiple times to prevent outliers due to the
stochastic nature of some games. More details about this can be found in Section 5.1.

The most important attribute is playable. If a level does not follow the game rules, then it is
practically useless. Therefore, if it is not playable, the fitness value will be zero.

A game should also be winnable. Nobody would even bother to play a game, if he can not win
it. That means, if one of the agents is able to win the game, then the level is obviously winnable
and the fitness value should be raised (line 7). Note that, if no agent can win the game, it does
not really mean that nobody can win it. Maybe a human or a better algorithm could win. These
false negatives are mostly acceptable, since this is only an approximation.

Next, the level should be challenging. A too easy level would be uninteresting and dull, whereas
a too hard level could lead to frustration. The main idea here is, that the simple agents should
not be able to win the game or to get a high score, but the advanced ones should. If a simple
agent is able to win the game anyway, then half of the winnable bonus will be subtracted (line
10). However, winning a game after just a few steps is also not very challenging. Therefore, the
number of steps should also be taken into account. Needing too few steps is bad. But in regards
to the next property, balance, a game should not need the maximum number of allowed steps
(2000). Somewhere in-between would be optimal. To achieve this, a very simple formula is
used that peaks at 1500 (3/4) steps: 1500−abs(steps−1500) (line 8). The normalized average
number of steps of all simple agents are subtracted from the fitness value (line 11). The longer
the bad agents survive, the easier the level.

Algorithm 4.1: Pseudocode of the used fitness function

1 function fitness(goodAgent,naiveAgent,randomAgent)
2 runs ← 5
3 resultGood ← run(goodAgent,runs)
4 resultNaive ← run(naiveAgent,runs)
5 resultRandom ← run(randomAgent,runs)
6

7 ω ← resultGood.averageWon * feasibleBonus
8 + (targetSteps - abs(resultGood.steps - targetSteps) / runs)
9 + resultGood.score

10 - (resultNaive.won + resultRandom.won) / 2 * feasibleBonus * 0.5
11 - (resultNaive.steps + resultRandom.steps) / 2) / runs
12 - (resultNaive.score + resultRandom.score) / 2
13

14 return ω

The score is the last element to define the fitness. Reaching a higher score is, at first glance,
better. Simply increasing the fitness value according to the collected score will not work. Tests
have shown that in this case larger levels will always be preferred by the EA. The reason

31

Procedural Level Generation

is simple: larger levels can contain more sprites which can increase the score. This method
would therefore only create large levels, mostly full of resources. To still use the score, a
normalisation has to be done. The overall score of an agent is simply divided by the game area
to make the value independent of the map size. This value from the good agent is added to the
fitness (line 9). The average values of the simple agents are subtracted (line 12).

The last element of our pyramid, fun, is very hard to define. It is mostly subjective and therefore
difficult to evaluate with a computer program. Since, in our case, the levels are only played by
computers and are not explicitly designed for human, this property is not that important and is
left out here.

32

Experiment

5. Experiment

The task for this thesis was to generate new levels for arbitrary games with the help of different
kinds of agents and try to identify distinct structures, design elements or other properties.
An algorithm was already proposed to generate levels. What is missing is a) an experiment
to proof that this algorithm works and b) to find the differences between the agent variants.
Therefore, the final experiment is also two-fold. The first task is to generate levels with SO and
MO agents. The second part is presenting the results and compare both level sets.

However, before the results can be presented, the setup must be explained first. Thus, the first
section will show which parameters were used and why they were chosen. After that, some
technical details about the evaluation are given, especially with a focus on how to do this in an
efficient manner by using a distributed concept.

5.1. Parameterization

Since the goal of the final analysis is to find differences between levels generated with a
SO-agent and levels created with the help of MO-agents, we need at least two agents of each
kind.

The choice of usable MO-agents is very limited. One such agent was developed by D. Perez-
Liebana [PlML16] and uses a modified version of MCTS [BPW+12]. This agent will be
compared with the SO sampleMCTS-agent that is provided by the GVG-AI framework. Since
one can assume that the MO variant will perform better, another more complex SO-agent was
chosen – called Return42.

5.1.1. Fitness Function

Another parameter for the fitness function is the number of needed simulation passes to get
a stable and reliable fitness value. Since the games are not deterministic, it can happen that
playing the exact same level with the same agent results in different outcomes. One way to
mitigate this, is to play each level multiple times. “The more, the better” should also apply
here, – at least in regards to the accuracy. However, simulating agents takes a very long time
and is therefore a limiting factor. A small experiment is needed to find a compromise between
accuracy and calculation time.

33

Experiment

Intuitively, using the average of all runs should smooth the result enough to be reliable. To
test this hypothesis, the exact same level is played multiple times. Then, the variance between
all fitness values should be sufficient to see how well this solution works. In practice, ten
individuals were randomly generated for four different games. Using different games is to
assure that the results are not tailored to one specific game. The ten individuals are from a 20
generation long evaluation. The parameters for this are not of any interest here. The EA is only
used to ensure that the tested individuals have a higher fitness than zero. Each of these ten
individuals were then evaluated 100 times with four different simulation passes. This is done
for all four games. Overall, the fitness of 16,000 individuals was computed.

Have a look at Figure 5.1 to see an example result from the game aliens and a 2-pass simulation.
Every individual has another color. The markers are the fitness values – 100 per individual.
Additionally, a box plot is displayed to easily see the median, the lower (0.25) and upper (0.75)
quartile, as well as the lower 1 and upper whiskers 2 [RM78]. The actual values should be
perceived with great care. They depend on a lot of other factors, like the used agent or the
speed of the used computers. Still, it is sufficient as a comparison.

1 2 3 4 5 6 7 8 9 10

0

500

1,000

1,500

2,000

Figure 5.1.: Plotted fitness values of ten different individuals from the game Aliens played 100
times with two simulation passes.

As you can see, the difference in fitness is disappointingly high. The big gap between 1200
and 2000 is due to the feasible-bonus points (see Section 4.6.3). You can compare the results

1smallest value which is larger than lowerquartile−1.5 · IQR, where IQR is the difference between the upper
quartile and lower quartile

2the largest value which is smaller than upperquartile+1.5 · IQR

34

Experiment

for different numbers of simulations in Figure 5.2. Details about the other tested games can be
found in Appendix B.1.1. It becomes immediately evident that running the simulation only one
time is very unreliable and practical useless, whereas a higher number of runs helps to reduce
the variance.

0

1,000

2,000

1-pass 3-pass

0

1,000

2,000

5-pass 7-pass

Figure 5.2.: Plotted fitness values of ten different individuals that played the game aliens 100
times with 1,3,5 and 7 simulation passes.

In some cases, like aliens or eggomania, the averaged values are reasonable. However, the
results from the other two games are disillusioning. Even a very time consuming high number
of passes is not enough to further stabilize the fitness. Nevertheless, it can be assumed that larger
numbers of runs will result in slightly better outcomes. But even now, the difference between
five and seven runs is not that high. Further increasing the passes is not a practical solution.
The advantages compared to the way longer evaluation time does not justify these insignificant
improvements. Some other adjustments must be made. Different improvements were tested to
find a more reliable fitness function. See Appendix B.1 for details and benchmarks.

5.1.2. Mapping Function

As described in the genotype-phenotype mapping section (4.5), the level generation is not
deterministic. That means that multiple runs will yield in slightly different levels. Exactly as in
the previous section, an experiment is needed to determine how many levels must be created to
get a meaningful fitness value for a chromosome.

This experiment also uses ten different individuals and evaluates each 100 times. However,

35

Experiment

instead of always using the exact same level 100 times, like in the experiment before, this time,
100 different levels are created from the same chromosome. For each run, either 1, 2, 3 or 4
levels are generated and then evaluated. The average of all runs is the fitness value. Since the
generated levels differ only slightly, the results for one run should be about the same as from
the last experiment or at least only marginally worse.

Table 5.1 shows the standard errors. It uses the exact same method as before to calculate
them. As you can see, one run produces almost the same standard error as the last experiment
(see Table B.3). More runs greatly reduce the variances. Detailed results are shown in
Appendix B.2.

Aliens Bolo Adventures Eggomania Survive Zombies

1 52.59 35.77 30.55 66.22
2 36.37 24.65 21.88 51.14
3 31.27 20.43 17.24 44.41
4 28.08 19.73 15.29 42.15

Table 5.1.: Standard error of fitness values from 100 different individuals of four different
games.

Be aware that each run is especially expensive, since all of them will need to simulate 20 games
(four agents with five simulation passes). As a compromise between a stable fitness value and
computing time, three runs were chosen for the final evaluation.

5.1.3. Evolutionary Algorithm

For this experiment, a population size of 50 individuals were chosen. An elitism approach
was used to always take over the best individuals to the next generation. An elitism approach
made sure that the best individual was always chosen to be in the next generation. Crossover
generated 15 new individuals from the selected ones and mutation mutated 50% of the new
population.

All agents for the fitness evaluation were allowed to play a maximum of 2000 steps. They had
40ms time for each steps. This complies with the competition rules of GVG-AI.

Random tests have shown that for most games the EA finds a fitness plateau after way less
than 50 generations. Although that more generations are generally better, the time needed to
evaluate each additionally generation should be taken into account. 50 generation was a good
compromise between computation time and providing meaningful output.s

36

Experiment

5.2. Distributed Computation

Due to the nature of simulation-based evaluation, the level generation needs a lot of computing
power. As just described, every individual creates three different levels. Calculating the fitness
of one such level needs three different agents; each of them needs five runs to output a stable
fitness value. In a worst case scenario, every agent uses the maximum of 2000 steps á 40ms –
overall 80s. In that event, evaluating only one individual will need 3 ·3 ·5 ·80s= 3600= 60min!
It is fair to say that most agents will not need the whole 2000 steps, nor the 40ms per step. On
average the computation time will be much lower, but still in the range of several minutes.

Since we want to have 50 individuals in each of the 50 generations for multiple games, a
sequential processing could take months, maybe even years. The only solution is to use a
highly parallel approach. Thus, the generating algorithm is divided into a master and an
evaluation process. The master process is responsible to take care of the main EA tasks. That
means, that this process generates all individuals, does the selection and the level instantiation.
Additionally, the master sends the levels created by the individuals to all registered evaluation
servers. The evaluation servers compute the fitness of these levels and send the results back to
the master.

One important thing to consider when multiple systems are in use, is that the used agents
have a fixed amount of CPU time per step. Different CPU speeds would therefore skew the
results. For this reason, it is critical to always use the same system configuration for the whole
experiment. Otherwise the results would not be comparable.

For this experiment the master process runs on an Intel Core i7 5820K processor with overall
12 threads @ 4.20GHz and 64GiB DDR4-2666 memory. All 12 threads could be used
simultaneously to instantiate new levels. The evaluation servers utilized a Intel Xeon X5650
with 24 threads @ 2.67GHz and 48GiB DDR3-1333 memory. Ten such servers were in use
to concurrently evaluate 22 levels each. The two remaining threads are exclusively reserved
for background tasks, like from the operation system itself. To further restrict the interference,
every evaluation process was pinned to exactly one CPU core.

In the end, this distributed server-client architecture speeds up the evaluation by a factor
of around 220. It is just a theoretical number and ignores things like overhead and non-
parallelizable parts.

37

Experiment

5.3. Analysing Levels

The intend of the fitness function design was not to be able to compare the output of different
agents or games. The function’s only goal is to provide guiding assistant for the EA to
evolve levels in the right direction. Therefore, each agent and each game should be treated
independently. That also means, that the absolute values of an EA from one game / agent can
not be compared to the output from another EA. A high fitness value only means that the level
is playable, maybe winnable, and that the used agent can solve it better than a random agent.
A higher fitness value of an agenta compared to an agentb does not mean that the level from
one of the agents is better or worse in any way. Better could mean, for example, that a level is
more difficult to solve (but still solvable), that the level is more aesthetically pleasing or that
it is more fun. The last two points are subjective and therefore notoriously hard to measure.
What is measurable to a certain degree, is how difficult or complex a game level is.

A lot of different ways to measure complexity can be found in literature of combinatorial
game theory – from state-space complexity [All94] to computing the asymptotic difficulty.
Unfortunately, almost all of these methods are limited to actual games and are hard to adapt for
measuring game level complexity. For some of the used games, the map size or the relation of
the number of different sprites could be a way to measure the difficulty, especially the ratio
between enemies and friendly or useful objects. However, this greatly depends on the actual
game description and is sometimes not easy to identify. Even comparing the difficulty of
similar levels could be troublesome, because a lot of other factors, like the actual position of
enemies / friends, could play a role.

Another idea is to play each generated level with all used agents and then compare the output.
Levels that can be won by more agents are easier than levels that almost no agent wins. The
number of needed steps can also be considered. Less needed steps to win a game makes a
level easier. On the other hand, needing less steps before an agent dies is a sign that the level
is harder. As a bonus of testing all the levels with each agent, it also provides insights about
when a level is particularly fitted towards one specific agent. This measurement method is also
not perfect. Some agents are simply not that good at playing certain levels. Therefore, two
example human made levels from the framework will also be tested – One easy level (the first
one) and one more challenging (the last provided level for each game 3). The results will have
an opportunity for interpretation. They will be presented in a table and discussed in detail. The
readers are free to make up their own minds of how to interpret the results.

3The provided levels are more or less sorted by difficulty, beginning with the easiest.

38

Experiment

5.4. Results

Levels were generated for 20 games of the first two game sets from the GVG-AI framework.
This section here presents a high level overview about all results. The details are rather long
and therefore presented in the auxiliary Chapter A. Each of the 20 games is presented there in
an extra section. For all them, the generated levels are displayed as well as the results from the
test runs as described in Section 5.3. Additionally, the results from the EA will be discussed
and evaluated.

As presented in Section 4.6.3, the fitness function strongly focuses on winnable levels. There-
fore, the fitness value is heavily influenced from this factor. The score and the number of steps
that an agent needs play a minor role. A fitness value above 500 almost always means, that the
game can be won at least sometimes by the used agent. Over 2000 oftentimes means, that the
agent was able to win the games almost all times. Exceptions are games where the possible
score is extremely high. These special cases are mentioned in the detail chapter next to the
corresponding result table.

The proposed level generator was able to produce winnable levels for 19 out of the 20 games.
The fitness value from different agents within one game did not fluctuate that much, besides
the fact that the generated levels were completely different in most cases. However, there were
some exceptions like Dig Dug. The generator variant with the MO agent paretoMCTS created
significantly better solutions. The final level was also heavily fitted towards this agent. That
means, only this agent was able to win this level reliably. The levels created with the other two
SO agents were rather uninteresting, because of their extreme simplicity. Such games, were
the MO agent created levels that only he could win occurred multiple times. Another examples
are the games Survive Zombie and Frogs. Interestingly, for the game Frogs, the return42 agent
is really good at playing the provided example levels and the generated levels from both SO
variants, but he was not able to reliably solve the MO generated level.

The fitness value of different games could vary a lot. Although that most times the EA found
a fitness plateau at around 2000, some game level did not even reach a value of 1300. An
example is the game Infection. This either means, that no simpler level could be found to win
the game more often or that the used weaker agents perform similar in this game.

It is interesting to not only look at the final results, but also what happens during the creation
process. The evolution of the fitness value helps to understand how difficult it was to find a
suitable level for a specific game. For some games like Butterflies or Eggomania, the generator
found good levels almost instantly. In one case for the game Eggomania, the generator found a
level with a fitness of around 2000 in the first generation. That means, that a winnable level
was found by pure chance. This is a sign for a good (indirect) representation of a level and

39

Experiment

of course also that the game has rather simple rules. Eggomania has only three game specific
sprite types and a handful of defined interactions. It is also beneficial for the generator that the
game description is well defined. Thanks to the hardcoded orientation of most objects in this
game, the generator was able to deduce placing constraints. The game Butterflies has even less
game objects, but does not provide any hints for their placing.

Examples for games where the evolution took way longer, are Firestorms (Section A.2.3) and
Dig Dug (Section A.2.2). As already mentioned, the MO agent was able to produce relatively
good levels for the game Dig Dug. However, both other SO agents not only needed way longer
to find a good level, but also produced levels with a far lower fitness value. The sampleMCTS

agent found two significantly improved levels in the last two generations. This suggests that
more generations are needed to create better solutions.

The algorithm could easily be adapted as a tool for a designer. Instead of a fully autonomous
system, that has no external input besides the game description, the algorithm could be input
from a human. The human could take over parts of the Evolutionary Algorithm or even the
whole process. For example, he could just score the levels to better guide the search process.
He could also alter the parameters that are encoded in the chromosome like the level size, the
number of sprites or the different arguments for the Likeliness-Matrices.

Thanks to the Pattern-Matrix, the generator is able to produce levels with certain patterns
in it. It actually did happen in a lot of cases, that generated levels had sprites arranged in
some pattern. Unfortunately, the fitness function or the game itself give no reward for specific
structures. There are also no hints in the game description that could be used to recognize
if some pattern is desired or even needed in a game. For this reason, even if a level had a
pattern, it was mostly either unusual for the game or it was applied to the wrong sprite type.
An example would be randomly moving NPCs that are arranged in a cave-like structure. This
happened in the case of Zelda (Section A.1.10). The paretoMCTS variant grouped monsters
together to make up a cave (see Figure A.20c). The structure is fairly useless, since all of the
monsters move away immediately after the game starts. However, another level from the same
game created with the return42 agent, also created a similar pattern, but this time made out of
walls. Therefore, the Pattern-Matrix is useful, but hard to get right in an automatic way without
any other external input.

Another unexpected result was found for the game Camel Race (Section A.2.1). All of the
generated levels look highly different from the provided examples. Not a single property was
similar to the human chosen one. Normally, the objective of this game is to reach a goal before
other computer controlled NPCs (camels) are able to arrive there. The surprising part is, that all
levels had a huge amount of camels placed in close proximity to different goals. These levels
should therefore not be winnable, but remarkable in most cases the agent were able to win this

40

Experiment

level. What was found here, is a bug in the game description. The game description says, that
the level is won as soon as one avatar or one camel reaches a goal. The emphasis lies on one.
According to this definition, if two or more camels arrive at a goal at the same time step, then
nothing will happen. The player has then enough time to reach the goal regarding where it is.
The generator found a completely unpredictable new solution that a human probably would
not have found. The bug effects all levels, even the predefined. It is a lot less probable due to
the lower number of camels, but nonetheless possible.

A main difference between levels generated with a SO agent and a MO agent is the size of
the level. In a lot of cases the levels from the MO agent were far larger. The reason for this
is the utilized exploration objective. This second objective is immensely beneficial in a large
number of games. A good example is the game Whackamole (Section A.2.9). In this game,
the player has to catch moles that pop out from portals that are mostly scattered around on
the map. The MO agent produced a 12 to 20 times larger level than the SO variants. The SO
agents were unsurprisingly not that good at playing such an enormous level. However, this
feature is not always an advantage. There are games where larger level make winning them too
easy. This is often the case for games where the player has to avoid something rather than to
find or collect objects. For example in the game Aliens, the player has to avoid getting hit by
bombs that are dropped from approaching hostile aliens (Section A.1.1). In general, a larger
level means that the player has more time to kill the aliens and and that it is easier to dodge the
bombs. Although that the MO generated level has the most aliens in it, it was also the easiest
level to win for all agents due its large size.

In some cases, a particular generator variant produced such a different level design that only
the used agent was able to win it. That means, that the level was overfitted towards a specific
agent. This phenomena can be observed in the game Frogs (Section A.1.5). The level that was
generated with the MO agent can also only be won reliable with the MO agent paretoMCTS.
The same happened in the game Dig Dug (Section A.2.2). In both cases, the sampleMCTS

controller could not even win a handful of times out of 100. Therefore, the wins were more a
coincidence. The return42 could at least solve the level a few times more, but still much worse
than their average victory rates on other levels. The reason for the overfitting is in both cases
game specific. Unfortunately, in this case, a generalized rule to differentiate between specific
MO and SO characteristics could not be deduced.

The difficulty of the games were another investigation in this thesis. Although that the main
focus lied on generating playable and winnable levels, the difficulty was also of interest to
understand possible differences between a level generated by a SO agent and level created with
a MO agent. Measuring the difficulty of a level is not an easy task. There is no general method
to do this for arbitrary games. In some cases, game specific characteristics were found that

41

Experiment

could be used to determine when a level is either easier or more challenging. A more objective
approach was to simply let the agents play the level and investigate the results. This strategy
can be used to compare the difficulty of different levels from one game. A comparison between
different games is not possible. No general statement could be made about which generator
variant produced the most difficult level. It highly depends on the game, but in a large majority
of cases, the MO variant were able to generate levels that were hard to win for the SO agents.
The opposite also occurred in some games like Overload (Section A.2.6).

Finally, it can be said that using either a MO or a SO agent for the level generation does make
a big difference. In a lot of cases both used SO agents produced very similar levels, whereas
the level from the MO agent was vastly different. Good examples for this can immediately be
seen in the levels from aliens (see Figure A.2) or Butterflies (see Figure A.6).

42

Conclusion

6. Conclusion

A new procedural level generator was presented in this thesis. It is able to produce solvable
and sufficiently challenging levels from an arbitrary game that is described in the Video Game
Description Language (VGDL). Not a single human interaction is needed throughout the whole
processing pipeline. Everything can be done automatically. Nonetheless, a human designer
could also intervene and guide the generator to have a better control over the output.

The proposed approach uses the GVG-AI framework to parse the game description. The
game description contains valuable information that are then used to build up an indirect
representation of a level. This representation is not a playable level. It is an abstract description
about how a possible level could look like. Encoded are information like the size, which and
how many sprites should be in the level and how they are distributed. The distribution describes
the structure or design of a level. It “answers” the question that every game designer would
have, like: Are there any clusters of a certain sprite type? Are they arranged in a specific form

like a maze or a chess field? This arrangement is achieved by using a new technique called
Likeliness-Matrix. Different kinds of Likeliness-Matrices are used to guide the placement of
each sprite. Additionally, an Evolutionary Algorithm is used to refine the generated levels. It
searches through a lot of possible solutions and try to alter them in some way to create even
better levels. The fitness function to compare each solution is simulation-based. It uses different
agents to play each solution candidate. The outcome defines the quality of a level.

An experiment was performed to validate the functioning of the used approach. 20 different
games from the first two game sets from GVG-AI were used to generate new levels from the
ground up. The EA evolved 50 generations with 50 individuals each. Three different agents
were utilized to generate three levels for each game. Two of them were Single-Objective agents
and one was a Multi-Objective agent. The experiment should also determine if there is a
difference between levels generated with either a SO agent or a MO agent.

The results of the experimental work were presented in detail and has been extensively dis-
cussed. Each of the three variants of the generator was able to generate winnable levels for
any game but one. Although that the fitness from all three variants were more less the same
within one specific game, the produced levels were generally fairly different. One of the more
obvious differences is the size of the level. In a large number of cases, the generator variant
that utilized the MO agent produced larger levels than the variant with a SO agent. A lot of
other differences were found. Unfortunately, most of them were rather game specific and could
not be generalized.

43

Conclusion

Another important thing to mention about the generator is, that the creation process takes a
very long time. The experimental work in this thesis used a distributed approach with a fleet of
servers to create enough levels in a timely manner. Therefore, this approach is not applicable
in realtime scenarios. However, the main algorithm could be used in such case since only the
EA process takes a long time. If a designer chooses fitting parameter or parameter sets, the
algorithm could output playable level on the first run. Under this conditions, the evolutionary
process is either not necessary or could be dumped down to speed up the process. Of course, the
chosen parameters would highly depend on the specific game and must be adapted whenever
some rules of the game change.

44

Future Work

7. Future Work

Since this was the first implementation of this algorithm in GGP context, the main focus was
on generating playable and winnable levels first. It was also intended to overfit the generated
level towards a specific agent to better see the differences between them. Nonetheless, the
fitness function could be altered in future works in order to create levels that are even better
suited to the desired criteria. As discussed in Section 4.6.3 about the fitness function, the next
desirable property of a level is challenging. More difficult levels offer a greater challenge for a
player. They would also be useful for the GVG-AI competition. Therefore, altering the fitness
function could be a good way to help increasing the difficulty. The current function rewards
levels more that can be won more often by an agent. Winning the same level just 1 out of 5
times is worse than winning it all five times. This is good to generate levels that could be won
in any case by a sufficiently capable agent. Strictly speaking however, a single win would
be enough to mark a level as winnable. Being able to win a level more often just means that
this level is probably too easy. Thus, changing the fitness function to reward a single win and
penalty multiple wins, could increase the difficulty of the generated levels.

Another desirable quality of a level was fun. Fun is quite a subjective property and is therefore
notoriously hard to evaluate with a computer. For that reason, a human component could be
integrated somehow in the evaluation pipeline. This is also difficult to realize since a huge
number of levels were generated by the EA. Scoring them all could be too much work. An
adequate number of human players would be needed. Maybe some kind of interactive online
voting portal would be helpful.

In general, the fitness function could be improved further. The current one optimizes multiple
objectives at once. The handcrafted function tries to find an optimal balance of the score
difference, the step difference and also the win/loss ratio. In some cases, it is desirable to
change the weight of these properties to better control the output. The manual approach makes
this quite difficult and error prone. A Multi-Objective EA could be used to better handle this.
Instead of trying to alter the fitness function every time when the requirements change, a set of
simple constraints could be used to adjust the weights.

Interestingly, the EA component of the demonstrated algorithm could be omitted. All parame-
ters like the map size, sprite quantities or the ones for each Likeliness-Matrix could be selected
by a human designer. The designer would manually choose fitting values to generate appealing
levels. He could also just use the created levels as a starting point and further refine them by
hand. Thus, the algorithm would then be more a tool to spark creativity or to kick-start the
design process.

45

APPENDIX CHAPTER A

Detailed Results

Detailed Results

A.1. Set 1

A.1.1. Aliens

Generator Width Height
Victories in %

(+avg. steps)

wal
l

ba
ck

gr
ou

nd
ba

se
po

rta
lS

lo
w

po
rta

lF
as

t

Σ

Example 1 30 11
89 100 97

0 281 47 1 0 330(618.20) (531.66) (549.55)

Example 2 30 11
89 100 97

0 292 36 0 1 330(618.20) (531.66) (549.55)

paretoMCTS 23 15
84 93 85

0 325 14 3 2 345(662.60) (629.74) (614.89)

sampleMCTS 4 3
0 100 1

0 6 2 2 1 12(n/a) (306.21) (306.00)

return42 4 6
0 99 85

0 19 0 4 0 24(n/a) (308.47) (310.22)

Table A.1.: Statistics about two examples and three generated levels for the game Aliens. Victories are from 100
random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the player is attacked by aliens. Aliens are spawned from one or more spawn
points and continuously drop bombs that are able to destroy bases and the players avatar. Aliens
only move horizontal and go one row down if they collide with the left or right level border.
The avatar can shoot missiles to destroy the enemy aliens and bases. The game is lost whenever
the avatar is destroyed, which also happens as soon as an alien collides with the avatar. By
shooting all aliens, the player wins the game. The game has a fair amount of opportunities to
collect points. Killing an alien increases the score by 2 points. Shooting down a base brings 1
point. The given levels all have just one spawn point. The bases are placed between the aliens
and the avatars starting points and serve as a protection against the bombs.

As shown in Figure A.1, all three fitness functions were able to generate winnable levels.
Neither of the three variants stand out, all of them found a feasible solution after just a few
generations. The highest score was reached by return42 with 2347.49 points, closely followed
by sampleMCTS (2252.32) and paretoMCTS (2124.82). It did not even take 10 generations
to find a plateau. This shows that finding a feasible level for this game is quite easy – even a
random initialization could be enough.

The generated levels, plus a human-made one, are shown in Figure A.2. Statistics are listed at
the beginning in Table A.1. Eye-catching is, that all generated levels have more alien spawn
points than the example levels. The reason for this is, that more aliens also mean that there is

47

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.1.: Average and maximum fitness values for the game Aliens for all 50 generations
using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.2.: Generated levels for the game Aliens and one human-made example level design
for comparison.

48

Detailed Results

an opportunity to gather more points. Especially with regards to the fact that the naive agents
are probably not capable of killing as many aliens as the more skilled agents.

Noticeable is the different size of the level. A higher level usually means, that the player has
more time to avoid being hit by a bomb. The player also has more time to destroy the aliens.
A narrower level has probably the opposite effect, since the avatar would have less space to
dodge the falling bombs. The return42 and sampleMCTS levels are very small, especially in
comparison with the example levels. However, the level from the MO variant paretoMCTS has
a acceptable size.

Quite impressive is the result of sampleMCTS. The level looks extremely simple, but none of
the other agents is able to beat it. This is a perfect example of overfitting – it works just for one
agent. In general, paretoMCTS performs better than sampleMCTS for the game Aliens [e.g.
PlML16], but this agent has also problems with the other level from return42. The reason is
probably the exploration objective. It is absolutely not helpful for such mini-levels.

Overall, the generated levels are quite useful. The paretoMCTS variant was the closest to the
example levels. They do not have the same aesthetics as a human-made level. It is a pity that
not more levels with a symmetric or ordered sprite distribution were generated. Nonetheless,
generating such levels would be possible, thanks to Pattern-Matrix.

49

Detailed Results

A.1.2. Boulderdash

Generator Width Height
Victories in %

(+avg. steps)

wal
l

di
rt

ba
ck

gr
ou

nd
ex

itd
oo

r
bo

ul
de

r
di

am
on

d
cr

ab
bu

tte
rfl

y

Σ

Example 1 26 13
0 0 8

93 167 16 1 33 23 2 2 338(n/a) (n/a) (645.62)

Example 2 26 13
0 0 8

83 179 16 1 33 21 2 2 338(n/a) (n/a) (645.62)

paretoMCTS 42 23
49 56 98

141 32 0 2 7 447 0 2 632(334.37) (261.29) (69.59)

sampleMCTS 9 32
80 92 99

133 0 0 2 0 58 14 2 210(281.39) (323.88) (23.15)

return42 15 22
74 100 95

132 9 0 1 0 180 5 2 330(109.41) (105.27) (27.59)

Table A.2.: Statistics about two examples and three generated levels for the game Boulderdash. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In Boulderdash, the player has to collect a certain number of diamonds before he can go
through an exit to win the game. The provided example levels always have exactly one exit
and multiple diamonds. The game description dictates that all exits must be destroyed to win a
game. Originally, the level should be build up like a cave consisting of dirt and wall tiles. Two
enemy types are hidden in the cave that are able to kill the player: butterflies and crabs. The
player is able to remove the dirt and gather diamonds, but he must be careful with the boulders

that are scattered around the map. These boulders will fall down as soon as the underlying dirt
gets removed. A falling boulder can also kill the player. The most points can be earned with
diamonds (2 points). Another way to increase the score by 1 is when a butterfly collides with a
crab. This event also creates an additional diamond.

Figure A.3 shows, that all generator variants were able to create winnable levels rather quickly.
However, it took way longer to find a fitness plateau for this game. Return42 needed the most
iterations but found the best result in the end.

Unfortunately, as you can see in Figure A.4, none of the generated levels have great similarity
to the provided example levels. Whereas the example level had a lot of dirt, the generated levels
had either none or just a few dirt tiles. The reason is simple: Dirt has no immediate reward.
It is rather disadvantageous, since there is the danger of being hit by a falling boulder. It has
to be said that this game is very difficult for all used agents [see PlML16, fig. 3]. Table A.2
with the results from the played games demonstrates this very clearly. This is probably also the
reason why the levels look so different compared to the given examples. None of the tested

50

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.3.: Average and maximum fitness values for the game Boulderdash for all 50
generations using three different agents for the simulation.

agents can successfully play them. return42 is the only one that wins at least a few of them.
Whereas the generated level can be played by all agents. Based on the average number of steps
that each agent needed to complete a game, the levels are probably way to easy to solve.

Also, it is striking that there are no enemies in the level generated by paretoMCTS. The two
other agents had absolutely no problem winning this level. Therefore, it is the easiest of all
generated levels. The paretoMCTS agent himself was not that good at playing the generated
levels from the other agents. From this, we can conclude that the paretoMCTS has problems
with this game in general.

Surprisingly, all levels had the right amount of exit doors. For most other games that have such
exits, the number is way off. They mostly have a lot more exits than needed. In a lot of cases,
the exit door is a way to gather points. The original design of this games was not to provide a
resource, but reward winning.

At the end, the generated levels are all winnable, but they do not correspond to what a human
designer would have produced. Additionally, whereas the example levels are mostly very

difficult, the generated levels are way to easy. In this case, no single agents stands out. All are
quite similar.

51

Detailed Results

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.4.: Generated levels for the game Boulderdash and one human-made example level
design for comparison.

52

Detailed Results

A.1.3. Butterflies

Generator Width Height
Victories in %

(+avg. steps)

wal
l

bu
tte

rfl
y

co
co

on

Σ

Example 1 28 11
32 58 100

102 6 27 136(517.69) (382.71) (113.79)

Example 2 28 12
32 58 100

106 7 3 117(517.69) (382.71) (113.79)

paretoMCTS 19 14
85 100 100

81 52 46 180(574.07) (423.26) (168.97)

sampleMCTS 6 10
36 97 97

29 2 22 54(51.22) (16.36) (16.72)

return42 13 5
23 86 44

32 9 16 58(61.43) (31.38) (22.89)

Table A.3.: Statistics about two examples and three generated levels for the game Butterflies. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The goal of this game is to catch every butterfly. Butterflies are moving randomly around
the map. As soon as they touch a cocoon, a new butterfly gets spawned. The player loses
when all cocoons are opened. There is only one way to get points in this game: by destroying
butterflies (2 points). The example levels for this game have almost always a balanced number
of butterflies and cocoons.

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.5.: Average and maximum fitness values for the game Butterflies for all 50
generations using three different agents for the simulation.

53

Detailed Results

The result of the EA is plotted in Figure A.6. Once again it did not take long before winnable
levels were generated. The return42 variant even found a relatively good solution in the
first generation by chance. After around 10 generations a plateau was found to each variant.
Although that this game is not that difficult and that it offers the possibility to get a very high
score, the overall fitness is relatively low. The reason is probably, that the game rules are too
simple and even a naive agent is able to collect a lot of butterflies.

paretoMCTS stands out strongly from the other two agents. This level has much less butterflies
and cocoons and it is way larger. This makes it much more similar to the provided examples. It
is likely that the second objective of this agent, the exploration, greatly helps the agent to find
butterflies even in the most remote corners.

(a) Example (b) paretoMCTS

(c) sampleMCTS (d) return42

Figure A.6.: Generated levels for the game Butterflies and one human-made example level
design for comparison.

Having more cocoons makes a level easier. The shown level from paretoMCTS has around
the same number of cocoons as butterflies. Both other variants have a lot more cocoons than
butterflies. This is not entirely unusual, since some of the human-designed levels also have
way more cocoons than butterflies.

The test results from Table A.3 show, that no level was particularly harder than another one.
Only the level from return42 was a little bit more difficult. paretoMCTS performed rather
poorly for the small levels that the other two agents generated, which is to be expected due to
the exploration objective.

None of the levels have the same design characteristic as the example levels. paretoMCTS

comes close and provides a good balance between aesthetic and difficulty. return42 generated
the most difficult level. It is hard to win, but it is nonetheless quite short. The number of steps
needed is way too low to call this level challenging.

54

Detailed Results

A.1.4. Chase

Generator Width Height
Victories in %

(+avg. steps)

wal
l

sc
ar

ed

Σ

Example 1 24 11
0 0 69

129 7 137(n/a) (n/a) (217.49)

Example 2 24 11
0 0 69

100 12 113(n/a) (n/a) (217.49)

paretoMCTS 4 22
95 98 100

59 3 63(182.54) (196.92) (22.36)

sampleMCTS 10 6
39 73 51

42 6 49(73.44) (300.36) (16.69)

return42 4 8
49 85 58

23 6 30(62.16) (53.22) (12.16)

Table A.4.: Statistics about two examples and three generated levels for the game Chase. Victories are from 100
random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The goal of a player in this game is to chase goats. Goats are the only defined entity in the
game and can either be scared or angry. At the beginning of the game, all goats are scared.
Catching such runaway goat scores 1 point and makes the goat angry at the same time. An
angry goat in turn tries to catch the avatar and to kill him. The game is won as soon as all goats
are angry. As usable, walls can be placed as obstacles.

Although that the game rules are quite simple, winning such a game is not. As shown in
Table A.4, return42 is the only agent that can successfully play the example level. As presented
in Figure A.7, the fitness values are relatively low, even after 50 generations. A very high
fitness value is not to be expected, since the agent can only get 1 point per goat.

A look at the generated levels at Figure A.8 helps to understand the reason for the low fitness
values. Since there are only two possible sprite types to place (besides the one-time avatar
starting position), the probability to set a high number of walls is quite high. As a result, the
algorithm places either too many walls or too many goats. Every goats increases the difficulty
of a level a lot. Dodging them all becomes very difficult or even impossible. Additionally,
placing too many walls results in cut off and inaccessible spaces as the paretoMCTS and
sampleMCTS levels impressively demonstrate. These levels are therefore hard to evolve.
Slightly changing the number of walls will oftentimes not change the fitness. Removing or
adding just one or maybe a handful of wall tiles is generally not enough to solve the isolated
space problem. Furthermore, adding a goat in a unreachable area will instantly make the whole
level unwinnable. The game or the fitness function lacks of an incentive to set fewer walls at
the beginning.

55

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.7.: Average and maximum fitness values for the game Chase for all 50 generations
using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.8.: Generated levels for the game Chase and one human-made example level design
for comparison.

56

Detailed Results

None of the generated levels look like the examples. They are also all way easier to solve.
Unfortunately, none of them provides challenge to another agent. Great differences between
the level generator variants are not apparent.

A.1.5. Frogs

Generator Width Height
Victories in %

(+avg. steps)

wal
l

go
al

wat
er

fo
re

stD
en

se
wat

er

fo
re

stD
en

se
wal

l l
og

fo
re

stS
pa

rs
e wat

er

fo
re

stS
pa

rs
e wal

l l
og

slo
wRt

ru
ck

fa
stR

tru
ck

slo
wLt

ru
ck

fa
stL

tru
ck

lo
g

wat
er

av
at

ar
lo

g

Σ

Example 1 28 11
39 21 83

87 1 45 1 3 0 0 24 8 0 0 32 0 202(366.56) (439.71) (241.27)

Example 2 28 10
39 21 83

70 1 89 1 4 0 0 0 0 0 0 39 1 206(366.56) (439.71) (241.27)

paretoMCTS 30 9
93 1 36

68 5 0 1 8 0 0 0 0 9 23 20 9 144(41.57) (11.00) (13.69)

sampleMCTS 5 6
98 100 75

16 9 0 0 2 0 0 0 1 1 0 0 1 31(56.13) (84.53) (12.08)

return42 26 13
78 87 89

67 1 26 4 10 3 19 0 4 7 0 0 0 142(283.82) (324.59) (48.84)

Table A.5.: Statistics about two examples and three generated levels for the game Frogs. Victories are from 100
random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the avatar is a frog that has to cross rivers and streets to reach the goal. Trucks are
driving on the street and logs are swimming through the rivers. The player must not be overrun
by a truck and has to jump over logs to cross a river. As shown in the example level in A.9, the
human-made level design has clearly defined streets and rivers.

Reaching a goal will increase the players score by one point. There are no other opportunities to
gather points. This is the reason why the level generator “interpreted” the game quite different
than a human designer would do. Whereas the provided levels have only exactly one goal,
the generated levels have a lot more. Having more goals increases the maximum possible
score. Placing only goals on the map would be seen as a disadvantage for the used fitness
function.

All generator variants were able to create winnable levels as presented in Figure A.9. A plateau
could not be found in just 50 generations. paretoMCTS even found a better solution in the last
iteration.

57

Detailed Results

(a) Example (b) return42

(c) paretoMCTS (d) sampleMCTS

Figure A.9.: Generated levels for the game Frogs and one human-made example level design
for comparison.

The difficulty in this game usually consists of avoiding trucks on the road and to correctly
take advantage of the logs to cross the rivers. Both challenges are mostly not present in the
generated levels. No level generator created some kind of river. The only other task that is
left to do, is to collect the goal sprites. Only paretoMCTS placed a lot of trucks and therefore
makes the level more difficult. As shown in Table A.5, it is indeed the most difficult level. The
sampleMCTS controller had a lot of trouble winning this level, whereas he had no problem
with both other generated levels.

Together they all have in common that the levels are quite different from their pre-made
counterparts. There are no river-like structure or street. At least, the starting positions of the
trucks are mostly right. Most trucks that drive left are placed on the right side and trucks that
drive to the right are placed left. Overall, the sampleMCTS level performed significantly worse
than the other two. The level is extremely small and has hardly any enemies. paretoMCTS is
quite the opposite. A lot of enemies and much more space. The level from return42 looks best
from a subjective point of view. It has everything: enemies, enough space to explore and at
least some structure.

58

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.10.: Average and maximum fitness values for the game Frogs for all 50 generations
using three different agents for the simulation.

59

Detailed Results

A.1.6. Missile Command

Generator Width Height
Victories in %

(+avg. steps)

wal
l

cit
y

in
co

min
g_

slo
w

in
co

min
g_

fa
st

Σ

Example 1 24 12
52 55 100

46 3 4 0 54(154.27) (142.27) (88.31)

Example 2 24 12
52 55 100

46 8 7 0 62(154.27) (142.27) (88.31)

paretoMCTS 33 21
72 42 99

131 4 13 1 150(137.47) (151.67) (84.29)

sampleMCTS 16 10
100 88 100

48 28 0 42 119(47.93) (52.43) (48.26)

return42 27 3
100 95 98

56 2 4 6 69(171.62) (156.25) (30.26)

Table A.6.: Statistics about two examples and three generated levels for the game Missile Command. Victories are
from 100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this
order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The player has to protect cities from incoming missiles. Cities are usually placed at the bottom
and missiles at the top of the map. The starting position of the avatar is somewhere in-between.
Destroying a missile increases the score by 2 points. Every destroyed city is punished with
-1 point. The player wins as soon as all missiles are wiped out. If the player can not stop the
missiles before every city is razed, he loses the game.

The EA results are presented in Figure A.11. All variants were able to generate winnable levels.
The sampleMCTS variant needed way more generation to find a good level, but the end result
is nearly the same for each agent.

The generated levels from return42 and sampleMCTS do not look like anything from the
pre-made levels (see Figure A.12). The distribution of the cities and missiles is quite different.
The reason is simply that there are no clues for this in the game description. It is not necessarily
negative. Placing missiles and cities closer together increases the difficulty. Also, it is one of
the goals to generate novel ideas with procedural algorithms.

The paretoMCTS variant is close to the provided levels. The position of the cities and the
missile is only exactly reversed, apart from one missile. Even the starting position of the avatar
is between the missiles and the cities. In comparison with the other two generated levels, this
one is also the most difficult (see Table A.6). Nonetheless, it is rather easy in comparison with
the example levels.

60

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.11.: Average and maximum fitness values for the game Missile Command for all 50
generations using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.12.: Generated levels for the game Missile Command and one human-made example
level design for comparison.

61

Detailed Results

The ratio between cities and missiles can be used to measure the difficulty of a level for this
game. More missiles are more difficult to intercept and at the same time, fewer cities can be
destroyed faster. paretoMCTS and return42 variants produced levels with an average of around
4 missiles per city. The sampleMCTS agent generated easier levels with a ratio of 2:1. At first
sight, this level looks quite challenging, due to all these missiles near the cities. On closer
inspection however, this level is quite easy due to the many cities. Yes, there are a lot of scary
missiles, but they do not pose a real threat.

At the end, the algorithm could find quite acceptable solutions, but they probably are all too
easy. Only the paretoMCTS level is at least a little bit challenging. The win ratio is close to
the one from the example levels. Subjectively, this variant also looks the most attractive. The
arrangement of the sprites and the overall structure is quite close to what a human designer
would create.

62

Detailed Results

A.1.7. Portals

Generator Width Height
Victories in %

(+avg. steps)

wal
l

ho
riz

on
ta

l
ve

rti
ca

l
sit

tin
g

ra
nd

om
go

al
en

try
1

en
try

2
ex

it1
ex

it2

Σ

Example 1 19 11
10 0 83

91 3 2 3 2 1 2 1 3 1 110(518.50) (n/a) (323.75)

Example 2 19 11
10 0 83

73 3 3 0 16 1 0 1 0 1 99(518.50) (n/a) (323.75)

paretoMCTS 15 10
92 100 99

56 0 5 5 15 5 0 43 6 2 138(21.84) (18.17) (8.77)

sampleMCTS 50 14
72 93 98

124 3 6 5 5 1 2 0 0 209 356(74.93) (43.67) (18.30)

return42 38 8
98 100 90

89 0 3 1 0 1 56 2 92 0 245(85.16) (95.40) (53.71)

Table A.7.: Statistics about two examples and three generated levels for the game Portals. Victories are from 100
random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The player has to reach a goal while he has to deal with different enemies at the same time. The
map is divided into smaller rooms by walls. Different portals are placed around the map that
can teleport a the avatar from one room into another. The player has no prior knowledge about
which portals are connected. He has to use them to find out which portals belong together.
Usually, a level has only one goal. Reaching the goal is the only way to get a point. If there are
multiple goals, then all goals must be visited. The game description has no upper limit defined
that out algorithm could use as a constraint. As shown in Table A.7, surprisingly few goals
were used. Only paretoMCTS had more than one.

A winnable level could be found extremely fast. The presented EA results in Figure A.13
show clearly that a winnable level could even be found by pure chance. After only around 15
generations, a fitness plateau was found. None of the three agents stand out particularly. At
least the fitness of all generators were almost the same.

The generated levels look only slightly different to each other (see Figure A.14. All of them
have numerous exits and entries, way more than the provided levels. One characteristic of
the example levels is, that the number of exits and entries are more or less the same. Such
balance is not given in the generated levels. The portal should also connect different rooms.
Unfortunately, the generator created no room structure for these levels.

No clear best solution can be nominated here. There are all quite different to the given levels.
Furthermore, all of them are too easy. None of the agents had any trouble winning them.

63

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.13.: Average and maximum fitness values for the game Portals for all 50 generations
using three different agents for the simulation.

(a) Example (b) sampleMCTS

(c) paretoMCTS (d) return42

Figure A.14.: Generated levels for the game Portals and one human-made example level
design for comparison.

64

Detailed Results

A.1.8. Sokoban

Generator Width Height
Victories in %

(+avg. steps)

wal
l

ho
le

bo
x

Σ

Example 1 13 9
0 0 0

53 2 4 60(n/a) (n/a) (n/a)

Example 2 13 9
0 0 0

86 2 2 91(n/a) (n/a) (n/a)

paretoMCTS 6 44
93 77 100

105 144 4 254(290.37) (351.09) (56.97)

sampleMCTS 21 5
94 96 100

51 8 3 63(288.61) (296.47) (30.17)

return42 31 24
92 75 100

120 112 3 236(181.58) (239.79) (31.79)

Table A.8.: Statistics about two examples and three generated levels for the game Sokoban. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

Levels in Sokoban consist of holes and boxes. The players task is to move each box into a hole.
As a reward the player gets 1 point. Once there are no boxes left, the game is won.

The challenge in this game is, that boxes can only be moved forward by the avatar. That means,
as soon as a box is moved against a wall or, even worse, in a corner, the player is either limited
in which direction he can move the box or it is even impossible to move the box altogether.
Therefore, just one wrong step could easily cost victory.

Details about the EA are plotted in Figure A.15. The EA was not able to find a solution with
a high fitness value. It can also be seen that the first few generations were exceptionally bad
compared to most other games. This and the fact that the return42 variant found a better level in
the last generation, means that a longer evaluation time could further improve the output.

The provided levels have more or less the same number of holes and boxes. More boxes in
relation to holes make a level easier. Paradoxically, the reversed statement is also true. Having
way more holes than boxes can also make a level easier. In the first case, the player could move
a box into an edge and the game would still be solvable. Surplus boxes are a kind of backup.
For the second case, having more holes would shorten the way a box needs to be moved. In
all cases here, the generator chose to place way more holes than boxes. Have a look at the
generated levels in Figure A.16 to see the the full extent of the problem.

Nonetheless, the levels from return42 and sampleMCTS look reasonable. Whereas the arrange-
ment of boxes and holes is probably too easy in the return42 variant, the sampleMCTS provides
a fair amount of challenge. This is also reflected in the results in Table A.8. It can also be seen,
that both generated level are way easier to solve than any given example level.

65

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.15.: Average and maximum fitness values for the game Sokoban for all 50
generations using three different agents for the simulation.

(a) Example

(b) paretoMCTS

(c) sampleMCTS

(d) return42

Figure A.16.: Generated levels for the game Sokoban and one human-made example level
design for comparison.

66

Detailed Results

A.1.9. Survive Zombies

Generator Width Height
Victories in %

(+avg. steps)

wal
l

flo
wer

slo
wHell

fa
stH

ell
ho

ne
y

zo
mbi

e

Σ

Example 1 19 11
0 0 14

85 3 3 0 14 1 107(n/a) (n/a) (1000.00)

Example 2 19 11
0 0 14

78 0 10 2 9 6 106(n/a) (n/a) (1000.00)

paretoMCTS 31 50
51 7 5

158 79 13 6 18 0 275(1000.00) (1000.00) (1000.00)

sampleMCTS 11 37
11 32 3

92 110 0 37 10 3 253(1000.00) (1000.00) (1000.00)

return42 20 24
78 89 0

228 119 0 0 45 82 475(1000.00) (1000.00) (n/a)

Table A.9.: Statistics about two examples and three generated levels for the game Survive Zombies. Victories are
from 100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this
order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the player has to fight for their very survival. Zombies and creatures from hell are
broken out and they try to kill the avatar. The player is not able to fight against the enemies, but
he can try to gather honey which shields him from the deadly zombies. Honey is produced by
bees. Bees are not directly placed in a level, but flower sprites are used. These flowers spawn
bees. There is no protection against other enemy types. If the player is able to survive a certain
amount of time, he automatically wins the game. Every collected honey brings 1 point. If the
player has honey and collides with a Zombie, he gets a point deducted.

Evolving levels for this game took a lot longer than for most other games (see Figure A.17).
None of the agents needed longer than another. All are quite similar. Return42 could reach
the highest fitness value. The other both agents found their best solution relatively late. This
indicates that a longer evaluation could result in even better levels.

Table A.9 shows that none of the used agents were able to solve the provided levels. It is worth
mentioning that the return42 agent is especially bad at this game. He could not even play his
own generated level. This is also the reason why the generated level of this agent looks so
different (see Figure A.18).

None of the generated levels look like the provided. The paretoMCTS level has some structure,
but it does not resemble the look of the example levels. This level also has no single zombie
in it. It should therefore be easier to win. The sampleMCTS variant looks quite chaotic.
Nonetheless, it has everything a good level needs. The test runs have also shown that this is

67

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

2,500

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.17.: Average and maximum fitness values for the game Survive Zombies for all 50
generations using three different agents for the simulation.

the most difficult of all generated levels. It has way more flowers than any given level. This is
probably the only reason why most agents can win this level at least a few times in comparison
to the examples.

68

Detailed Results

(a) Example (b) return42

(c) paretoMCTS (d) sampleMCTS

Figure A.18.: Generated levels for the game Survive Zombies and one human-made example
level design for comparison.

69

Detailed Results

A.1.10. Zelda

Generator Width Height
Victories in %

(+avg. steps)

wal
l

flo
or

go
al

ke
y

no
ke

y
mon

ste
rQ

ui
ck

mon
ste

rN
or

mal

mon
ste

rS
lo

w

Σ

Example 1 13 9
11 2 99

53 58 1 1 1 0 3 0 118(557.00) (687.00) (230.54)

Example 2 13 9
11 2 99

57 54 1 1 1 1 2 0 118(557.00) (687.00) (230.54)

paretoMCTS 26 22
63 62 87

93 0 1 17 1 18 0 221 352(80.52) (89.44) (73.61)

sampleMCTS 26 6
80 76 96

61 0 3 22 1 5 1 12 106(190.57) (340.66) (51.49)

return42 48 17
78 61 96

420 0 1 7 1 2 13 14 459(384.36) (426.39) (187.41)

Table A.10.: Statistics about two examples and three generated levels for the game Zelda. Victories are from 100
random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the player has to escape a dungeon. There are enemies all around the dungeon
that the player can kill by using his sword. To win the game, the user needs to pick up a key

and go through an exit door. The game provides a fair amount opportunities to score. Killing
an enemy brings 2 points and opening the goal with a key 1 point.

It took awhile, but all variants produced a winnable level. As presented in Figure A.19, the
final fitness was relatively low for all agents. Additionally, paretoMCTS found its best solution
fairly late. This suggests that more generations could yield better solutions.

Although that goals provide a way to gather points, all of the generated levels used them rather
sparse. A difference to the human made level is, that the generated levels have way more keys.
A key is needed to win the game. Therefore, more keys make the game easier. The fewest keys
were used by the return42 variant. It is also the largest level. Intuitively, this game should be
quite challenging. However, the test runs, as shown in Table A.10, show a slightly different
picture. The difference is not that big, but the paretoMCTS level seems to be a little bit harder
to solve. This is probably due to the enormous horde of monsters in this level. They are all
slow monsters and can be killed easily to earn points.

The sampleMCTS level looks way simpler due to its smaller size and less enemies. Yet, the
performance difference from all three tested agents was not that big. A smaller map is not
necessary easier. It is harder to avoid enemies on smaller levels. Another difference between
the generated levels and the examples is the use of the floor tile. None of the generated levels

70

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.19.: Average and maximum fitness values for the game Zelda for all 50 generations
using three different agents for the simulation.

(a) Example (b) return42

(c) paretoMCTS (d) sampleMCTS

Figure A.20.: Generated levels for the game Zelda and one human-made example level design
for comparison.

71

Detailed Results

used them as a background. There is no encouragement to use them.

Overall, the levels are quite useful. The generator found a completely new interpretation of
the game description. One that is easier to solve for the computer, but that is nonetheless
sufficiently challenging. Subjectively, the return42 and paretoMCTS levels look better than
the sampleMCTS level, even if the used pattern for the enemies is rather useless. It would be
great if this pattern had been applied to the wall. This would make the levels look more like a
dungeon.

72

Detailed Results

A.2. Set 2

A.2.1. Camel Race

Generator Width Height
Victories in %

(+avg. steps)

wal
l

go
al

ra
nd

om
Cam

el
fa

stR
med

iu
mR

slo
wR

fa
stL

med
iu

mL
slo

wL

Σ

Example 1 49 9
0 0 56

110 7 3 1 1 1 0 0 0 124(n/a) (n/a) (59.55)

Example 2 49 9
0 0 56

131 7 0 3 1 0 0 0 0 143(n/a) (n/a) (59.55)

paretoMCTS 43 45
94 92 0

198 17 62 13 1 1010 0 2 142 1446(523.34) (381.77) (n/a)

sampleMCTS 42 50
95 97 0

382 119 329 1 81 40 1130 17 0 2100(473.16) (346.71) (n/a)

return42 43 36
94 97 0

790 22 44 19 3 4 11 653 1 1548(493.16) (262.57) (n/a)

Table A.11.: Statistics about two examples and three generated levels for the game Camel Race. Victories are
from 100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this
order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the player has to win a race against multiple camels. Whoever first reaches a
goal wins the game. The provided levels have many goals and usually a similar number of
camels on the opposite site of the map. Multiple different camel variants can be used in this
game. Some of them move randomly and some are able to run in a straight line to reach a
goal faster. They also can have different speeds. Like in many other games, walls are used as
obstacles.

Figure A.21 shows the results of the EA. As shown there, the generator could find a winnable
solution in no time. It did not take long before a fitness plateau was reached. At the end, all
variants generated levels with almost the same fitness. This is not surprising, since the game
does not provide any way to collect points besides the one time event of winning.

Unlike many other games, it is enough to reach just one goal to win. The player does not
need to visit each goal. As a disadvantage, this will not lead to a way to gather points like in
Frogs. If you look at the generated levels in Figure A.22, you will wonder how such a game is
winnable. However, the results in Table A.11 clearly show that almost all of these levels can be
solved without a hassle with all agents but return42.

The overview table from the beginning also shows that a huge amount of camels were placed

73

Detailed Results

in each map. How can such a game be winnable? The reason is simple, the game description
has an error in it. It is defined that the game is won as soon as one camel reaches a goal. The
emphasis is on one. Therefore, nothing will happen if two or more camels reach the goal at
the same time. The generator could place as many camels as he liked. There must be only a
minimum number of camels near a goal. This was obviously not the intention of the writer of
the game description, but it explains the strange level design that was created.

The generator found a loophole and mercilessly exploited it. Thus, the generated levels are
not even remotely similar to the examples. The difference is staggering. The level description
should be fixed before this or any other procedural level generator can be applied again.

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.21.: Average and maximum fitness values for the game Camel Race for all 50
generations using three different agents for the simulation.

74

Detailed Results

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.22.: Generated levels for the game Camel Race and one human-made example level
design for comparison.

75

Detailed Results

A.2.2. Dig Dug

Generator Width Height
Victories in %

(+avg. steps)

wal
l

ge
m

go
ld

en
tra

nc
e

mon
ste

r

Σ

Example 1 28 15
0 0 0

267 20 7 2 2 299(n/a) (n/a) (n/a)

Example 2 28 15
0 0 0

103 25 25 1 9 164(n/a) (n/a) (n/a)

paretoMCTS 4 6
90 5 38

16 2 0 1 2 22(178.00) (389.80) (34.92)

sampleMCTS 4 4
97 99 74

12 0 1 0 1 15(40.65) (80.16) (9.59)

return42 9 7
89 53 59

53 1 1 0 1 57(297.45) (330.25) (102.59)

Table A.12.: Statistics about two examples and three generated levels for the game Dig Dug. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The game Dig Dug takes place in a kind of dungeons created from walls. The player has to dig
through the walls, collect gem and gold (+1 point each) and kill all enemies (+2 points) to win
this game. The enemies are spawned from different entrances and are able to kill the player.
The player can shoot boulders, that he has to collect first, to kill the enemies.

The EA results are presented in Figure A.23. For this game, all but the paretoMCTS needed a
very long time to generate good levels. The sampleMCTS variant even found its best solution
only at the end in the last two generations. In general, the fitness of both SO agents is
disappointingly low. Whereas the MO variant could reach a fitness value of above 2021, both
others just scratched on the 1500 mark.

A look at the results in Figure A.24 shows that all generated levels are very small. It can be
seen that the level generator had a similar problem as for the game Chase. Since there are only
a handful of sprite types available, the probability to place a lot of walls is quite hight. The
cut off room problematic can especially be seen in the level from the return42 variant. Since
the agent has to either gather all goodies or kill any enemy, unreachable sections can make a
level unwinnable. These kinds of games are hard to evolve through random mutations. Just
adding or removing one wall tile on the wrong position can alter the fitness enormously. This
is probably the reason why the generator preferred such small levels.

Interestingly, Table A.12 reveals that paretoMCTS was not only the best level regarding the
fitness value, but also regarding the difficulty. Both other SO agents were not able to reliably
win this level. Even if they won, they needed mostly more steps on average as for the other
generated levels. This level was also the only one with an entrance in it that spawns more

76

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.23.: Average and maximum fitness values for the game Dig Dug for all 50
generations using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.24.: Generated levels for the game Dig Dug and one human-made example level
design for comparison.

77

Detailed Results

enemies. Therefore, this level is specially optimized towards the MO agent. This is especially
astonishing since the level is so small, that one might suppose that the exploration objective
would not be helpful.

It must also be said, that none of the agents is good at playing this game. Both example level
could not be solved by any agent. Thus, it is hardly surprising that the generated levels are
quite different to the human-made ones. It is nonetheless disappointing, that no larger levels
were created.

A.2.3. Firestorms

Generator Width Height
Victories in %

(+avg. steps)

wal
l

es
ca

pe
se

ed
wat

er

Σ

Example 1 29 11
16 0 10

114 1 8 6 130(577.81) (n/a) (576.20)

Example 2 29 11
16 0 10

163 1 1 3 169(577.81) (n/a) (576.20)

paretoMCTS 6 9
81 44 10

26 8 4 12 51(178.52) (140.11) (200.30)

sampleMCTS 7 31
87 73 9

84 2 7 32 126(358.10) (392.37) (322.56)

return42 16 6
85 99 58

40 3 4 46 94(247.98) (271.31) (206.31)

Table A.13.: Statistics about two examples and three generated levels for the game Firestorms. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The player has to reach a goal to win this game. The challenge is to not get burned from deadly
flames that are spawned from portals (called seeds in the game description). There is also
water distributed around the map that the player can collect to shield him against the flames.
One unit of water shields the avatar against one hit by a flame, but at the expense of 1 point. As
shown in Figure A.26 in the example level, the starting position and goal is as far away from
each other as possible. Furthermore, the number of water sprites corresponds approximately to
the number of fire portals. As usually, walls are used as obstacles.

As the data from Figure A.25 shows, the generator had absolutely no problem in finding a
winnable solution. Even a random initialisation was sometimes enough to create good enough
levels. The final fitness value is relative low due to the fact that this game does not provide any
way to collect points. None of the agents performed significantly better than another one. All
reached a fitness value of around 2000.

Striking in this game is that the player can only get a negative score. Thus, it is not enough

78

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.25.: Average and maximum fitness values for the game Firestorms for all 50
generations using three different agents for the simulation.

that the good agent avoids being hit by a flame, but the weak agents must be hit more often.
Otherwise the score difference would be zero. This is quite a difference to a lot of other games.
You also need to gather all escapes to win, but this time there are no points to reward this
behaviour. This is probably the reason why all example levels have only one goal sprite.

As presented in Table A.13, all agents are in general pretty bad at playing this game. The
sampleMCTS agent was not able to win a single game from the example levels. Although that
return42 was able to sometimes solve the example levels, this agent reached the worst victory
rate on the generated levels. Both other agents could play these levels reasonably well.

A rather big difference between the created levels and the provided examples is the number
of water tiles. The water is helpful against flames and they therefore make a level easier. The
return42 variant used the most amount of water, almost four times as many as the paretoMCTS

level. This is also reflected in the victory rate in Table A.13. The combination of just a few
flame throwers and a lot of water makes this level too easy.

As shown in Figure A.26, the return42 level is almost completely covered with water tiles
– 82% of the usable game field (i.e. the map without the pre-placed walls) is water. Both
other agents have significantly less water (sampleMCTS: 22%; paretoMCTS: 42%). They are
therefore more difficult.

Another property to measure the difficulty for this game is the number of escapes. There is no
incentive for the agents to collect them. Therefore they only need to survive long enough and

79

Detailed Results

(a) Example (b) sampleMCTS

(c) return42 (d) paretoMCTS

Figure A.26.: Generated levels for the game Firestorms and one human-made example level
design for comparison.

explore the map sufficiently to find them all by chance. This is were paretoMCTS can play to
its strength. Due to the exploration objective, it was able to find all escapes before it died in
almost all cases. The generated level from this agent also used the most escapes.

In the end, only sampleMCTS resembled the design of the example levels. This level is also
sufficiently difficult, has few escapes and a good balance between water and frame spawn
points. The return42 agent for example was not able to win it in most cases. paretoMCTS

has used its exploration ability and generated a level that is fairly challenging for the other
agents.

80

Detailed Results

A.2.4. Infection

Generator Width Height
Victories in %

(+avg. steps)

wal
l

do
cto

r
ho

st

vir
us

en
tra

nc
e

Σ

Example 1 29 11
2 6 95

121 4 17 6 2 151(613.50) (678.50) (426.05)

Example 2 29 11
2 6 95

86 1 4 6 4 102(613.50) (678.50) (426.05)

paretoMCTS 21 43
57 57 61

212 0 226 56 281 776(580.82) (605.82) (556.64)

sampleMCTS 38 28
86 82 81

199 16 366 155 27 764(496.44) (507.51) (397.16)

return42 46 37
93 95 93

453 23 7 383 528 1395(136.05) (146.74) (123.15)

Table A.14.: Statistics about two examples and three generated levels for the game Infection. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The goal of this game is to infect all hosts with a virus. Hosts and players can get infected by
either a virus sprite or by contact with other infected hosts. There are also some entrances were
doctors get spawned. A doctor is able to heal infected hosts (including the avatar). The player
can use his sword to kill a doctor. The game is won as soon as all hosts are infected.

The game provides quite an amount of ways to alter the score. The player will get a bonus
of 2 points for killing a doctor. However, just colliding with a doctor decreases the score by
1. Infecting other hosts gets 2 points. All level are presented in Figure A.28. Green tiles are
healthy hosts and doctors are symbolised in blue. Infected hosts would be orange (not shown
in any of the presented levels). Having a lot of hosts, especially in the narrowest space, makes
the game easier since the infection can be directly transmitted from host to host. Having more
viruses also makes it easier to infect everyone.

The generated levels have a pretty low fitness value as shown in Figure A.27. A fitness plateau
was found after around 20 generations. The paretoMCTS has found a solution with the highest
fitness. The difference in the end is rather marginal.

As presented in Table A.14, the paretoMCTS variant produced the most difficult level. The
balance between the number of doctors and hosts defines the difficulty of a level. Although
that no doctor was directly placed in this level, there are a lot of spawn points that continuously
output new ones. The images of the level in Figure A.28 do not show the entrances, but the
doctors. This is due to the fact that the screenshots were made at step one of the level. At this
very moment, all the doctors were spawned.

81

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

200

400

600

800

1,000

1,200

1,400

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.27.: Average and maximum fitness values for the game Infection for all 50
generations using three different agents for the simulation.

The generated levels do not have that much in common with the provided examples. They
have more of everything – more walls, more doctors, way more hosts, viruses, entrances, ...
Therefore, the generator was not able to find a well balanced solution. The return42 variant
produced the easiest level. It has only seven hosts and a ton of viruses. The fact that it also had
the most entrances did not help for so few hosts. All agents were able to infect them all in less
than 150 steps on average. The sampleMCTS level has the least amount of entrances and the
most hosts. Although that this level is a little bit more difficult to solve for the agents, it has
probably to many hosts. The agent has hardly anything to do. The hosts will infect each other
without any agent intervention.

Overall, the generated levels are quite different to the human-made ones. Nonetheless, playable
and winnable games with sufficient difficulty could be created with the proposed generator.
The levels all look quite chaotically, but they are not that different from the examples. They all
have a similar structured wall placement.

82

Detailed Results

(a) sampleMCTS (b) Example

(c) return42 (d) paretoMCTS

Figure A.28.: Generated levels for the game Infection and one human-made example level
design for comparison.

83

Detailed Results

A.2.5. Firecaster

Generator Width Height
Victories in %

(+avg. steps)

wal
l

go
al

bo
x

man
a

Σ

Example 1 20 11
0 0 0

56 1 64 10 132(n/a) (n/a) (n/a)

Example 2 20 11
0 0 0

56 1 48 4 110(n/a) (n/a) (n/a)

paretoMCTS 44 8
92 100 100

111 1 0 237 350(219.59) (146.77) (20.51)

sampleMCTS 10 13
66 79 99

42 2 16 13 74(465.20) (394.68) (61.83)

return42 19 29
82 87 100

241 1 66 107 416(345.40) (346.72) (58.26)

Table A.15.: Statistics about two examples and three generated levels for the game Firecaster. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

This is another game in which the player has to reach a goal. However, in this case, the way to
the goal is blocked by wooden boxes. The player can burn down the boxes by shooting at them.
Shooting needs mana that must be collected beforehand. Collecting mana and destroying boxes
are rewarded with 1 point. Flames can spread from one box to another, but the player must be
careful not to get burned himself. He has a certain number of health points that gets decreased
by each hit from a flame. The player loses as soon as the health reaches zero. Furthermore,
each hit by a flame costs the player 2 points.

Figure A.29 shows the result of the EA. All variants produced, more or less, levels with the
same fitness. Only a few generations were needed to create winnable levels. In the end, the
fitness were around 1700 for all agents.

Normally, the way to the goal is blocked by multiple boxes. The player has to first burn them
down before he can reach the goal. A look at Figure A.30 reveals, that this is not true for the
generated levels. In all cases, the goals can be reached immediately. Important to know is, that
all goals must be visited by the avatar. The example levels have always one goal, but the game
description has no hardcoded limit. However, visiting a goal has no immediate advantage. This
game does not provide any points for this. Having multiple goals is therefore a disadvantage
since almost all agents will not be able to “learn” that a goal is useful. Only the sampleMCTS

agent had two goals placed. It can be seen in Table A.15 that this is probably also the most
difficult level.

The easiest generated level is from the paretoMCTS agent. There is not a single challenge in it.
The player can only get a lot of points from all the mana. The only reason why this agent is

84

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.29.: Average and maximum fitness values for the game Firecaster for all 50
generations using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.30.: Generated levels for the game Firecaster and one human-made example level
design for comparison.

85

Detailed Results

better than the weaker agents (used for the fitness function), is probably that the exploration
objective forced him to visit more places. Therefore, he did not run directly towards the goal
and had enough possibilities to collect mana. The return42 level also does not force the player
to burn down boxes, but at least it has a lot of normal walls that block the way to the goal.
Since this agent uses, amongst other things, the A∗ algorithm to find its way to the goal, it has
the least problems in solving such a level.

Overall, none of the generator variants could catch the spirit of the game – burning down boxes
to free the way towards the goal. return42 provided at least some challenges by building up a
kind of maze to make it more difficult to get to the goal. The paretoMCTS variant produced
a rather bad level. It is playable and winnable, but does not provide any challenge. Even a
random agent could win this level.

A.2.6. Overload

Generator Width Height
Victories in %

(+avg. steps)
wal

l

go
al

mar
sh

go
ld

ra
nd

om
wea

po
n

Σ

Example 1 20 11
0 0 100

85 1 6 20 1 1 115(n/a) (n/a) (223.09)

Example 2 20 11
0 0 100

57 1 9 66 3 1 138(n/a) (n/a) (223.09)

paretoMCTS 24 33
63 59 100

114 1 8 406 42 0 572(241.29) (291.64) (59.32)

sampleMCTS 42 11
75 76 100

112 1 41 120 1 143 419(232.07) (222.33) (39.07)

return42 16 6
33 93 8

40 1 28 15 0 0 85(237.55) (332.16) (40.88)

Table A.16.: Statistics about two examples and three generated levels for the game Overload. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

Once again the player must reach a goal. This time he has to collect a certain number of gold

in advance to win. However, if he collects more gold than a second certain number defines,
then he can get vulnerable on marsh tiles. The avatar can also collect weapons. Doing so will
give him 2 bonus points. The weapon can be used to destroy marsh. Additionally, there are
randomly moving NPCs (called random in the game description) that are also able to gather
the gold.

As presented in Figure A.31, the generated levels all have a fairly low fitness. A lot of
generations were needed to find suitable levels. The paretoMCTS and return42 variant both
found their best solution relatively late. This indicates, that a longer evaluation might result in

86

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.31.: Average and maximum fitness values for the game Overload for all 50
generations using three different agents for the simulation.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.32.: Generated levels for the game Overload and one human-made example level
design for comparison.

87

Detailed Results

better levels.

Most of the generated levels, as shown in Figure A.32, have a lot more gold than the example
levels, especially the paretoMCTS variant. This agent has a big advantage in such a case
compared to the other used agents. Its exploration objective helps him to find the gold even in
the furthest corners of the map. This is also the reason why this variant generated the largest
levels. Interestingly, this is also the only level with a lot of NPCs. However, as a compensation
for this, this level also has the most gold coins, which lowers the difficulty of the level.

A look in Table A.16 reveals, that the level from return42 is the most difficult for all tested
agents. This level has exactly the right amount of gold. It is enough to reach the goal and
enough to trigger the changes that make the marsh deadly. They are also a lot of marsh
tiles between the avatar and the goal. The player has to go through marsh to reach the goal.
Striking is, that the same agent is not even that good at playing its own generated game. This
suggests that the used simple agents for the fitness function had even more problems solving
this level.

The level produced with sampleMCTS has a lot of gold and a relatively low number of marsh
tiles compared to its size. Additionally, it is the only level with a lot of weapons. This
combination makes the level very easy. It is also pretty easy to get a high score in this level
due to all the weapons. Using the weapon increases the score even further. And due to all the
weapon power, collecting more gold coins is relatively harmless.

In contrast to a game like Frogs, this game does not reward visiting a goal. Therefore, it is not
surprising that at least the number of goals is the same as in all example levels. In the end, the
return42 variant is closest to what a designer would create. It is fairly challenging and has a
good balance of all important game elements. If it was a little bit larger and one or two NPCs
more would make this level perfect. It is a shame that the other two agents are too bad in this
game.

88

Detailed Results

A.2.7. Pacman

Generator Width Height
Victories in %

(+avg. steps)

wal
l

po
wer

pe
lle

t
hu

ng
ry

re
ds

pa
wn

or
an

ge
sp

aw
n

bl
ue

sp
aw

n
pi

nk
sp

aw
n

fru
it

Σ

Example 1 29 31
0 0 0

546 4 237 1 1 1 1 1 4 797(n/a) (n/a) (n/a)

Example 2 29 31
0 0 0

636 4 166 1 1 1 1 1 1 813(n/a) (n/a) (n/a)

paretoMCTS 39 9
73 85 40

264 9 0 1 14 60 2 1 0 352(194.82) (281.60) (584.42)

sampleMCTS 8 49
0 73 93

110 2 1 1 0 1 0 0 0 116(n/a) (425.14) (291.18)

return42 21 20
0 0 77

79 146 105 1 7 0 2 5 28 374(n/a) (n/a) (634.57)

Table A.17.: Statistics about two examples and three generated levels for the game Pacman. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

In this game, the player has to collect all goodies such as pellets, fruits and power pills to win
the game. Collecting them will increase the score by 1, 5 and 10 respectively. He also has to
avoid ghosts while he gets all these items. The ghosts are deadly as long as the player did not
eat a power pill. The pill works only for a certain time. The player can kill a ghost in this time
frame. Killing a ghost gets rewarded with 40 points. Ghost are spawned from different spawn
points.

The results from the EA are shown in Figure A.33. All generator variants were able to produce
winnable levels. A fitness plateau was found fairly fast for both SO agents. The paretoMCTS

variant needed some more generations, but the final fitness values are almost the same. The
many ways to gain score are reflected in the relative high fitness values.

Have a look at Table A.17 to see the experimental results. As you can see there, none of the
agents is very good at this game. They all lose the game every single time. Have a look at
the example level in Figure A.34 to see the reason for this. The difficulty in this game is the
limited freedom of movement. Only a small path can be entered by the agent. Furthermore,
this path is build up like a maze. The deadly ghost can come from each side, sometimes at the
same time. They are normally also slightly faster than the avatar which makes it even more
difficult to run away.

89

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.33.: Average and maximum fitness values for the game Pacman for all 50
generations using three different agents for the simulation.

(a) Example (b) sampleMCTS

(c) return42 (d) paretoMCTS

Figure A.34.: Generated levels for the game Pacman and one human-made example level
design for comparison.

90

Detailed Results

None of the generated levels look like the provided, especially the typical maze-like structure
is not there. The return42 variant used a lot of goodies. It is easy to survive the ghosts with all
those power pills. There are also no obstacles that the player must avoid. He can easily flee
from any ghost.

The sampleMCTS level is easy to solve for a completely different reason. There is only one
goody to gather. The long hose-like structure of this level makes it a little bit more difficult
to avoid the ghosts. This is probably the reason why the weaker agent could not win the
game.

The results for this game are disappointing. It does not really come unexpected, since none of
the agents can play the original levels.

A.2.8. Seaquest

Generator Width Height
Victories in %

(+avg. steps)

wal
l

sk
y

sh
ar

kh
ol

e
wha

leh
ol

e
no

rm
al

di
ve

rh
ol

e
of

ten
di

ve
rh

ol
e

Σ

Example 1 22 9
0 0 0

0 21 3 3 2 0 30(n/a) (n/a) (n/a)

Example 2 22 9
0 0 0

0 21 6 0 0 2 30(n/a) (n/a) (n/a)

paretoMCTS 10 10
0 0 0

0 34 1 0 0 64 100(n/a) (n/a) (n/a)

sampleMCTS 4 5
0 0 0

0 1 0 0 0 18 20(n/a) (n/a) (n/a)

return42 7 5
0 0 0

0 1 0 0 0 33 35(n/a) (n/a) (n/a)

Table A.18.: Statistics about two examples and three generated levels for the game Seaquest. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The player controls a submarine in this game. He must avoid getting killed by animals such as
whales and sharks. Another danger is to have too few air. The submarine must turn up to the
surface to refill the air before the player suffocates. The players submarine also has capacity
for 4 divers that he can rescue. Each rescued diver gets rewarded with 1000 points. He can also
shoot down an animal. This action gets rewarded with 1 point. The game is won after 1000
steps.

Due to all the points that can be collected in this game, the fitness of a level gets quite high

91

Detailed Results

0 5 10 15 20 25 30 35 40 45 50

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.35.: Average and maximum fitness values for the game Seaquest for all 50
generations using three different agents for the simulation.

as shown in Figure A.35. This is one of the games, where it is hard to differentiate between
a high score and a high win rate. Nonetheless, it can be seen that both SO agents reached an
extremely high fitness value. The fitness of the generated level from paretoMCTS is also pretty
high. The difference, however, between both approaches is remarkable. This suggests that the
paretoMCTS agent is rather bad at playing this game.

A look at Table A.18 reveals, that none of the tested agents are able to play this games. Not
a single level was won. Interestingly, the fitness value was still high. The reason for this is
simple. The points for rescuing a diver are so high, that the generator optimized the level
towards this goal.

(a) Example (b) paretoMCTS

(c) return42 (d) sampleMCTS

Figure A.36.: Generated levels for the game Seaquest and one human-made example level
design for comparison.

92

Detailed Results

As shown in Figure A.36, all of the generated levels have a lot of spawn points for divers (the
portal-like objects on the map). The divers must be brought to the sky (white rectangle) by
the avatar. Since the sky is always very close to the spawn points, the avatar does not even
need to move that far. Due to the sheer amount of available divers, the score just continues to
skyrocket.

The paretoMCTS agent produced as the only one spawn points for animals. Killing an animal
is only rewarded with 1 point – i.e. 0.1% of what a rescue mission brings in. Additionally,
each animal increases the chance to die. Therefore, the generator has no incentive to place
spawnpoints. This level can not be created with the proposed algorithm. At least it needs to
overhaul the balance of the different rewards. The algorithm itself would need some information
or mechanism to avoid placing diver spawn points and sky tiles close together.

A.2.9. Whackamole

Generator Width Height
Victories in %

(+avg. steps)

wal
l

wid
e

tig
ht

ca
t

Σ

Example 1 15 5
34 94 98

44 16 8 1 70(500.00) (500.00) (500.00)

Example 2 15 5
34 94 98

61 3 3 2 70(500.00) (500.00) (500.00)

paretoMCTS 43 37
59 70 70

337 747 7 9 1101(500.00) (500.00) (500.00)

sampleMCTS 4 19
37 83 95

48 0 0 1 50(500.00) (500.00) (500.00)

return42 21 6
40 78 96

62 4 0 2 69(500.00) (500.00) (500.00)

Table A.19.: Statistics about two examples and three generated levels for the game Whackamole. Victories are
from 100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this
order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

Here, the player must try to catch moles that periodically pop out of tight or wide portals.
Additionally, there is a cat that also tries to catch moles. If the player catches a mole, then he
scores 1 point. The player loses the game as soon as the cat collides with the avatar. The player
has to manage to stay alive for a certain amount of time steps. It is worth mentioning here, that
the walls are no obstacles like in many other games. They are simple background tiles.

The EA results are presented in Figure A.37. All generator variants were able to produce
winnable levels. The difference between both SO agents and the MO agent is pretty significant.
It can therefore be concluded that the paretoMCTS agent is worse at playing this game. The

93

Detailed Results

0 5 10 15 20 25 30 35 40 45 50
0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.37.: Average and maximum fitness values for the game Whackamole for all 50
generations using three different agents for the simulation.

results from Table A.19 confirm the assumption. The example levels can be found by almost
both SO agents without bigger problems.

(a) sampleMCTS

(b) paretoMCTS

(c) Example

(d) return42

Figure A.38.: Generated levels for the game Whackamole and one human-made example level
design for comparison.

94

Detailed Results

Two surprising things can be seen in the generated levels that are presented in Figure A.38.
First, the sampleMCTS level has not a single spawn point. The only task for the player here is
to just keep out of the cat’s way and wait until the end of the game. This is a task, where the
paretoMCTS controller has a disadvantage. His exploration objective forces him to constantly
stay in motion. Other agents could crawl in a corner and just wait.

The other surprising finding is, that the paretoMCTS level is enormously larger than both
other levels. It has a lot of mole spawn points and overall nine cats. This makes the level a
little bit challenging. Overall, the SO agents lost this level more than any other (including the
examples). However, the MO agent performed best here. This level is therefore fitted towards
a MO agent or at least an agent that incorporates exploration in their evaluation.

Finally, all levels are pretty different from the provided ones. The sampleMCTS variant is way
too easy and misses the point of the game. The level from return42 looks quite reasonable. At
last, the paretoMCTS level is the most difficult level. Only the paretoMCTS agent itself could
handle it well. It also has kind of acceptable structure. It is a pity that the generator does not
recognize the wall sprites as a background tile.

A.2.10. Eggomania

Generator Width Height
Victories in %

(+avg. steps)

wal
l

slo
wChi

ck
en

fa
stC

hi
ck

en
tru

nk
Σ

Example 1 33 14
0 2 42

88 1 0 30 120(n/a) (292.50) (549.71)

Example 2 33 14
0 2 42

88 1 1 30 121(n/a) (292.50) (549.71)

paretoMCTS 8 43
82 89 93

98 190 1 0 290(394.11) (370.47) (461.97)

sampleMCTS 7 5
44 100 66

23 4 0 0 28(413.32) (452.02) (421.97)

return42 9 10
41 77 57

34 11 3 5 54(334.07) (161.38) (229.07)

Table A.20.: Statistics about two examples and three generated levels for the game Eggomania. Victories are from
100 random runs of this following three agents: paretoMCTS, sampleMCTS, return42 (in this order)
Number of steps is the average of all won games. Last columns are the numbers of all placed sprites
(excluding the avatar).

The player in this game has to try to catch all eggs. Catching an egg is rewarded with 1 point.
Eggs are fragile and break as soon as they collide with the floor (wall). The player loses
the game if this happens. One or more chicken are on top of the level and throw their eggs
down. The player can only move horizontal at the bottom of the map. When he managed

95

Detailed Results

to catch enough eggs, he can shoot back with them at the chicken and get 100 points per hit.
Furthermore, the game is won as soon as all chickens were hit.

All generators were able to create winnable levels fairly fast as shown in Figure efplot:exp:re-
sult:eggomania. After less than 10 generations, each variant found a fitness plateau. A marginal
improvement could only be found by sampleMCTS in generation 36. All of the variants had
almost the same final fitness (slightly below 2200).

0 5 10 15 20 25 30 35 40 45 50

0

500

1,000

1,500

2,000

Generation

Fi
tn

es
s

max paretoMCTS max sampleMCTS max return42
average paretoMCTS average sampleMCTS average return42

Figure A.39.: Average and maximum fitness values for the game Eggomania for all 50
generations using three different agents for the simulation.

Have a look at the levels in Figure A.40. The one example level shown and the other four
provided examples look extremely similar. Normally, the chickens sit on a trunk made up of
single brown logs. None of the generated levels could replicate this aspect. There is simply
no single incentive of setting these logs. However, this does not influence the game in any
way.

Broader levels increase the difficulty since it would be harder to catch an egg that falls down
far away from the player’s current position. The opposite is true for the height of an level.
Higher levels give the player more time to react on falling down eggs. The largest level was
generated with the paretoMCTS agent, but this one is rather narrow. Indeed, the results from
the test runs confirm this assumption. As presented in Table A.20, the paretoMCTS level was
relatively easy to win for all agents, despite the fact that this level has the most chickens. The
most challenging level was created with the return42 agent. It has a fair amount of chickens
and is quite small.

96

Detailed Results

None of the generated levels used any walls (besides the default border). Placing a wall in this
game is not an easy task. The avatar must be either above the wall or the chicken should not be
able to move that far right or left that their eggs could hit this wall. The generator handled the
positioning of all other sprites very well due to the placing constraints that are encoded into the
Likeliness-Matrices. The avatars starting position is always on the bottom and the chickens are
at the top.

Overall, none of the levels could replicate the aesthetical aspect of the example levels. Nonethe-
less, all variants were able to produce winnable levels and placed all sprites on the correct
positions. The levels are probably all a little bit too easy, especially the paretoMCTS level
focuses too much on collecting points.

(a) sampleMCTS

(b) paretoMCTS

(c) return42

(d) Example

Figure A.40.: Generated levels for the game Eggomania and one human-made example level
design for comparison.

97

APPENDIX CHAPTER B

Interim Experimental Results

Interim Experimental Results

B.1. Experiment - Fitness Reliability

As shown in Section 5.1.1 a single run of the fitness function results in unreliable fitness values.
This section will show and test some improvements to further stabilize the outcome of the
fitness function.

Yet, before any improvements can be tested, a method to measure and compare the quality of the
reliability of the fitness function is needed. For this, the Standard Error of the Mean (SEM) will
be used [AB05]. SEM is the standard deviation of the sample-mean’s estimate of a population
mean [Eve02]. That is:

SEx̄ =

√
σ2

1 +σ2
2 + . . .+σ2

10√
N

where N is the number of samples and σn the variance of the nth individual. That means that
the variances of all fitness values from each individual are averaged and the square root from
this is then the average standard deviation of the whole population. At last, a normalization
according to the population size is done.

Aliens Bolo Adventures Eggomania Survive Zombies

1 88.26 71.09 27.27 111.00
3 51.78 84.34 16.07 101.56
5 57.84 81.35 15.59 102.68
7 42.05 78.25 15.28 92.34

Table B.1.: Standard errors of four games with different numbers of simulation passes using a
simple average method.

Have a look at Table B.1 for an overview of the results. As assumed, in most cases more passes
means a lower standard error. Unfortunately, it is also clear that increasing the number of runs
will not be enough. Particularly with regard to the extra required computation time.

The first possible improvement is to ignore extreme outliers. Ignoring the min and max fitness
values of all runs and averaging the rest should result in a more stable fitness function. This is
usually called a centred average. A disadvantage is that now at least four passes are needed.
From the previously gained knowledge we know that averaging more values should result
in a more reliable outcome. To be able to better compare the results, this test uses five and
seven passes. All results can be found in Appendix B.1.2. Again, the outcome is rather mixed.
Nonetheless, as demonstrated in Table B.2, the results are slightly better than before, especially
when using five passes. The improvement of more passes are negligible.

Still striking are the large jumps in between the fitness values. This is due to the feasible-bonus

99

Interim Experimental Results

Aliens Bolo Adventures Eggomania Survive Zombies

5 46.33 80.41 13.28 95.86
7 43.16 78.97 12.35 96.32

Table B.2.: Standard errors of fitness values from four games using a centred average.

when an agent wins a game. To minimize this effect and further stabilize the fitness value, this
bonus will now be awarded proportionally. This means, when, for example, five simulation
passes are used and the agent wins only in two of the five cases, the feasible-bonus will be 2/5
of the actual value.

Aliens Bolo Adventures Eggomania Survive Zombies

5 46.44 33.74 22.14 65.79
7 40.21 29.33 19.72 61.96

Table B.3.: Standard errors of fitness values from four games with five simulation passes using
a centred average and an averaged feasible bonus.

The results, as presented in table B.3, show a significant improvement, especially for the
games that previously were particularly bad, like Bolo Adventures. Using seven, instead of five
passes, will slightly improve the results further, but at the expense of a 40% longer computation
time.

The final evaluation will use the last introduced method with five simulation passes. Using
more passes has too few advantages to justify the way longer computing time.

100

Interim Experimental Results

The following figures present the fitness values of ten individuals for four games by using
a slightly different fitness function as explained in section 5.1. Every fitness function was
evaluated with 1, 3, 5 and 7 simulation passes and every individual was played 100 times.

B.1.1. Averaged Fitness

i. Aliens

0

1,000

2,000

3,000
1-pass 3-pass

0

1,000

2,000

3,000
5-pass 7-pass

ii. Bolo Adventures

0

1,000

2,000

3,000
1-pass 3-pass

0

1,000

2,000

3,000
5-pass 7-pass

101

Interim Experimental Results

iii. Eggomania

0

1,000

2,000

3,000
1-pass 3-pass

0

1,000

2,000

3,000
5-pass 7-pass

iv. Survive Zombies

0

1,000

2,000

3,000
1-pass 3-pass

0

1,000

2,000

3,000
5-pass 7-pass

102

Interim Experimental Results

B.1.2. Centred Averaged Fitness

i. Aliens

0

1,000

2,000

3,000
5-pass 7-pass

ii. Bolo Adventures

0

1,000

2,000

3,000
5-pass 7-pass

iii. Eggomania

0

1,000

2,000

3,000
5-pass 7-pass

103

Interim Experimental Results

iv. Survive Zombies

0

1,000

2,000

3,000
5-pass 7-pass

B.1.3. Centred Averaged Fitness with Average Feasible-Bonus

i. Aliens

0

1,000

2,000

3,000
5-pass 7-pass

ii. Bolo Adventures

0

1,000

2,000

3,000
5-pass 7-pass

104

Interim Experimental Results

iii. Eggomania

0

1,000

2,000

3,000
5-pass 7-pass

iv. Survive Zombies

0

1,000

2,000

3,000
5-pass 7-pass

B.2. Experiment - Mapping Reliability

i. Aliens

0

1,000

2,000

3,000
1-pass 2-pass

0

1,000

2,000

3,000
3-pass 4-pass

105

Interim Experimental Results

ii. Bolo Adventures

0

1,000

2,000

3,000
1-pass 2-pass

0

1,000

2,000

3,000
3-pass 4-pass

iii. Eggomania

0

1,000

2,000

3,000
1-pass 2-pass

0

1,000

2,000

3,000
3-pass 4-pass

106

Interim Experimental Results

iv. Survive Zombies

0

1,000

2,000

3,000
1-pass 2-pass

0

1,000

2,000

3,000
3-pass 4-pass

107

BIBLIOGRAPHY

Bibliography

[AB05] Douglas G Altman and J Martin Bland. Standard deviations and standard errors,
oct 2005.

[All94] L. Victor Searc Allis. Searching for Solutions in Games and Arti cial Intelligence.
1994.

[ALM11] Daniel Ashlock, Colin Lee, and Cameron McGuinness. Search-based procedural
generation of maze-like levels. IEEE Transactions on Computational Intelligence

and AI in Games, 3(3):260–273, 2011.

[Bak87] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms on

Genetic Algorithms and Their Application, pages 14–21, Hillsdale, NJ, USA,
1987. L. Erlbaum Associates Inc.

[BPW+12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and

AI in Games, 4(1):1–43, March 2012.

[Cha16] Kevin Chapelier. Convchain Example: Continuous. http://www.kchapelier.
com/convchain-demo/continuous.html, 2016. (Accessed on: 2016-
11-16).

[CHFh01] Murry Campbell, Joseph Hoane, and Hsu Feng-hsiung. Deep Blue. pages 1–31,
2001.

[Cho68] N. Chomsky. Language and mind. Harcourt, Brace & world. Harcourt, Brace &
World, 1968.

[CMJ15] D.L. Craddock, A. Magrath, and M. Jaram. Dungeon Hacks: How NetHack,

Angband, and Other Roguelikes Changed the Course of Video Games. Press Start
Press, 2015.

[CSHD03] Michael F Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles

for image and texture generation, volume 22. ACM, 2003.

108

http://www.kchapelier.com/convchain-demo/continuous.html
http://www.kchapelier.com/convchain-demo/continuous.html

BIBLIOGRAPHY

[DB11] J. Dormans and S. Bakkes. Generating missions and spaces for adaptable play
experiences. IEEE Transactions on Computational Intelligence and AI in Games,
3(3):216–228, Sept 2011.

[Dor10] Joris Dormans. Adventures in level design: generating missions and spaces for
action adventure games. In Proceedings of the 2010 workshop on procedural

content generation in games, page 1. ACM, 2010.

[DPL15] S. Samothrakis D. Perez, S. Mostaghim and S. M. Lucas. Multiobjective monte
carlo tree search for real-time games. IEEE Transactions on Computational

Intelligence and AI in Games, 7(4):347–360, Dec 2015.

[DT14] Steve Dahlskog and Julian Togelius. Procedural Content Generation Using

Patterns as Objectives, pages 325–336. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[Dys12] George Dyson. Turing’s Cathedral: The Origins of the Digital Universe (Vintage).
Vintage Books, 2012.

[Eve02] Brian Everitt. The Cambridge dictionary of statistics. Cambridge University
Press, Cambridge, UK; New York, 2002.

[Gar70] Martin Gardner. Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game "life". Scientific American, 223:120–123, 1970.

[GB13] Michael Genesereth and Yngvi Björnsson. The International General Game
Playing Competition. AI Magazine, 34(2):107–111, 2013.

[Gib09] Ellie Gibson. Games to cost $60m, says ubisoft boss. http://www.eurogamer.
net/articles/games-to-cost-USD60m-says-ubisoft-boss, 2009.

[GLP05] Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing:
Overview of the AAAI competition. AI Magazine, 26(2):62–72, 2005.

[Hol92] John H Holland. Genetic algorithms. Scientific american, 267(1):66–72, 1992.

[JYT10] Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius. Cellular
automata for real-time generation of infinite cave levels. In Proceedings of the

2010 Workshop on Procedural Content Generation in Games, PCGames ’10,
pages 10:1–10:4, New York, NY, USA, 2010. ACM.

[KKS08] Andrew Kensler, Aaron Knoll, and Peter Shirley. Better gradient noise. Technical
report, Tech. Rep. UUSCI-2008-001, SCI Institute, University of Utah, 2008.

109

http://www.eurogamer.net/articles/games-to-cost-USD60m-says-ubisoft-boss
http://www.eurogamer.net/articles/games-to-cost-USD60m-says-ubisoft-boss

BIBLIOGRAPHY

[KSW06] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved Monte-Carlo
Search. White paper, (1):22, 2006.

[LW05] Cathy Leach Waters. The united states launch of the sony playstation2. Journal

of Business Research, 58(7):995–998, 2005.

[MM10] Peter Mawhorter and Michael Mateas. Procedural level generation using
occupancy-regulated extension. In 2010 IEEE Conference on Computational

Intelligence and Games, Copenhagen, Denmark, 2010. IEEE, IEEE.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
Procedural modeling of buildings. In Acm Transactions On Graphics (Tog),
volume 25, pages 614–623. ACM, 2006.

[Mxg16] Mxgmn. ConvChain. https://github.com/mxgmn/ConvChain, 2016. (Ac-
cessed on: 2016-11-16).

[NS16] Mark J. Nelson and Adam M. Smith. ASP with Applications to Mazes and Levels,
pages 143–157. Springer International Publishing, Cham, 2016.

[Ols04] Jacob Olsen. Realtime procedural terrain generation. Department of Mathematics

And Computer Science (IMADA), University of Southern Denmark, page 20,
2004.

[PDH+15] D. Perez, J. Dieskau, M. Hünermund, S. Mostaghim, and S.M. Lucas. Open loop
search for general video game playing. In GECCO 2015 - Proceedings of the

2015 Genetic and Evolutionary Computation Conference, 2015.

[Per85] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296,
July 1985.

[Per01] Ken Perlin. Noise Hardware. SIGGRAPH Course Notes, 2001.

[Pit68] Jacques Pitrat. Realization of a general game-playing program. In IFIP Congress,
pages 1570–1574, 1968.

[Pit71] Jacques Pitrat. Realization of a general game-playing program. Information

Processing, 68:1570–1574, 1971.

[PlML16] Diego Perez-liebana, Sanaz Mostaghim, and Simon M Lucas. Multi-Objective
Tree Search Approaches for General Video Game Playing. Proceedings of the

IEEE Congress on Evolutionary Computation, 2016.

110

https://github.com/mxgmn/ConvChain

BIBLIOGRAPHY

[RM78] Wayne A. Larsen Robert McGill, John W. Tukey. Variations of box plots. The

American Statistician, 32(1):12–16, 1978.

[RP04] Timothy Roden and Ian Parberry. From Artistry to Automation: A Structured

Methodology for Procedural Content Creation, pages 151–156. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[ŠBM+10] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof. Inverse procedural
modeling by automatic generation of L-systems. Computer Graphics Forum,
29(2):665–674, 2010.

[Sch13] Tom Schaul. A video game description language for model-based or interactive
learning. IEEE Conference on Computatonal Intelligence and Games, CIG, 2013.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the Game of Go with Deep Neural Networks and
Tree Search. Nature Publishing Group, (1):1–37, 2016.

[SM11] A. M. Smith and M. Mateas. Answer set programming for procedural content
generation: A design space approach. IEEE Transactions on Computational

Intelligence and AI in Games, 3(3):187–200, Sept 2011.

[Smi15] Gillian Smith. An Analog History of Procedural Content Generation. Foundations

of Digital Games, 2015.

[SNY+12] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’Neill. Evolving
levels for super mario bros using grammatical evolution. In 2012 IEEE Con-

ference on Computational Intelligence and Games (CIG), pages 304–311, Sept
2012.

[SP94] Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. Computer,
27(6):17–26, 1994.

[Spe14] K Spencer. OpenSimplexNoise.java. http://gist.github.com/KdotJPG/
b1270127455a94ac5d19, 2014. (Accessed on: 2016-11-16).

[STWM09] Gillian Smith, Mike Treanor, Jim Whitehead, and Michael Mateas. Rhythm-
based level generation for 2d platformers. In Proceedings of the 4th International

Conference on Foundations of Digital Games, pages 175–182. ACM, 2009.

111

http://gist.github.com/KdotJPG/b1270127455a94ac5d19
http://gist.github.com/KdotJPG/b1270127455a94ac5d19

BIBLIOGRAPHY

[TH12] Julian Togelius and Anders Hartzen. Compositional procedural content gener-
ation. Proceedings of the FDG Workshop on Procedural Content Generation

(PCG)., 2012.

[TYSB11] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in Games,
3(3):172–186, 2011.

[VB12] Valtchan Valtchanov and Joseph Alexander Brown. Evolving dungeon crawler
levels with relative placement. In Proceedings of the Fifth International C*

Conference on Computer Science and Software Engineering, C3S2E ’12, pages
27–35, New York, NY, USA, 2012. ACM.

[vdLLB14] R. van der Linden, R. Lopes, and R. Bidarra. Procedural generation of dungeons.
IEEE Transactions on Computational Intelligence and AI in Games, 6(1):78–89,
March 2014.

[Vid16] Video Game Market Report. http://www.woodsidecap.com/wp-content/
uploads/2015/12/WCP-Video-Game-Report-20151104.pdf, April
2016. (Accessed: 2016-11-16).

[Wan61] H. Wang. Proving theorems by pattern recognition ii. The Bell System Technical

Journal, 40(1):1–41, Jan 1961.

[YT15] G. N. Yannakakis and J. Togelius. A panorama of artificial and computational
intelligence in games. IEEE Transactions on Computational Intelligence and AI

in Games, 7(4):317–335, Dec 2015.

112

http://www.woodsidecap.com/wp-content/uploads/2015/12/WCP-Video-Game-Report-20151104.pdf
http://www.woodsidecap.com/wp-content/uploads/2015/12/WCP-Video-Game-Report-20151104.pdf

Statutory Declaration

I assure that this thesis is a result of my personal work and that no other than the indicated aids
have been used for its completion. Furthermore I assure that all quotations and statements that
have been inferred literally or in a general manner from published or unpublished writings are
marked as such. Beyond this I assure that the work has not been used, neither completely nor
in parts, to pass any previous examination.

Magdeburg, 08.12.2016 Jens Dieskau

	Introduction
	Problem Statement
	Thesis Structure
	Related Works
	Combination of pre-made parts
	Search-based Methods
	Noise Generators
	Constraint-based Methods

	Grammar-based Methods
	Constructive Methods
	Discussion
	Background
	Evolutionary Algorithm
	General Game Playing
	Agents
	GVG-AI
	Video Game Description Language

	Procedural Level Generation
	Limitations
	Algorithm Overview
	Retrieve game information
	Likeliness-Matrices
	Placeable-Matrix
	Cluster-Matrix
	Pattern-Matrix
	Constraint-Matrix

	Genotype-Phenotype Mapping
	Evolutionary Algorithm
	Initial Population
	Breeding Operations
	Fitness Function

	Experiment
	Parameterization
	Fitness Function
	Mapping Function
	Evolutionary Algorithm

	Distributed Computation
	Analysing Levels
	Results

	Conclusion
	Future Work

	Detailed Results
	Set 1
	Aliens
	Boulderdash
	Butterflies
	Chase
	Frogs
	Missile Command
	Portals
	Sokoban
	Survive Zombies
	Zelda

	Set 2
	Camel Race
	Dig Dug
	Firestorms
	Infection
	Firecaster
	Overload
	Pacman
	Seaquest
	Whackamole
	Eggomania

	Interim Experimental Results
	Experiment - Fitness Reliability
	Averaged Fitness
	Centred Averaged Fitness
	Centred Averaged Fitness with Average Feasible-Bonus

	Experiment - Mapping Reliability
	Bibliography
	Statutory Declaration

