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I 

 

Abstract 

Multi Agent Pathfinding (MAPF) is used in many real world and virtual applications. In recent papers, 

approaches for solving the MAPF problem multi-objectively (MOMAPF) with genetic algorithms 

were formulated. This work follows up on this idea and presents a co-evolutionary approach for 

MOMAPF. The subpopulations are optimized by their own objectives, which are linked to the 

objectives of the solution for the whole problem. Two variants of the algorithm are implemented: One 

which optimizes the objectives of the subpopulations multi-objectively (MO SACCGA) and one 

which optimizes the objectives of the subpopulations with a weighted sum approach (SO SACCGA). 

These variants are compared to each other to get empirical information about how good they work 

for MOMAPF and MAPF. The metrics used for comparison are the GD and IGD and the calculation 

of the weighted sum by using the same weights as for optimizing the subpopulations in the SO 

SACCGA. The MO SACCGA solves nearly every problem better than SO SACCGA in terms of GD 

and IGD. The MO SACCGA solves most problems better in terms of the calculation of the weighted 

sum. The reasons for these results are most likely that the SO SACCGA converges away from pareto 

optimal solutions, which do not fit the weighted sum and the SO SACCGA has the tendency to fall 

into local optima, which the MO SACCGA can avoid. These results gives insight on how MOMAPF 

can be solved using co-evolution and how well weighted sum approaches do compared to multi-

objective approaches in evolving the subpopulation in MAPF with co-evolutionary algorithms. 
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1 Introduction  
 

The Multi agent pathfinding (MAPF) problem is an important research topic. In MAPF path plans 

for multiple agents are created, which the agents can follow to get to their target destination free of 

conflict. The usage of Multi agent pathfinding takes place in robot [38] and vehicle coordination [9] 

automated warehouses [22] and in other applications. 

MAPF belongs to the NP-hard problems [46]. This means that it makes sense to apply heuristics and 

metaheuristics to this problem, to create good but non-optimal solutions in reasonable time. Many 

cooperative co-evolutionary approaches can be found among these metaheuristics in literature, which 

apparently lead to good results [5,18,32,33]. Cooperative co-evolution intended that individuals from 

subpopulations should be evaluated on the basis of the best solution to the whole problem [31]. 

However, in some of the approaches the individuals of the subpopulations were evaluated by how 

well they solve their part of the problem according some objectives [32,33].  

In literature, several objectives for MAPF can be found. The most used objectives, makespan and 

sum of costs, are in conflict with each other [38,40].  Therefore, it can be useful to solve the problem 

multi-objectively to create a set of pareto optimal solutions of which the decision maker can pick the 

one best suiting their preferences. In Weise et al. [42] a genetic algorithm was implemented and 

tested, which solved several MAPF problems multi-objectively by optimizing the objectives 

makespan, sum of costs and overlaps. Optimizing the overlaps objective is supposed to minimize the 

collisions. While in the classic MAPF collisions are forbidden, Weise et al. argued that, since it was 

shown in Oliveira et al. [27] that conflict free multi-agent plans in robotics can lead to conflicts 

anyways, which have to be solved during the execution, conflicts in the multi-agent plan should be 

accepted and should be weighed against the other objectives by the decision maker [42]. 

In this thesis, a cooperative co-evolutionary algorithm is used to solve the MAPF problem multi-

objectively. The objectives the algorithm optimizes are makespan, sum of costs and overlaps. The 

algorithm uses different objectives for the subpopulations, which are linked to the objectives of the 

whole solution. Two variants of the algorithm are implemented: One, which solves the subpopulations 

with weighted sums and one, which solves the subpopulations multi-objectively. This is done in order 

to examine the following theses: 

 Thesis 1: MAPF multi-objective optimization with co-evolution works better if the 

subpopulations of the agents are optimized multi-objectively than if the subpopulations are 

optimized single-objectively with a weighted sum approach. 

 Thesis 2: Using a co-evolutionary approach, if the decision maker weighs the objectives of 

the Multi-objective MAPF problem with the same weights the objectives of the 
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subpopulations of the agents are weighted using a weighted sum approach, then this weighted 

sum approach works better than optimizing the objectives of the subpopulations of the agents 

multi-objectively. 

The findings of the first thesis shall help developers and researchers to conceptualize co-evolutionary 

approaches for Multi-agent MAPF better. 

The second thesis examines if weighted sum approaches are suitable to evolve subpopulations in 

MAPF. If the weights used to evaluate the subpopulations do not lead to optimize the objectives of 

the whole solution by the same weights as well as other approaches, then the other approaches should 

be used. 

The goal of this thesis is to provide concepts for two cooperative co-evolutionary multi-objective 

MAPF solver: One which solves the subpopulations multi-objectively and one which solves the 

subpopulations with a weighted sum approach. Additionally, these algorithms should be implemented 

and compared against each other, using the metrics GD, IGD and by calculating the weighted sums. 

The weights for the weighted sums used should be the same as the ones by which the objectives of 

the subpopulations of the weighted sum approach are optimized. Based on the test results a statement 

should be given whether the experiments approve the contents of the thesis or not. Since there are 

infinitely many ways to conceptualize the algorithms, the thesis can not be proven or disproven for 

every concept of a co-evolutionary algorithm. 

In chapter 2, the basics to cooperative co-evolution are explained. In chapter 3, the State of the art is 

described. In chapter 3.1, MAPF solvers are classified and a few of them are explained as examples. 

In chapter 3.2, all co-evolutionary approaches and in chapter 3.3 all multi-objective MAPF solver are 

summarized. In chapter 3.4, the findings of the comparison of multi-objectively and single-

objectively solving single-agent pathfinding in Ahmed and Deb [1] are described. In chapter 4, the 

two variants of the cooperative co-evolutionary multi-objective MAPF solver are described and 

explained. In chapter 5, the two variants of the co-evolutionary approach are compared to each other 

in regards to the thesis described above. The results are analyzed to explore the limitations of the co-

evolutionary approach and to find the reasons for the results. With the findings in the experiments a 

statement about the thesis is given. Lastly, the findings of this thesis are summarized and 

recommendation for future work is given in chapter 6. 
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1.1 Problem-description 

 

Multiple variations of the MAPF problem exist. The MAPF problem, which is supposed to be solved 

by the co-evolutionary algorithm of this thesis, is similar to the definition of the classical MAPF 

problem explained in chapter 2.1. 

  

The MAPF problem with k agents has the tuple (G, s, t) as input. G = (V, E) is an undirected graph, 

s:[1, 2,. . . k-1, k] → V assigns an agent to a starting vertex and t : [1,2 . . . k-1, k] → V assigns an 

agent to a target vertex. As simplification, time is discrete. At each time step, an agent is in a vertex 

and takes an action. The action a(v),  an agent can take is to switch to an adjacent vertex a (v) = v’- 

with v ∈ V . 𝜋𝑖 is a single agent plan and includes all actions that move an agent i from the starting 

point s (i) to the end point t (i). 𝜋𝑖 [x] is the vertex the agent i is in after x time steps/ x actions. One 

solution  𝜋={𝜋1... 𝜋𝑘} to the entire MAPF problem is a set of k single-agent plans. Each single agent 

plan relates to one agent. The vertices are assumed to be either freely passable terrain or obstacles. 

Agents are not allowed to move into an obstacle. Additionally, a common simplification is used: 

Agents disappear after reaching the target vertex. A vertex is considered to have eight neighbors, with 

the simplification that each one of the eight neighbors is one time step away [cf. 38]. 

As stated in the introduction, the MAPF problem is usually solved single-objectively. The two most 

common objectives are makespan and sum of costs. Makespan is defined as the maximum number of 

time steps required for all agents to reach their target and sum of costs is defined as the sum of time 

steps each agent needs to reach its target. In this thesis, the MAPF problem is solved multi-

objectively. The chosen objectives are makespan, sum of costs and the overlaps objective. All three 

objectives are minimized. 

Usually MAPF solvers treat the conflicts as hard constraints. This solver minimizes the number of 

conflicts by treating them as the overlaps objective. The penalized conflicts are:  

 Vertex conflict: Two agents plan to enter the same vertex at the same time step: 𝜋𝑖 [x]= 𝜋𝑗 

[x] 

 Swapping conflict: Two agents plan to swap their vertices with their action: 𝜋𝑖 [x + 1] = 𝜋𝑗 

[x] and 𝜋𝑗 [x + 1] = 𝜋𝑖 [x] [38] 

The objectives makespan, sum of costs and overlaps for every solution 𝜋 for k agents are calculated 

as follows: 
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Makespan: 

Makespan =  𝑚𝑎𝑥𝑖=1
𝑘 |𝜋𝑖| (1.1) 

The || operator expresses the path length 

Sum of Costs: 

Sum of Costs =  ∑𝑖=1
𝑘 |𝜋𝑖| (1.2) 

The || operator expresses the path length 

Overlaps:≠ 

𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔(x) being the number of swapping conflicts at the time step x.  

𝑁Agents(𝑥, 𝑣) being the number of agents in vertex v at time step x. 

𝑁𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 being the number of vertices in V. 

 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 =  ∑𝑥=0
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝐶Swapping(𝑥) + ∑𝑣=1

𝑣=𝑁Vertices(
𝑁Agents(𝑥,𝑣)

2
• (𝑁Agents(𝑥, 𝑣) − 1))) 

(1.3) 

With makespan being used as maximal time step value since time and path length are unitless, 

discrete, and increase by the same value at each step. 

 

This way, the calculation of the overlaps objective penalizes the clash between more than two agents 

exponentially to the number of agents. While a vertex conflict between two agents is penalized by a 

value of one, a vertex conflict between three agents is penalized by a value of three. A conflict is 

always penalized for each agent, while the penalty increases by a value of 0.5 for each agent one 

agent collides with.  

  



2 Theoretical Background 

5 

 

2 Theoretical Background 

 

In this chapter, the theoretical foundations for the classical multi-agent pathfinding problem and 

cooperative co-evolution are explained. The description of the classical MAPF in chapter 2.1 problem 

highlights the differences between classical MAPF and the problem description in this thesis. In 

chapter 2.2 cooperative co-evolution is explained, since the algorithm used in this work is based on 

these theoretical foundations. 

 

2.1 Multi Agent Pathfinding (MAPF) 

 

The classical MAPF problem described in Stern et al. [38], is similar to the MAPF problem described 

in chapter 1.1. In this chapter, the differences between the classic MAPF described in Stern et al. and 

used in this work are highlighted. In the classical MAPF problem, agents have two action types: The 

move action a (v) = v’ and the wait action a (v) = v. Another important difference is that a conflict 

between two agents in the plans makes a MAPF solution invalid. 

Other than the two conflicts used in this thesis, there are other conflicts used in literature. The most 

commonly used ones are: 

 The Vertex conflict: Two agents plan to enter the same vertex at the same time step. 

 The Edge conflict: At the same time step, two agents plan to traverse the same edge into the 

same direction. 

 The Following conflict: One agent occupies a vertex, which was occupied by an agent exactly 

one time step before. 

 The Cycle conflict: A set of agents form a rotating cycle pattern. This occurs, if every agent 

enters the vertex the next agent was occupying the time step before, whereby the last agent 

occupies the vertex the first agent was occupying at the previous time step. 

 The Swapping conflict: Two Agents plan to swap their vertices with their action.  

Figure 1 illustrates the described conflicts.  
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Figure 1: MAPF conflicts 

(a) Vertex conflict, (b) Edge conflict, (c) Following conflict, (d) Cycle conflict, (e) Swapping 

conflict. [cf. 38] 

There are two options for agent behavior at the target vertex. Either the agent is considered to have 

disappeared, or the agents waits in its target vertex until all agents have reached their designated target 

vertex. 

 

More specialized MAPF problem formulations differentiate from the classical MAPF: 

 In the weighting of the graph: Either agents move from one grid to a neighboring one, whereby 

there can be distinctions between the number of neighboring vertices, or they move in 

Euclidean space. 

 In the applications of Feasibility Rules: Solutions are only feasible if they fulfill some 

Robustness Rules or if the agents move in formations. 

 In transforming the classical problem into a motion planning problem, where agents can have 

volumes, shapes or move at changing speed. 

 And in assigning the task of agents: In some MAPF problems the target vertices have also to 

be assigned to the agents [38]. 

 

2.2 Cooperative Coevolution 

 
Co-evolutional algorithms try to exploit the compositional nature of a problem by using a genetic 

algorithm for each of their components. Co-evolutional genetic algorithms can be categorized into 

competitive and cooperative co-evolutional algorithms [45]. In this thesis, a cooperative co-

evolutionary algorithm (CCEA) according to Potter and Jong [31] was implemented. In Potter and 

Jong five ideas how such a cooperative co-evolution approach has to look like: 

 A species (subpopulation) is a subcomponent of a solution. 

 The complete solutions are obtained by combining representative individuals of each 

subpopulations. 
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 The fitness at the species level depend on the fitness of the complete solution it participates 

in. 

 The subpopulations evolve by themselves if necessary. 

 The evolution of a species is handled by a genetic algorithm (GA) [31]. 

Since co-evolutionary algorithms have been around for a long time, further analyzes about them were 

done. In Wiegand [44] it was shown that normal CCEAs have problems finding global optima. This 

is because they tend to test the fitness of individuals of subpopulations, which might lead to an optimal 

solution, with individuals of other subpopulations they do not fit to. On the other hand, co-

evolutionary algorithms tend to lead to more robust solutions since they are evaluated on how well 

they fit together with other solutions [3,45].  

In Panait et al.  [29] and in Bucci and Pollack [3] approaches were formulated, which help the CCEA 

to find the global optimum. In Panait et al. [29] it was suggested that an estimation of the optimal 

values should be mixed into the evaluation. In Bucci and Pollack [3] three different setups were 

compared against each other to find out which CCEA versions get near the optima. The first version 

is a classic CCEA, which evaluates an individual by the best solution of the previous generation. The 

second version the pCCEA considers every solution of the previous generation as an objective. Every 

individual is evaluated multi-objectively by these objectives. The third version the cCCEA was also 

tested on every solution but numerical fitness values are used. The experiments showed that the 

pCCEA and the cCCEA works far better than the standard CCEA version. Ultimately, the pCCEA 

turned out to work best out of the three version. 
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3 State of the Art 

 

In this chapter, the state of the art of MAPF solver will be discussed in more detail. In chapter 3.1, a 

small overview and classification of MAPF solver is given. In chapter 3.2, all cooperative co-

evolutionary algorithms found in literature are described and discussed. A few features of these 

concept are adopted by the approach presented in this thesis. In chapter 3.3, all multi-objective MAPF 

approaches found in literature are presented and the differences between these approaches and the 

one used in this thesis are explained. In chapter 3.4, the findings in Ahmed and Deb [1] are 

summarised. These findings give insight why multi-objective optimization might be better than 

single-objective optimization in single-agent pathfinding and are helpful for the theses of this work. 

In chapter 3.5, the state of the art chapter is summarized. 

 

3.1 Overview classic MAPF Solver 

 

MAPF solver can be categorized into distributed [16] and centralized settings. In distributed settings, 

the agents make their decisions on their own. The algorithm of this thesis falls into the centralized 

setting category. In this setting, the movements of the agents are controlled by a single decision maker 

[10]. Additionally MAPF solver can be divided into the categories traditional methods and intelligent 

methods [32]. The traditional MAPF solvers can further be categorized in whether they solve the 

problem optimal or suboptimal [10].  

To the optimal solvers category belong: 

 Reduction-based Optimal Solvers: Reduction-based Optimal Solvers reduce the MAPF 

problem to a well-known problem, for which optimal solvers exist already.  In the approach 

in Surynek [39] for example the MAPF problem is translated into Boolean variables. This 

way a SAT formula is created, which SAT solvers can solve. 

 A*-based Optimal Solvers: A*-based Optimal Solvers solve the MAPF like a normal A* 

problem using a joint state space, where the agents are viewed as a single entity. How fast the 

algorithm converges depends on the used heuristics [6]. 

 Increasing Cost Tree Search: In Increasing Cost Tree Search, the MAPF problem is solved 

using the Increasing Cost Tree. The root of the tree represents all the possible solutions where 

the agents’ routes are the fastest. A child will increase the length of the route of an agent by 

one. Starting with the root once a node holds a valid solution the search is finished [10]. 

 Conflict based search (CBS): Conflict based search (CBS) uses a binary constraint tree to find 

an optimal solution. Every node of the tree inherits the constrains from the node above. A 
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solution is created which fulfills the constrains of a leave. If the solution is invalid, the leave 

creates new nodes, which prohibit the action, which made the solution invalid. The nodes with 

the lowest costs are examined first [10]. 

 

For each one of these solvers exist different variants and enhancements. More details can be found in 

Felner et al. [10]. 

 

The category of suboptimal solvers include search-based suboptimal solvers. They tend to be not 

extremely fast but near optimal [10]. Hierarchical Cooperative A* for example creates an order in 

which the agents plan their path to the target. The path is reserved and the following agents are not 

allowed to have a conflict with reserved paths [34]. Bounded suboptimal solvers are also part of the 

search-based suboptimal solvers. They let the user choose a value w, which leads to a search where 

a solution is guaranteed to cost less than w•C, where C is the cost of the optimal solution [2]. Another 

category of suboptimal solvers is the Rule-based solvers. They usually find a solution relatively fast, 

but return solutions that are often not near the optimal solution. Many of them are modified optimal 

MAPF solvers like the Greedy CBS which is a CBS-based MAPF solver designed for finding a 

solution as fast as possible [2]. Some approaches fit as hybrids into both categories [10]. 

The co-evolutionary approach of this thesis falls into the category of the intelligent MAPF solvers. 

Other intelligent approaches for MAPF would be the virtual spring method [28], the artificial bee 

colony for online MAPF in Liang and Lee [21], the evolutionary algorithms [25] and the switching 

formation strategy for multi-robots in Dai et al.  [7]. 

 

3.2 Multi Robot Path planning using cooperative co-evolutionary Algorithms 

 

The cooperative co-evolutionary adaptive genetic algorithm (CCAGA) is the oldest co-evolutionary 

solver for multi robot path planning in literature. Agents have their own subpopulation, in which the 

individuals evolve. It is a simple algorithm, which shrinks the decision-space by only allowing 

waypoints at the edges of obstacles. Agents’ cooperation is forced via their evaluation. Individuals of 

one subpopulation are evaluated by pairing them with the best individuals of the other subpopulation 

and evaluating them as one solution to the whole problem. The approach allows infeasible solutions 

and tries to sort them out by penalizing them [4]. 

In Chen [5] each agent has its own population and uses a chaotic genetic algorithm. The algorithm 

uses a weighted sum approach to optimize the objectives path length, smoothness and time with 

penalties for having too much velocity, running into obstacles or conflicting with the best individual 
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of the other agents. The mutation and the crossover rates are adaptive. The algorithm uses a chaos 

operator, which disturbs individuals. If they result in a better individual, they replace the old one. 

 

In Kala [18] the subpopulations are divided in populations of the slave genetic algorithm (SA) and a  

subpopulation of the master genetic algorithm (MA). Every subpopulation of the slave algorithm 

optimizes the path of a single agent with an evolutionary algorithm. An individual of the master 

algorithms’ population picks individuals out of the subpopulation of the slave algorithm to create a 

MAPF solution. The master algorithm evolves its population also evolutionary. Individuals of the SA 

cooperate with each other using their evaluation. An individual of the SA is evaluated by its path 

length and by how well it would work together with the other agents. The second part of the evaluation 

is done by calculating the sum of all collisions that an individual i of an agent j would have if it 

replaces the current picked solution of the agent 𝑗 in the five best master algorithm solutions. The 

genes of a slave algorithms’ individuals are represented by an integer, which defines how it will react 

at the next crossing. A crossing is defined as a place where the agent has more move options than 

following the path or turning around. The first gene decides the direction the individual takes at the 

first crossing; the nth gene decides the direction the individual takes at the nth crossing. Once all 

genes are used up, while the individual did not reach the endpoint, it resets once and starts using the 

genes again, culminating into the fact that an agent does not always end at the designated target. 

Additionally, the algorithm uses a scattered crossover, which will rip paths apart. The algorithm was 

only tested on maze-like maps, which heavily benefits the action-at-next-crossing representation [18]. 

The approach of Kala [18] was mentioned in Pan et al. [28] where the author wrote that the algorithm 

of kala suffers “of slow convergence rate, local optimum and ignoring cooperation between 

populations”. It is to assume that the representation and the operators of the SA are more likely to be 

responsible for these shortcomings than the general structure of the algorithm. 

 

The approach in Qu et al. [32] has a subpopulation for every agent ,which optimizes the weighted 

sum of the objectives path length, safety and smoothness for the associated agent. Waypoints with 

straight paths between them are used. The paper presents a modification operator, which deletes 

waypoints between two waypoints either to avoid obstacles or to accelerate convergence. The 

algorithm selects the representatives for each subpopulation by optimality. The cooperation between 

the agents happens after that, using the island approach: Every agent randomly selects another agent. 

A second fitness value for every representative regarding the collision with every representative of 

the other agent is calculated. According to this fitness value, the elite individual of this agent for this 

generation is selected. The elite individuals form the final solution.  
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In Korayem et al. [20] the concept of a master and a slave algorithm was used too. In this case the 

slave algorithm solved the individual pathfinding problem for each agent (here nanoparticles). 

However, the premise of the problem is different: The nanoparticles do not move simultaneously but 

in sequence and task allocation was done as well. The slave algorithm uses a weighted sum approach 

to optimize three different objectives as one. Additionally, an artificial potential field was used to 

repair infeasible solutions in the SA to find better routes. 

 

The algorithm in Muthiah and Saad [24] uses an order similar to Hierarchical Cooperative A* in 

which the routes of the algorithm are determined. The order is defined by the size of the decision 

space. The following agents see the routes of the agents before as moving obstacles. A genetic 

algorithm determines the routes. Additionally, some heuristics are used, which are not fully explained. 

The author claims that the found path of the genetic algorithms is the “optimal path”, which is due to 

the nature of genetic algorithms questionable. Then again, the text found was only an extended 

abstract of a thesis, which could not be accessed. 

 

In Sarkar et al. [33] a co-evolutionary algorithm is presented where the agents perform a multi-agent 

pathfinding task while having multiple targets without a predefined order. The agents evolve in their 

own population with their fitness function being the path length. At the end of a generation, every 

individual of one population is paired with every individual of the other populations to calculate their 

interaction cost. With the sum of the interaction cost between every combination of individuals 

between agents and their path lengths, the elite set of chromosomes is formed. For the representation 

of the individual paths, waypoints are used which are connected with a straight path. The GA also 

uses a deletion operator, which deletes waypoints and replaces them sometimes with other nodes to 

minimize the path length.  

 

This concludes the co-evolutionary algorithms found in literature. The common ground between these 

approaches is that every agent has their own population. The main differences can be found in the 

cooperation between the populations, in the picking of the overall solution and in the evolution of the 

subpopulations, with cooperation and picking of an overall solution being distinctive features of a co-

evolutionary algorithm. 

The term cooperation here means how collisions with other robots are avoided. In Muthiah and Saad 

[24] the cooperation is done by seeing the paths of over agents as moving obstacles. In all the other 

texts cooperation is done by the fitness function. In Kala [18], in Cai and Peng [4] and in Chen et al. 

[5] the conflicts are part of the fitness function with which the subpopulation is evolved by. In Sarkar 

et al. [33] and in Qu et al. [32] the subpopulations are evolved by a fitness function, which does not 
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consider other agents. The cooperation of these two approaches is done at the end of each generation 

by a second fitness function, which selects individuals based on their conflict behavior with the other 

subpopulations. In Sarkar et al. [33] all individuals are compared with each other while in Qu et al. 

[32] the representatives of an individual only communicate with the representatives of one other agent 

instead of all agents. In Cai and Peng [4] and in Chen et al. [5] the cooperation is done only with the 

best combination of solutions and in Kala [18] the cooperation is done with the y best combinations 

of individuals. 

The picking of the best combination in Sarkar et al. [33] and in Qu et al. [32] is done by the results 

of second fitness function. The picking of the best combination in Cai and Peng [4] and in Chen et al. 

[5] is just selecting the best individuals. In Kala [18] another genetic algorithm, the master algorithm 

picks the best individuals. 

 

3.3 Multi-objective Optimization of MAPF with Genetic Algorithm 

 

In Literature just two paper exist on the topic of solving MAPF multi-objectively: 

In Weise et al. [42] the MAPF problem is solved multi-objectively with an evolutionary algorithm. 

Individuals of the algorithm contain paths for every agent, which consist of an array of a fixed number 

of waypoints, which are translated into nodes using the Dijkstra algorithm. The crossover operator 

exchanges a random waypoint of one random agents from two individuals with each other and the 

mutation operator changes the position of a random agents‘ waypoint by one node. The optimized 

objectives are makespan, flow-time, which is the same as sum of costs, and the overlaps objective. 

The overlaps objective counts all edge conflicts and vertex conflicts of the given solution. Selection 

is done with the NSGA-II and NSGA-III operators. 

In Mai and Mostaghim [23] another multi-objective multi-agent pathfinding approach for swarm 

robotics was formulated. The algorithm focuses on decentralized path planning. Since the approach 

is done for the swarm robotics, a motion-based problem is formulated instead of the theoretical classic 

MAPF problem. A remodelled NSGA-II approach is used, where the individuals contain a path for 

every agent made out of waypoints. The crossover is a two-point crossover between a pair of 

randomly selected agents. For mutation a Gaussian mutation, which moves one of the waypoints of 

a randomly selected agent in its neighbourhood, is used. Additionally, a smoothing operator, which 

selects a waypoint of an randomly selected agent and puts it on the path between its previous waypoint 

and it‘s subsequent waypoint, is used. The optimized objectives are the risk objective, which 

minimizes collision potential with obstacles and other agents, and path length, which tries to minimize 

all the paths. 
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Other than these two, no paper about solving the multi-agent pathfinding problem multi-objectively 

in literature exists as far as the literature search in this thesis goes. Often in multi agent path planning 

multiple objectives are optimized by using the weighted sum approach: 

For example in Chen et al. [5] the weighted sum for each subpopulation for the objectives distance, 

time and smoothness with penalties for constraint violation was optimized. Also in Qu et al. [32] 

objectives path length, safety and smoothness are optimized with the weighted sum approach. 

The approach in this thesis aims to solve the MAPF problem by optimizing the objectives makespan, 

sum of costs and overlaps by solving the problem multi-objectively by creating a set of pareto-optimal 

solutions regarding the three objectives. With this, the thesis differentiates itself from the weighted 

sum approaches. The algorithm in this thesis differentiates itself from Weise et al. [42] in the 

following points: The overlaps objective of this thesis minimizes vertex and swapping conflicts 

instead of vertex and edge conflicts. Forbidding vertex conflicts implies that edge conflicts are also 

forbidden [38]. In that sense, penalizing vertex conflicts means that edge conflicts are also penalized. 

Additionally the overlaps objective in this paper penalizes a vertex conflict between more than one 

agents exponentially. Furthermore, a co-evolutionary algorithm is used in this thesis. Other than that 

by not fixing the number of waypoints, the approach in this thesis is able to explore the whole decision 

space. Other than by using a co-evolutionary approach and optimizing different objectives the 

approach in this thesis also differentiates itself from Mai and Mostaghim [23] by attempting to solve 

a problem near to the classical MAPF problem.  

 

3.4 Single-objective Optimization in Comparison to Multi-objective Optimization in 

Pathfinding 

 

In Ahmed and Deb [1] a comparison between a single objective optimizing EA and a multi-objective 

optimizing EA with NSGA-II in the context of singe agent pathfinding is done. The optimized 

objectives are: the Path length, the path vulnerability, which maximizes the distance to obstacles, and 

the smoothness, which sums up the angle of each turn. In the tests, the one single objective optimizer 

optimized path length. Another single objective optimizer optimized the path vulnerability. For the 

multi-objective optimizer existed a version which was optimizing path length and path vulnerability 

while using smoothness to keep diversity instead of the crowding distance. The second multi-

objective optimizer optimized all three objectives. 

The results on a less complex environment with a grid size of 16 x 16 and randomly placed obstacles 

showed that the extreme values of the multi-objective optimizer were approximately the same as the 

results of the single objective optimizers. On a larger more complex environment a 64x64 grid with 



3 State of the Art 

14 

 

a higher obstacle density, the single objective solver was not able to find a feasible solution anymore 

neither with the path length objective nor with the path vulnerability objective. The multi-objective 

solver with three objectives on the other hand was able to find feasible solutions in 80% of the time. 

Ahmed and Deb interpreted that these results must have occurred because the multi-objective EA is 

able to keep a high diversity in the population while a single objective EA is more likely to lose this 

diversity [1]. 

 

3.5 Summary of the state of the Art and discussion 

 

In this chapter the MAPF solver are categorized and a few of them are described. Furthermore, all 

the co-evolutionary MAPF solver as well as all approaches which solve the MAPF problem multi-

objectively were explained. Additionally the findings of a paper, which examined the differences 

between solving the single agent pathfinding problem single objectively and multi-objectively, were 

described.  

Most of the co-evolutionary approaches used the fitness function to cooperate between agents while 

one approach was searching for the paths of the agents by order. The “by order“ approach in Muthiah 

and Saad [24] does not follow the guidelines of Potter and Jong [31] and since the first agents do not 

care about the following agents, they will likely end in local optima. The two approaches, which used 

one fitness function without communication to the other subpopulation to evolve the subpopulation 

and second fitness function with communication to find the best combination [32,33], are most likely 

to end up in local optima too, since the subpopulations evolve without knowing of the other 

populations. In addition, the idea of just using the best-known solution to avoid collision might lead 

to bad performance [32,33]. The findings in Bucci and Pollack [3] which were described in chapter 

2.2, showed that to minimize the chance of falling into local optima all available solutions should be 

used to evaluate the individuals. While all solutions might be too much since the computational time 

needed might be too high, at least the x best solutions should be used.  

Since the problem of the thesis is to solve MAPF multi-objectively, the Master Slave architecture of 

Kala [18] seems like a good way to deal with the problem. The Master algorithm can pick the best 

solutions to solve the multi-objective MAPF problem. The Slave algorithm must evaluate the paths 

also by the objectives of the Master algorithm. All the co-evolutionary approaches, which were 

optimizing more than one objective, used the weighted sum approach to find the best solutions 

[5,20,32]. Since the studies in Ahmed and Deb [1] showed that solving the single agent path-planning 

problem multi-objectively leads to better solutions, this thesis will examine how well a co-
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evolutionary algorithm, which uses a weighted sum approach for the subpopulation, does compared 

to a co-evolutionary algorithm, which solves the subpopulation multi-objectively.  

Many approaches used waypoints to represent paths. While most of them use a straight line from 

waypoint to waypoint, the approach in Weise et al. [42] uses the Dijkstra algorithm. A straight line is 

easier to compute but will lead to infeasible solutions. This is especially the case, if the environment 

is maze-like. Because of that, this thesis will also use a shortest path algorithm like Dijkstra. The 

waypoint approaches also used deletion operators to fasten the convergence, which will be adapted 

by the approach of this work too. 

The research on the multi-objective MAPF problems also showed that no co-evolutionary approach 

was yet used to solve the problem. Additionally the algorithm presented differentiates itself in more 

aspects like using the whole decision space. 
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4 Materials and Methods 
 

In this chapter the concept of the two variants of the co-evolutionary multi-objective MAPF solver 

are explained and their implementation is described. In chapter 4.1 the basic idea of the algorithm is 

presented. In chapter 4.2 an overview of the functions of the algorithm is given. In chapter 4.3 the 

functions and their implementation are explained in more detail.  

 

4.1 Architecture of the algorithm: 

 

In order to reduce the decision space, the problem is decomposed by using a co-evolutionary 

algorithm. An evolutionary algorithm – slave algorithm (SA) - optimizes the route of each agent. 

Another evolutionary algorithm – the master algorithm (MA) - searches for solutions for the multi-

objective MAPF problem by combining the best solutions of the subpopulations, which are optimized 

by the slave algorithm. These best solutions are the representatives of the subpopulations. 

The MA optimizes the objectives makespan, sum of costs and overlaps, which are fully explained in 

the problem description in chapter 1.1. The SA minimizes the objectives path length and collision 

count. The path length (PL) objective stands for the number of vertices passed and the collision count 

represents the collisions between an individual and the representatives of the other agents’ 

subpopulations. 

For all individuals i the path length PL is the length of the single agent plan 𝜋𝑖  of individual i:   

𝑃𝐿𝑖 = |𝜋𝑖| (4.1) 

The || operator expresses here the path length 

 

The collision count 𝐶𝐿𝐶𝑖 objective of an individual i of the subpopulation of an agent A penalizes 

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 for having vertex conflicts with representatives of the other agents with one and 

penalizes 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 for having possible swapping conflicts with the representatives of the other 

agents by the Collision-Swapping-Penalty-Value: 𝐶𝑆𝑃𝑉. A possible swapping conflict occurs for each 

representative of the other agents which is at the same vertex v at time step x+1 as the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 

is at time step x. This way, agents are penalized for each agent they might have had a swapping 

conflict with. 
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The collision count 𝐶𝐿𝐶𝑖 for an individual i is described by equation 4.2: 

 

δ(x)={
1, 𝑥 = 0
0, 𝑥 ≠ 1

 

𝐶𝐿𝐶𝑖 = ∑𝑥=0

|𝜋𝑖| ∑𝑗=1,𝑖≠𝑗
𝑘 ∑𝑟=1

NR (δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x)) + 𝐶SPV • δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x + 1)) (4.2) 

 

With 𝑁𝑅 being the number of representatives every agent and |𝜋𝑖|being used as maximal time step 

value since time and path length are unitless, discrete, and increase by the same value at each step. 

 

The optimization of the path length objective in the SA directly optimizes the MA objectives 

makespan and sum of costs. The optimization of the collision count objective in the SA is supposed 

to optimize the overlaps objective in the MA. 

The subpopulation of the agents cooperate via the collision count objective. Optimizing this objective 

should minimize conflicts with other agents. Two versions of the SA are implemented in this 

algorithm. One which uses a weighted sum approach to evaluate individuals and another one which 

uses a non-dominated sorting algorithm like described in Deb et al. [8] to select a set of pareto optimal 

solutions.  

For better understanding, the single-objective SA is abbreviated to SO SA and the multi-objective SA 

to MO SA. The cooperative co-evolutional genetic algorithm using the SO SA is called SO SACCGA 

and the cooperative co-evolutional genetic algorithm using the MO SA is called MO SACCGA 

 

4.2 Algorithm Overview 
 

This chapter gives an overall overview of the algorithm. The individual functions are explained in 

detail in the following chapters. 
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Figure 2: Overview of the algorithm architecture 

 

Figure 2 shows the basic structure of the algorithm. At the beginning of the algorithm, input data is 

imported. The input data contains data on the problem such as map layout and number of agents start- 

and target point and setting parameters (chapter 4.3.4). First, the input data is being prepared. 

Secondly, the first individuals of the first generation of the SA subpopulations and the MA 

subpopulation are initialized and partially evaluated (chapter 4.3.5). 

After that the first generation of the algorithm starts. Within one generation, one generation of the SA 

for the subpopulation of each agent is executed. Then, one generation of the MA is performed. The 

results are then saved and a check is carried out to determine whether the termination criterion is met. 

If it is fulfilled, the results are put out and the algorithm terminates. If not, the next generation begins. 
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Figure 3: Sequence of slave algorithm functions of the SO SA and MO SA 

 

Figure 3 shows how the slave algorithm works. A pseudocode of the MO SA is presented in algorithm 

1 and of SO SA in algorithm 2. The parts of the MO SA and the SO SA, which are different from 

another, are highlighted in both algorithms. Every agent A has their own population 𝑆𝐴𝑃𝑜𝑝𝐴, which 

consists of Individuals - 𝑆𝐴𝑃𝑜𝑝𝐴={𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1,𝐴,...,𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁𝑆A Individiuals } (with 𝑁SA Individiuals 

being the size of the subpopulation of the SA ) and their fitness values for the objective collision count 

𝐹𝑖t𝐶𝐿𝐶,𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴
 and the objective path length 𝐹𝑖𝑡𝑃𝐿,𝐼𝑛𝑑𝑖𝑑𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴

, which are mapped to the 

corresponding individual. Additionally, every agent has their own representatives 𝑅𝐴={𝑟1 ,...,𝑟NR
}𝑅𝐴 

⊆ 𝑆𝐴𝑃𝑜𝑝𝐴. The first thing the SA does and only after the first generation is to update the 𝐹𝑖𝑡𝐶𝐿𝐶 value 

of all the individuals. This must be done because the 𝐹𝑖𝑡𝐶𝐿𝐶 value of the individuals changes by 

changing representatives of the other agents. For the evaluation of the collision count objective the 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is used. The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is a two dimensional matrix with the dimensions 

vertices V and time steps X. A cell 𝐶𝑣𝑥 of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information how many 

representatives of all agents are at vertex v at time step x.  

𝐶𝑉𝑋 = ∑𝑗=1
𝑘 ∑𝑟=1

𝑁𝑅 (δ(𝜋
𝑗𝑟

(x) − v)) (4.3) 
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Before the 𝐹𝑖𝑡𝐶𝐿𝐶 can be evaluated the information of the own agents 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝐴 must be 

removed from the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋. Next, the parents are selected. In the multi-objective SA the 

parents are selected by tournament selection with dominance as selection criteria. The SO SA has to 

normalize the fitness-values and calculate the weighted sums first. Then the parents are selected by 

tournament selection with weighted sums being the selection criteria. After this, in both versions the 

parents are used for crossover with the SA crossover probability (SACXPB) as probability. The 

parents, which are not affected by crossover, are simply copied into the offspring. Then the offspring 

are mutated by three different mutation operators each one having their own mutation probability (SA 

MUTBP1, SA MUTBP2, SA MUTBP3). If a copied parent is not affected by any changes, it will be 

deleted. Next the 𝐹𝑖𝑡𝐶𝐿𝐶 and the 𝐹𝑖𝑡𝑃𝐿 values of the offspring are determined and the next generation 

is selected. For the MO SA, the fitness-values are normalized and the non-dominated-sorting-

selection like in Deb et al. [8] is used to determine the next population and the new representatives of 

the agent. For the SO SA the fitness-values are normalized, the weighted sum is calculated and the 

new population is formed by the best individuals of the old population and the newly created 

offspring. The individuals with the highest weighted sum values form the representatives of the agent. 

Lastly, the information of the new representatives is added to the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.  
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Algorithm 1: Slave algorithm Multi-objective (MO SA) 

Input: Population of the agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, Matrix to calculate collision count: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 ,representatives of 

agent A: 𝑅𝐴, the fitness values for the individuals of  𝑆𝐴𝑃𝑜𝑝𝐴: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴,,
, 𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴

, the counter of the 

generation: gen, SA crossover-probability: SACXPB, SA mutation-probabilities: SAMUTBP1, SAMUTBP2, 

SAMUTBP3  

Output: 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴 

for every Agent: 

|    if gen > 1:    

|    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋= removeRepresentativesFromCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑅𝐴) 

|    |    𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴
=evaluateCLC(𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋) 

|    Offspring =tournamentselectionByDominance(𝑆𝐴𝑃𝑜𝑝𝐴) 

|    for  𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1in Offspring: 

|    |    if SACXPB <random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1=crossoverSA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1) 

|    for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖  in Offspring: 

|    |    if SAMUTBP1< random(0,1):    

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationGeneDeletion(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if SAMUTBP2< random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationShiftInNeighbourhood(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if SAMUTBP3 < random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationInsertRandomWaypoint(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ⊆ 𝑆𝐴𝑃𝑜𝑝𝐴: # copied parents which weren't changed are deleted 

|    |    |    delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖   

|    |    𝐹𝑖𝑡CLC,O𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ,𝐹𝑖𝑡PL,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠=evaluateCLC&PL(Offspring, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋) 

|    𝑆𝐴𝑃𝑜𝑝𝐴=𝑆𝐴𝑃𝑜𝑝𝐴  ∪ Offspring 

|    norm_𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴
,norm_𝐹𝑖𝑡PL,S𝐴𝑃𝑜𝑝𝐴

=normalizeFitness(𝐹𝑖𝑡CLC,𝑆𝐴𝑃𝑜𝑝𝐴
,𝐹𝑖𝑡𝑃𝐿,𝑆𝐴𝑃𝑜𝑝𝐴

) 

|    𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴=nonDominatedSortingSelection(𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑆A Individiuals) 

|    𝑁𝑒𝑤_𝑅𝐴 = nonDominatedSortingSelection (𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴,  𝑁R) 

|    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=updateCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑁𝑒𝑤_𝑅𝐴) 

return 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴 
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Algorithm 2: Slave algorithm Singe-objective (SO SA) 

Input: Population of the agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, Matrix to calculate collision count: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 ,representatives of 

agent A: 𝑅𝐴, the fitness values for the individuals of  𝑆𝐴𝑃𝑜𝑝𝐴: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴,
, 𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴

, the current generation: 

gen, SA crossover-probability: SACXPB, SA mutation-probabilities: SAMUTBP1, SAMUTBP2, SAMUTBP3  

Output: 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴 

for every Agent: 

|    if gen > 1:    

|    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋= removeRepresentativesFromCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑅𝐴) 

|    |    𝐹𝑖𝑡CLC,S𝐴𝑃𝑜𝑝𝐴
=evaluateCLC(𝑆𝐴𝑃𝑜𝑝𝐴 , 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋) 

|    |    𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
=normalize&FormWeightedSum(𝐹𝑖𝑡CLC,𝑆𝐴𝑃𝑜𝑝𝐴

,𝐹𝑖𝑡PL,𝑆𝐴𝑃𝑜𝑝𝐴
) 

|    Offspring=tournamentSelectionByWeightedSum(𝑆𝐴𝑃𝑜𝑝𝐴,  𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
) 

|    for  𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1in Offspring: 

|    |    if SACXPB <random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1=crossoverSA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1) 

|    for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖  in Offspring: 

|    |    if SAMUTBP1< random(0,1):    

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationGeneDeletion(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if SAMUTBP2< random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationShiftInNeighbourhood(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if SAMUTBP3 < random(0,1):   

|    |    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖=mutationInsertRandomWaypoint(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    |    if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 ⊆ 𝑆𝐴𝑃𝑜𝑝𝐴: # copied parents which weren't changed are deleted 

|    |    |    delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖   

|    |    𝐹𝑖𝑡CLC,O𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 , 𝐹𝑖𝑡PL,𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠=evaluateCLC&PL(Offspring, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋) 

|    𝑆𝐴𝑃𝑜𝑝𝐴=𝑆𝐴𝑃𝑜𝑝𝐴  ∪ Offspring 

|    𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
= normalize&FormWeightedSum(𝐹𝑖𝑡CLC,,𝑆𝐴𝑃𝑜𝑝𝐴

,𝐹𝑖𝑡PL,,𝑆𝐴𝑃𝑜𝑝𝐴
) 

|    New_𝑆𝐴𝑃𝑜𝑝𝐴=environmentalSelection(𝑆𝐴𝑃𝑜𝑝𝐴 , 𝑛𝑜𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚𝑆𝐴𝑃𝑜𝑝𝐴
, 𝑁𝑆A Individiuals) 

|    New_𝑅𝐴=representativeSelection(new_𝑆𝐴𝑃𝑜𝑝𝐴,  𝑁R) 

|    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=updateCollisionlist(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝑁𝑒𝑤_𝑅𝐴) 

return 𝑁𝑒𝑤_𝑆𝐴𝑃𝑜𝑝𝐴, 𝑁𝑒𝑤_𝑅𝐴 
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Figure 4: Sequence of master algorithm functions 

 

Figure 4 shows the process of the MA. A pseudocode of the MA is presented in Algorithm 3. The 

MA has its own population MAPop = {𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,1...𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑁MA Indiviudals
} with 

𝑁MA Indiviudals being the numbers of individuals in the MA subpopulation. Every Individual 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙MA,𝑖={𝐺𝑒𝑛𝑒1...𝐺𝑒𝑛𝑒𝑘} has a Fitnesstuple = (𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡, 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠) for 

the fitness-values of the three objectives makespan, sum of costs and overlaps and consists of exactly 

as many genes as there are agents. The value of a gene refers towards one of the representatives of 

the agent. The representatives, which are referred to, can be of the current generation or of the 

generations before. In generation one, the first thing the MA does is to evaluate the newly initialized 

population. This can only be done after the first iteration of the SAs, since they do not have any 

representatives before. After that, the MA handles the changes in the representatives. This is only 

done at the second generation and onwards. The individuals, which refer to changed representatives, 

keep pointing at the old representative. An additional version of the individual is created, which points 

at the new representative, which took the spot of the old representative. A change in representatives 

occurs if the SA finds a better individual to fill that spot. The old representatives, which are still used 

by the MA, are saved. The newly created individuals are evaluated and added to the population. Next, 

the parents are selected by tournament-selection with dominance as selection criteria. The parents are 

either used for crossover or copied into the offspring depending on the crossover probability. The 

used crossover-operator is the uniform-crossover-operator. With the chance of the mutation 

probability, the offspring are mutated. After that, the offspring are evaluated. The non-dominated-
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sorting algorithm (like used in NSGA-II) is used to pick the best individuals from the old generation 

and the offspring to form the new population and to determine the set of pareto dominant solutions. 

Lastly, the saved old representatives, which are not used anymore, are deleted. The MA returns its 

population, the saved old representatives and the found pareto front. 

 

Algorithm 3: Master algorithm (MA) 

Input: Population of the MA: MAPop. representatives of all agents of the current generation: 𝑅𝑘 =

{∑𝑨=𝟏
𝒌 ∑𝑟=1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠
𝑅𝐴,𝑟}, representatives of all agents the generation before the current 

generation: 𝑜𝑙𝑑_𝑅𝐾 ,  list of saved representatives from old generations: 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅  , current 

generation: gen, crossover-probability: MACXPB, mutation-probability: MAMUTBP 

Output: MAPop,  Pareto_Front 

if gen=0: 

|    𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐴𝑃𝑜𝑝 = evaluateMA(MAPop,𝑅𝑘) 

if gen>0: 

|    New_Individuals, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅= handlingChangesOfRepresentatives(MAPop,𝑅𝑘 ,𝑜𝑙𝑑_𝑅𝑘, 

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅) 

|    𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑒𝑤_𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠  = evaluateMA(𝑅𝑘, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅) 

|    MAPop=MAPop ∪ New_Individuals 

Offspring= tournamentselectionByDominance (MAPop) 

for 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1 in Offspring: 

|    if  MACXPB >random(0,1):  

|    |    𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 , 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1 = uniformcrossoverMA(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖+1) 

while 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖  in Offspring: 

|    if MAMUTBP >random(0,1):  

|    |     𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖'=uniformmutation(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) 

|    if 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖  ⊆ MAPop: 

|    |     delete 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔=evaluateMA(Offspring, 𝑅𝑘, 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅) 

MAPop=MAPop ∪ Offspring 

New_MAPop, Pareto_Front=nonDominatedSorting(MA_pop, 𝑁MA Individuals ) 

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅=deleteUnusedOldRepresentatives(New_MAPop 𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅) 

return New_MAPop, Pareto_Front 
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4.3 In Depth Explanation of the Algorithm Operators and Implementation 

 

In this chapter, the functions of the algorithm are explained in detail. The functions are described in 

the order they are used in the algorithm. In 4.3.1, the used programming language and the used 

framework are mentioned. In chapter 4.3.2, the representation of the individuals of the MA and the 

SA is described. In chapter 4.3.3, the A* algorithm used to connect the waypoints of the SA 

individuals is clarified. In chapter 4.3.4, the Input data of the algorithm and in chapter 4.3.5 the 

initialization process is explained. From chapter 4.3.6 to 4.3.13, all functions of the SA and from 

chapter 4.3.14 to 4.3.20 all functions of the MA are described. In chapter 4.3.21, the termination 

conditions and data output are explained. Lastly, the algorithm is summarized and discussed in 

chapter 4.4. 

 

4.3.1 Programming Language and DEAP-framework 

 

The implementation was done in python. Additionally, functions from the evolutionary computation 

framework Distributed Evolutionary Algorithms in Python (DEAP) were used. DEAP provides 

several modules for implementing evolutionary algorithms [15]. A few modules like the binary Heap 

implementation from Singh [35] and the merge sort algorithm implementation from [30] were also 

used.  

 

4.3.2 Representation of Individuals 

 

In this thesis, every vertex has a numerical value for identification. The individuals of the SAs consist 

of two forms of representation: waypoints and the consecutive vertices, in which the waypoints are 

converted to. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖,𝐴 = {𝑤𝑠𝐴
, 𝑤0. . . 𝑤𝑛, 𝑤𝑡 ;  𝑤𝑠𝐴

, 𝑣0 … 𝑣𝑙 , 𝑤0, 𝑣𝑙+2 . . . 𝑤𝑡𝐴
}. Figure 5 shows a 

possible conversion from waypoints to consecutive vertices. The first waypoint and the last waypoint 

as well as the first and the last vertices are the start s and the target point t of the agent. The start and 

target points cannot be changed by any of the operators. The number of waypoints between start and 

target points are variable. The waypoints and vertices are numerical and point towards one of the 

vertices of the map. The two forms of representation are necessary, because the same set of waypoints 

can lead to a different set of consecutive vertices. The reasoning behind this is explained in the 

following chapter 4.3.3. 

 



4 Materials and Methods 

26 

 

 

Figure 5: Interaction between waypoints and consecutive vertices 

 

The individuals of the MA have as many genes as there are agents. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 =

{𝑔𝑒𝑛𝑒0, … , 𝑔𝑒𝑛𝑒𝑘}. Each gene refers to a representative from a different subpopulation of an agent. 

Figure 6 shows how each gene of the MA refers to a representative from the subpopulations of the 

agents. 

 

 

 

Figure 6: Representation of a MA individual 

 

4.3.3 Converting Waypoints to consecutive Vertices 
 

 

The A* algorithm is used to translate the waypoints into neighboring vertices. A possible heuristic 

could be used, which calculates the direct route disregarding obstacles between the examined point 

and the target point. With the existing assumptions, the calculation of the heuristic distance h would 

be described by the following function: 
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h=𝑚𝑎𝑥(|𝑤1𝑦 − 𝑤2𝑦|, |𝑤1𝑥 − 𝑤2𝑥|) (4.4) 

 

With 𝑤1𝑥 and 𝑤1𝑦 being X- and Y-coordinates of one waypoint and 𝑤2𝑥 and 𝑤2𝑦 being X- and Y- 

coordination of the second waypoint.   

This is the recommended heuristic for this algorithm for most maps. Nevertheless, in this thesis, 

precomputed distances are used as the A* heuristic. For this purpose, in the beginning of the algorithm 

the distance between each points is determined and saved. This distance can then be used to determine 

the route to the next waypoint. The disadvantage of this variant is that the preparation of the map 

involves exponential time depending on the number of vertices on the map. The advantage is that the 

A* algorithm requires the minimum effort to compute the path between two waypoints. This is 

particularly advantageous on small maps with many agents and with many obstacles and the resulting 

long routes. The main reason this variant is used here, is that the precomputed distances are practical 

for the experiments, since they only have to be calculated ones for each map. The difference in the 

results between the two heuristics should be small. 

Additionally, two variants of the A* algorithm are implemented. A deterministic and a stochastic one. 

While the deterministic version works like a classic A* algorithm, the stochastic variant works as 

follows: Whenever the next node is pulled from the priority queue of the known nodes, the algorithm 

checks if there is more than one node with the same highest priority. Out of these nodes, the algorithm 

pulls out a node randomly with evenly distributed probabilities. The used priority queue is a min-

heap. Therefore, nodes with the same priority are found fast. For the min-heap, the implementation 

in Singh [35] was used and altered. The stochastic version does not lead all possible paths to be 

equally likely. Instead, all branches of a fork are equally likely, as shown seen as an example in the 

figure 7. 

 

Figure 7: Example for the probability of the branches  

Using the stochastic A* variant on the shown grid to find a fastest path from s to t could end in the 

consecutive vertexes a={s,1,2,4,6,9,11,t},b={s,1,3,5,7,10,12,t} and c={s,1,3,5,8,10,12,t}. The 

probabilities of getting each path is different. The algorithm has at vertex 1 a 50-50-chance of 

moving to 2 or 3 and then at vertex 5 another 50-50 chance of moving to vertex 7 or 8 resulting into 

the probabilities: 𝑝𝑎=50%,𝑝𝑏=25%,𝑝𝑐=25% 
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This has two side effects. First this procedure makes the A* algorithm computationally more 

expensive. Secondly, the stochastic variant ensures that every change in a waypoint leads to new 

calculations of the consecutive vertices between this waypoint and others. To help the stochastic 

variant, every time the A* algorithm is used, a number of vertices between the waypoints are 

converted into waypoints depending on the length of the route (see figure 8). This is used to cause 

path sections to solidify. As a result, changing a waypoint does not change a very long route section. 

How many waypoints are added and which A* variant is used is tested during the parameterization 

tests. 

 

Figure 8: A* add extra waypoints example 

 

4.3.4 Input data and Preparation: 

 

The input data can be classified into two categories: 

 

     • Environment-related data 

     • Parameter settings 

 

The environment-related data consists of all the data on the MAPF problem. This includes the map, 

the number of agents and the associated start s and target points t. The start and target points are saved 

as lists and the number of agents as a constant. The map is converted to a graph G=(V,E). Each vertex 

on the map is represented by a node. Each node has, among other variables, an X- and Y- coordinate, 

a numerical value for identification and a list of pointers to all neighboring nodes. Additionally, for 
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every agent a list of all the points, which are reachable from the start position (the connectivity-list) 

is created. This is important for all maps, which have sections of passable space, which are isolated 

from the rest of the map by obstacles. With this connectivity-list, it is possible to only use reachable 

waypoints. Furthermore, a distance matrix from every point to every other point is created for the A* 

algorithm heuristic. 

The parameter settings include all parameters that can be changed in the algorithm. These parameters 

are described in the Appendix section A. 

 

4.3.5 Initialization  

 

The initialization function creates individuals for the subpopulation of the SA and the MA until the 

population size is reached. For each individual of a SA subpopulation, h waypoints are randomly 

determined with evenly distributed probabilities from the associated connectivity-list with h ∈ 

{0≤j≤𝑁Startinggenes|j∈ℕ} and 𝑁Startinggenes being an input parameter. Furthermore, the associated 

start 𝑠𝐴 and target 𝑡𝐴 point are added and the consecutive vertices between the waypoints are 

determined by the A* algorithm. The MA individuals consist of one gene for every agent. The 

individuals are created by assigning one of the representative-slots to every gene (one representative 

per agent). 

Initially, only the individuals of the SA subpopulations are evaluated and only according to the 

objective path- length by counting the number of actions/consecutive vertices. The fitness value of 

the MA individuals (𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡𝑠, 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠)  and the fitness value 𝐹𝑖𝑡𝐶𝐿𝐶  of the 

SA individuals can not be determined yet because the representatives have to be specified beforehand. 

 

4.3.6 SA Collisionlist  

 

Every generation after the first generation, the individuals of the SA subpopulations are evaluated 

with regard to the objective collision count. For this, the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 needs to be prepared. The 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is a two dimensional matrix with the dimensions Vertices V and Time steps X. A cell 

𝐶𝑣𝑥 of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information how many representatives of all agents are at vertex 

v at time step x (equation 4.3). Before the collision count evaluation at the beginning of a SA 

generation, the information of the representatives of the own agent is removed from the collision list. 

This prevents collisions of an individual of an agent with the representatives of the same agent to be 

included in the calculation of the collision count. Algorithm 4 illustrates how the removal is done. At 
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the end of the generation, the information of the new representatives is added to the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 

like seen in algorithm 5. 

Algorithm 4: Remove Representatives from Collisionlist   

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’ 

for 𝜋𝑖  in 𝑅𝐴: 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][ 𝜋𝑖[x]]= 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][ 𝜋𝑖  [x]]-1 

 

Algorithm 5: Collisionlist update/Creation 

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋# if Gen one 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=[] 

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’ 

CollisionlistVertices=[0]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠   

for 𝜋𝑖  in 𝑅𝐴: 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    if length(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)<x: 

|    |    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.append(copy(CollisionlistVertices)) 

|    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖[x]]++ 

 

4.3.7 SA Evaluation Collision Count 

 

Starting with generation two, the individuals of the SA are evaluated with regard to the objective 

collision count at the beginning of the SA generation. Algorithm 6 shows how the evaluation is done. 

The fitness value 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖 of an individual i is increased by one for each representative of the other 

agents the individual shares a vertex v with at the same time step x.  Additionally, the collision count 

fitness value is increased by the 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒 for every representative of the other agents 

which is in the same vertex v at time step x+1 at which individual 𝑖 was in at time step x. The 

information how many representatives of the other agents are at vertex v at time step x and x+1 is 

taken out of the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋. 

The described evaluation process at the beginning of an SA only happens from the second generation 

onward, because the 𝐹𝑖𝑡𝐶𝐿𝐶  values can only be calculated once the agents have representatives. The 

described process must happen before the parents are selected, because the representatives might have 

changed since the last evaluation and thus the collision count fitness value needs to be updated before 

selection.  

If the SO SA variant is active, the two fitness values 𝐹𝑖𝑡𝐶𝐿𝐶 and 𝐹𝑖𝑡𝑃𝐿 of each individual are 

normalized and the weighted sum is formed using the weights from the input data. 
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Algorithm 6: Evaluate collision count 

Input: Population of agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋, 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒  

Output: 𝐹𝑖𝑡𝐶𝐿𝐶,𝑆𝐴𝑃𝑜𝑝𝐴
  

for 𝜋𝑖  in 𝑆𝐴𝑃𝑜𝑝𝐴:  

|    𝐹𝑖𝑡𝐶𝐿𝐶,𝑖=0 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    𝐹𝑖𝑡𝐶𝐿𝐶,𝑖  = 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖  + 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x][𝜋𝑖[x]] 

|    |    𝐹𝑖𝑡𝐶𝐿𝐶,𝑖= 𝐹𝑖𝑡𝐶𝐿𝐶,𝑖+𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒  * 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x+1][𝜋𝑖[x]]         

 

 

4.3.8 SA Selection 

 

The selection process is used to create the parents for crossover. For the SO SA version, a simple 

tournament selection with two participants with the selection criteria of the weighted sum value is 

used. For the MO SA, the crowding distance is assigned and the parents are selected by tournament 

selection with two participants based on dominance. If the selected individuals do not dominate one 

another the crowding distance is used to determine the winner of the tournament selection. For this 

purpose the functions assignCrowdingDist – for crowing distance- and selTournamentDCD – for the 

tournament selection based on dominance- from the DEAP framework are used [14]. As many parents 

are selected as, there are individuals in the population. 

 

4.3.9 SA Crossover Operator 

 

One of the two One-Point Crossover variants is used, which are compared against each other in 

parametrization. In the first One-Point Crossover variant, a random value between zero and one is 

determined. The value is multiplied by the number of waypoints of each parent. The resulting product 

is the 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡𝑖 for a 𝑝𝑎𝑟𝑒𝑛𝑡𝑖. Figure 9 shows how the crossover variant works. 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡𝑖 =  𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑𝑜𝑚([0,1]) • 𝑁𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠)  (4.5) 

 [] being rounding brackets in this context 

 With the 𝑁𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 being the waypoints between the starting and target point 
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Figure 9: Crossover variant one 

 

Since it is possible that the path length of the offspring increases after the crossover. The second 

crossover tries to reduce this effect. The second crossover variant randomly selects a waypoint of a 

parent and searches in the other parent for the waypoint that is closest to the first selected waypoint 

using the distance matrix. The crossover point is set after each of the two points. This crossover 

variant is supposed to minimizes the distance difference between the parents and the offspring: the 

maximal increase between the sum of the parent path lengths and the offspring’ path lengths is two 

times the distance between the waypoints before and after the crossover point. 

 

 

Figure 10: Crossover variant two - nearest point 

 

Many of the approaches presented in chapter 3.2 and 3.3 use some kind of deletion operator to fasten 

the convergence. Since many of the created children have long path lengths, a deletion function was 

built into the crossover function to counteract this. A percentage value between zero and the 𝐶𝐷𝑉 is 

set at random for each child – with 𝐶𝐷𝑉 being the crossover-deletion-value of the input parameter. 

This is multiplied by the number of waypoints to the left and right of the crossover point in order to 
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determine how many of the waypoints are deleted starting from the crossover point. The result is 

rounded down. The deletion operator uses a percentage rather than a fixed number, because the A* 

value adds waypoints into the chromosomes. 

𝑁deleted Waypoints to the left = ⌊𝑁number of waypoints to the left ∗  𝑟𝑎𝑛𝑑𝑜𝑚[0, 𝐶𝐷𝑉] ⌋ (4.6) 

𝑁deleted Waypoints to the right = ⌊𝑁number of waypoints to the right ∗  𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒(0, 𝐶𝐷𝑉)⌋ (4.7) 

With 𝑁number of waypoints to the left being the number of waypoints to the left of the crossover point 

and 𝑁number of waypoints to the right being the number of waypoints to the right of the crossover point 

 

 

Figure 11: Deletion value example.  

Figure 11 shows an example of the use of the deletion operator. The middle picture b shows a possible 

offspring made from the parents shown in the picture a. The path length of this offspring is far worse 

than the path length of the parents and the connection path even furthers the distance to the target. 

The picture on the right shows the difference with the deletion value. The path length is far more 

acceptable than it was before.  

The vertices between the new waypoint connections are determined with the A* algorithm. In the 

special case, that a parent only has start and target points as waypoints, a random step is changed into 

a waypoint and the crossover takes place as described above. If there are no steps between a parents 

starting and target point, no crossover takes place. 

 

4.3.10 SA Mutation Operators 

 

In this thesis, three different mutation operators with different individual mutation probabilities are 

used:  

Mutation Gene Deletion: 

 

With the mutation probability of SAMUTBP1 an individual is mutated by the Gene-Deletion mutation 

operator. This operator deletes any non-mandatory waypoint with the probability of 
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𝑝𝑚𝑢𝑡_𝑑𝑒𝑙= 
1

𝑁Non mandatory Genes
 (4.8). An average of one waypoint is deleted during execution. The A* 

algorithm translates the new waypoint-connection into consecutive vertices. In the special case that 

there are no waypoints between start and target point, nothing is changed. Figure 12 shows how the 

Gene Deletion mutation works. 

 

 

Figure 12: Mutation Operator Gene Deletion 

 

 

Mutation Shift in Neighborhood 

 

With the mutation probability of SAMUTBP2 is mutated by the Mutation Shift in Neighborhood 

operator. Every one of the consecutive vertices of an individual mutated by this operator has a 

probability 𝑝𝑚𝑢𝑡_𝑠ℎ𝑖𝑓𝑡 =
1

𝑁Consequtive Vertices−1
 (4.9) to be converted into a waypoint and moved in its 

neighborhood. If the chosen vertex is already a waypoint, it is just moved in its neighborhood. This 

way on average one waypoint is moved. The A* algorithm translates the new waypoint connections 

into consecutive vertices. Figure 13 shows how the Shift in Neighborhood mutation works. 

 

 

 

Figure 13: Mutation in Shift Neighborhood example 
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In the special case that there are no steps between the start and target point, a waypoint is added. This 

waypoint is either a neighbor of the start or target point. The A* algorithm determines the new 

consecutive vertices between the start-point and the new point and the new point and the target point. 

While in other approaches this kind of mutation is only used on waypoints, in this approach, it can 

also be used on the steps between the waypoint. This way the operator has a higher chance to change 

a path into avoiding a conflict if no waypoint is near that conflict. 

 

Mutation Insert Random Waypoint 

 

With the mutation probability of SAMUTBP2 is mutated by the Insert Random Waypoint mutation 

operator. This operator adds a random waypoint into the chromosome of an individual. For every 

waypoint-to-waypoint connection, a random waypoint is added by the probability 

𝑝𝑚𝑢𝑡_𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑛𝑑=
𝑁consecutive vertices between two waypoints

𝑃𝐿𝑖
 (4.10). On average one waypoint is added into 

an individual with a higher chance of being added between two waypoints that have a long path 

between them. If there are no consecutive vertices between start and target point a random waypoint 

is added between them. The A* Algorithm translates the new waypoint connections into consecutive 

vertices. Figure 14 shows how the Mutation Insert Random Waypoint works. 

 

 

Figure 14: Mutation Insert Random Waypoint example  

The Operator added a waypoint between former w1 and w2 becoming the new w2. The old w2 is 

now the new w3.  

 

Additionally, similar to the crossover deletion function a random percentage between 0 and the 

Mutation deletion value (MDV) of the waypoints left and right to the added waypoint are deleted – 

with the MDV being the Mutation deletion value from the parameter input data and evenly distributed 

probabilities used. This way it is possible to insert a new waypoint and still keeping the path length 

low. After mutation, any offspring, which was not effected by any change, is deleted. 
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4.3.11 SA Evaluation 

 

In the next step, the created children are evaluated. The 𝐹𝑖𝑡𝑃𝐿 value is calculated by counting the 

consecutive vertices and the 𝐹𝑖𝑡𝐶𝐿𝐶  value, as described in chapter 4.3.7, by counting all vertex 

conflicts and all possible swapping conflicts with the representatives of the other agents and 

multiplying them with 𝐶𝑆𝑃𝑉. In generation one only the 𝐹𝑖𝑡𝑃𝐿 is calculated, since there are no 

representatives yet. In the SO SA version, the fitness values of all individuals, including the parents, 

are normalized and the weighted sum is calculated using the weights. In the MO SA the fitness values 

are also normalized for the crowding distance calculation. 

 

4.3.12 SA SELECTION Next Gen and Representatives 

 

The population of the next generation is build out of the best individuals of the old population and 

the children population. The SO SA version sorts the individuals by their weighted sum fitness value. 

For this purpose, the merge sort algorithm from Popović [30] is altered and used for the 

implementation. The MO SA uses the non-dominated sorting algorithm to build the population of the 

next generation. For this purpose, the non-dominated sorting algorithm from the DEAP framework is 

used [13]. The population size stays the same between generations. The representatives are chosen 

the same way (SO SA with merge sort, MO SA with non-dominated sorting). The number of 

representatives is defined by the number-representatives-variable. 

 

4.3.13 SA Collisionlist update 

 

Lastly, the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 is updated by inserting the information of the new representatives. Like 

stated in chapter 4.3.6 the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 holds the information of how many representatives of an 

agent are to a certain time step in a certain vertex. The insertion of new information from a 

representative works like described in algorithm 5. For every step of a representative, the associated 

tuple value is increased by one. A cell is identifiable by the combination of vertex and time step it 

represents equation 4.3.  
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4.3.14 MA Evaluation Generation One 

 

The first generation of the MA starts with the evaluation of all individuals. The genes of the MA 

individuals refer to representatives of the subpopulations (like described in chapter 4.3.2). Algorithm 

7 shows how to translate a gene of an individual into a path. To make equations more understandable 

genes of individuals of the MA are assumed to be equivalent to the associated path. Genes can refer 

to representatives of the current SA subpopulations or representatives of old SA subpopulations saved 

in the Old_RepresentativesR list. The Old_RepresentativesR list contains all saved representatives of the 

previous generations. The saving of old representatives is explained in chapter 4.3.15. 

 

Algorithm 7: Reading out paths  

Input: Individual of the MA subpopulation: 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑗 = {𝑔𝑒𝑛𝑒0, … , 𝑔𝑒𝑛𝑒𝑘}, representatives of all agents of 

the current generation: 𝑅𝑘, list of all saved representatives: Old_RepresentativesR 

Output: 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠  

for 𝑔𝑒𝑛𝑒𝑖 in 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑗: 

|    if 𝑔𝑒𝑛𝑒𝑖  =< 𝑁Number of Representatives for each agent :  

|    |    𝑃𝑎𝑡ℎ_𝑜𝑓_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖  =𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑖[𝑔𝑒𝑛𝑒𝑖] 

|    else: 

|    |    𝑃𝑎𝑡ℎ_𝑜𝑓_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖= Saved_Representatives [𝑔𝑒𝑛𝑒𝑖]   

 

The individuals are evaluated by the objectives makespan, sum of costs and overlaps described in 

chapter 1.1. algorithms 1.1, 1.2 and 1.3. 

 

Makespan: The algorithm calculates the makespan fitness value 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 by determining the 

longest path length value of all paths being part of the MA individual. 

Sum of Costs:  The algorithm calculates the sum of costs fitness value 𝐹𝑖𝑡𝑆𝑢𝑚𝑂𝑓𝐶𝑜𝑠𝑡 by summing up 

all path lengths of all paths being part of the MA individual. 

For the overlaps fitness value 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠, all the collisions between the paths of an 

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 must be calculated. Algorithm 8 shows the pseudocode to the evaluation for better 

understanding. To calculate the swapping- and the vertex-conflicts two lists are used in the algorithm: 

𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 and 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠. 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 contains the number of agents at every 

vertex v at one time step x and is used to determine the vertex conflicts. The second list, 

𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠, has at the index of each vertex v a list of all paths of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖, which 

were at time step x+1 at the given vertex v. To initialize the lists, 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is filled with 
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zeroes one for each vertex. The 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is filled with empty lists, one for each vertex. 

For each time step x three things are done:  

First, the lists are updated: The vertex values of the 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 are increased by one for each 

path of the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 being at the vertex at time step x. 𝐿𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 is updated by 

putting a pointer of each path of the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 into the list with the vertex-index at which the 

agent is at time step x+1.  

Secondly, for each path i the vertex in the 𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 where the agent i is at time step x is 

checked. The overlaps variable is increased by (𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝜋𝑖 [𝑥]] −1)•0.5. For the swapping 

conflicts the list in 𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠-cell at the vertex-index corresponding to the agents location 

at time step x is checked. The list contains all agents which are in this vertex v at time step x+1. For 

each agent of this list, the location at time step x is compared with the examined paths i location at 

time step x+1. If they match the fitness value of the overlaps objective for the 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝐴,𝑖 is 

increased by one. Third, the lists vertex values are set back to zero and to empty lists. 

 

Algorithm 8: MA Fitness Evaluation of the Overlaps Objective  

Input Population of the MA: MAPop, 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑠𝑝𝑎𝑛,𝑀𝐴𝑃𝑜𝑝  

Output: 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠  

𝑙𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠=[0]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠  

𝑙𝑖𝑠𝑡𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠=[]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠  

for 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔 in MAPop:  

|    while time step x=0, x< 𝐹𝑖𝑡𝑀𝑎𝑘𝑒𝑠𝑠𝑝𝑎𝑛,𝑔, x++  

|    |    for 𝜋𝑖  in  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔: # get the paths referred to by the genes, fill lists 

|    |    |    list_VertexConflicts[𝜋𝑖  [x]]=+1 

|    |    |    list_SwappingConflicts[𝜋𝑖  [x+1]].append(𝜋𝑖) 

|    |    for 𝜋𝑖  in 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔: 

|    |    |    𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠,𝑔= 𝐹𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠,𝑔+(list_VertexConflicts[𝜋𝑖  [x]]-1)*0.5   

|    |    |    for  𝜋𝑗,𝑗!=𝑖  in SwappingConflicts[𝜋𝑖  [x]]: 

|    |    |    |    if 𝜋𝑖  [x+1]== 𝜋𝑗 [x]: 

|    |    |    |    |     Overlaps= Overlaps+1  

|    |    for 𝜋𝑖  in 𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑔: # remove location information from list  

|    |    |    list_VertexConflicts[𝜋𝑖  [x]]=-1 

|    |    |    list_SwappingConflicts[𝜋𝑖  [x+1]].pop() 
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4.3.15 MA handling Representatives swaps and saving old representatives 

 

Like already stated, every individual of the MA has one gene for each agent and every gene points to 

one of the representatives of the agent. When one representative of the subpopulation of the SA is 

switched out, a solution of the MA, which uses this representative would be changed too. If that 

happens the MA might lose good solutions after each run of the SAs. To counteract this the MA uses 

following procedure starting with the second generation: For every individual of the MA which points 

at a representative of an agent, which was changed by the SA, the MA creates another individual. 

This new individual will point at the new representatives. The old individual refers towards the old 

representatives. For this reason, the old representatives, which are used by the MA, are saved in the 

𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅  list.  

  

 

Figure 15: Handling of new representatives 

 

This solution leads to an overall bigger population of the MA, which slows down the algorithm. On 

the other hand, the impact will not be too high, since the SA is expected to have the biggest impact 

on the time performance, because the SA has one subpopulation for each agent to evolve. 

Additionally, this solves two problems: Firstly, old solutions in the MA subpopulation do not 

disappear by changes in the subpopulation. Secondly, the new representatives of the SAs, which are 
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supposed to be better than the old ones, are part of the population faster. Otherwise, the mutation 

operator would be the only way to insert the new SA representatives into the MA population. The 

new solutions created by this function are then evaluated. 

 

4.3.16 MA Selection 

 

The parents are selected by tournament selection based on dominance with two participants for each 

tournament. 

 

4.3.17 MA Crossover 

 

For crossover, uniform-crossover like described in Narmadha et al. [26] is used. For this purpose, the 

uniform-crossover function from DEAP is used [11]. The cross probability is determined by the input 

crossover probability variable MACXPB. 

 

4.3.18 MA Mutation 

 

For the mutation of the MA offspring uniform mutation like described in Soni and Kumar [36] is 

used. For this purpose, the uniform mutation function from the DEAP framework is used [12]. The 

mutation probability is determined by the input Mutation-probability variable MAMUTBP. The range 

of possible values for a mutated gene are from one to the Number Representatives: 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑙𝐹𝑜𝑟𝑀𝐴𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∈ {1≤j≤𝑁𝑅|j∈ℕ}. This way, the mutated genes refer only towards 

representatives of the current generation. After the mutation, the newly created offspring are 

evaluated as described in chapter 4.3.11. 

 

4.3.19 MA Environmental Selection 

 

After the evaluation, the non-dominated sorting algorithm like described in Deb et al. [8] is used to 

select individuals of the newly created offspring and of the old population to create the next 

population. The new population size is defined by the MA Population Size variable. For this purpose, 

the non-dominated sorting algorithm from the DEAP framework is used [13]. Additionally the set of 

pareto optimal solutions is determined by the non-dominated sorting algorithm. 
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4.3.20 MA Deleting Saved Representatives 

 

Lastly, the MA deletes old representatives from the saved representative list (𝑂𝑙𝑑_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠𝑅), 

which are not used by the new population.  

 

4.3.21 Saving Data, Termination Criteria and Data Output 

 

The Output data after each generation is saved as a data frame. For the purpose of testing the 

generation, the function evaluations, the steps of every agent of the solutions of the pareto front, the 

fitness values of the solutions of the pareto front, the random-seed value and the number of nodes 

traversed with the A* algorithm are saved every 10 Generations or if the agents terminate early. 

The algorithm terminates when one of two conditions is met: Either the algorithm reaches the 

maximal number of generations or the algorithm finds a solution with the best possible fitness values. 

For this solution it is required that the path of each agent in this solution has the minimum possible 

path length value, thereby minimizing makes span and the sum of the costs, and the overlaps fitness 

value is zero. 

Once the termination criteria is fulfilled, the saved output data is put out as a csv file and the algorithm 

terminates. 

 

4.4 Summary and discussion 

 

In this chapter, a co-evolutionary approach for solving the multi-objective multi-agent pathfinding 

problem was presented. The algorithm uses the master-, slave-architecture similar to Kala [18]. A 

subpopulation for every agent is created, which is evolved by the SA, and the MA evolves a 

subpopulation, which refers to the representatives of the SA to create a set of pareto optimal solutions 

for the MAPF problem. 

Like stated in chapter 2.2 the tests in Bucci and Pollack [3] showed among other things that using 

every test available leads to a better solution. Since the evaluation of every solution of the k agents in 

all possible combination would use up too much time, the SA individuals are instead evaluated by 

objectives, which have a connection to the MA objectives. The SA path length objective optimizes 

the makespan and sum of costs objective of a MA solution. The SA collision count objective is 

supposed to optimize the overlaps objective of the MA. Care was taken here to evaluate an individual 

using the representatives of all other agents using the collision list. So in some way every available 
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test is used. Admittedly, an individual with a comparatively small collision count value can still lead 

to a comparatively high overlaps value since: 

 The swapping collisions in the collision count objective are estimated, 

 The collision count comes from using all representatives from all agents while in the overlaps 

objective only the collisions between one representative from every agent are examined, 

 In the calculation of the overlaps objective vertex conflicts between many agents in one vertex 

are penalized exponentially, while vertex conflicts in the collision count can only be penalized 

linearly. 

The SA uses waypoints like most of the approaches presented in chapter 3.2 and 3.3. The waypoints 

are translated into paths using the A* algorithm. Two variants of the A* variant were implemented: 

A stochastic and a deterministic one. Two heuristics were presented of which the precomputed 

distances will be used for the tests to minimize the computational power needed. Additionally, the 

A* algorithm introduces new waypoints into long paths to solidify paths. Two one-point crossover 

variants are introduced, which differentiate in the setting of the crossover point. Additionally, the 

crossover operator uses a deletion operator to fasten the convergence. Three mutation operators are 

used. A Waypoint deletion mutation, a mutation operator, which moves a step of the path in its 

neighbourhood, and a waypoint operator, which introduces a new random waypoint, and uses a 

deletion operator to smoothen the transition. The last mentioned mutation operator introduces new 

solutions to the population. Two different versions of the SA were implemented: One, which uses a 

weighted sum approach to optimize the objectives (SO SA), and another one, which solves the 

pathfinding problem multi-objectively (MO SA).  

The genes of individuals of the MA refer to representatives of each agents’ subpopulation. The MA 

saves old representatives if they are still used in the population. Otherwise, the MA is pretty straight 

forward in terms of multi-objective evolutionary algorithms using tournament selection, uniform 

crossover, uniform mutation and the non-dominated sorting algorithm. 

The algorithm is computational expensive: The number of function evaluations of the algorithm is 

calculated by formula 4.11. 

 

𝑁Functionevaluations  =  𝑁generations ∗ 2 ∗ (𝑁SA Individiuals ∗ k + 𝑁MA Individuals ) (4.11) 

 

 

With k being the number of agents and with 𝑁generations being the number of generations the 

algorithm needed. The “times 2” comes from the additional evaluation of the collision count in the 

SA and from the evaluation of the new individuals created by the “MA handles representatives”-

function. 
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To reduce the computational cost it would have been useful to stop the evolution of subpopulations, 

which are unlikely to change anymore. Additionally, elitism would have been probably the better 

choice for the environmental selection in the SO SA. Other than that, different mechanisms for 

choosing the representatives could have been compared against each other. The representatives can 

be chosen by random choice, optimal choice or combined choice [32]. 
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5 Experiments and Evaluation 
 

In this chapter the two variants SO SACCGA and the MO SACCGA are compared with each other 

and analyzed. For this, both variants are first parameterized in chapter 5.2. In the following section 

chapter 5.3, the two variants are compared against each other in different environments with a 

different numbers of agents and different start and target point (scenarios). The quality of the co-

evolutionary algorithm should be determined and to test thesis 1 (like formulated in chapter 1.): 

Thesis 1: MAPF multi-objective optimization with co-evolution works better if the 

subpopulations of the agents are optimized multi-objectively than if the subpopulations are 

optimized single-objectively with a weighted sum approach. 

Additionally, the pareto fronts achieved from the tests are analyzed to determine which of the two 

algorithms achieves better results, if the decision maker weighs the objectives in the same way as the 

weighting in the slave algorithm of the SO SACCGA is done. This is done to examine thesis 2 (like 

formulated in chapter 1.): 

Thesis 2: Using a co-evolutionary approach, if the decision maker weighs the objectives of 

the Multi-objective MAPF problem with the same weights the objectives of the 

subpopulations of the agents are weighted using a weighted sum approach, then this weighted 

sum approach works better than optimizing the objectives of the subpopulations of the agents 

multi-objectively. 

The environments and scenarios from the Mapf.info benchmarks are used for the analysis and 

parametrization. These benchmarks are described in more detail in Chapter 5.1. Finally, the results 

are summarized in chapter 5.4. 

 

5.1 Benchmark 

 

The Benchmarks from Mapf.info provide grid-based MAPF maps of real cities, videos games, open 

grids with or without obstacle, maze-like grids, warehouse-like grids and grids with room-forming 

obstacles like illustrated in figure 16.   

 

 

Figure 16: Mapf.info environments [37] 
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Additionally, each map has 25 random and even scenarios. Each Random scenario consist of 1000 

randomly paired points on the largest reachable region [38]. The even Scenarios consist also of 

random points, whereby each path length-spectrum is represented by the same number of problems 

[19]. 

The used environments in this thesis are the open grids with and without obstacles, the maze-like and 

the room-like maps. These maps are used because they have distinctive features, which can be 

analyzed. 

The Open Maps without obstacles differentiate only in size from each other: 

Table 1:Empty Maps 

Map 

type Size 

Empty 8 x 8 

Empty 16 x 16 

Empty 32 x 32 

 

The Open Maps with random obstacles differentiate in size and percentage of obstacles: 

Table 2: Random Maps 

Map 

type Size Ratio of obstacles to empty space 

Random 32 x 32 10 

Random 32 x 32 20 

Random 64 x 64 10 

Random 64 x 64 20 

 

The maze-like maps differentiate in size and space between walls: 

Table 3: Maze Maps 

Map 

type Size Space between walls 

Maze 32 x 32 2 

Maze 32 x 32 4 

 

Lastly, the room-like maps differentiate in size and room size: 

Table 4: Room Maps 

Map 

type Size Room size 

Room 32 x 32 3 x 3 

Room 64 x 64 15 x 15 

Room 64 x 64 7 x 7 
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Overall, the algorithm is tested on twelve different environments. For the rest of the work the word 

“problem” is used for a combination of a map, a scenario and the number of agents. 

 

5.2 Parametrization 

Value Presentation: The input-parameters are presented in Appendix section A. Table 14 in 

appendix section B shows the values for every parameter that are being compared against each other 

during parametrization. For parameters with natural limitations such as probabilities or weights, the 

values come from the entire spectrum. For the weighting of the collision count objective of the 

weighted sum approach 0.001 and 0.999 are chosen as extreme values instead of zero and one in order 

to create a lexicographical optimization instead of neglecting one of the objectives entirely. For all 

parameters without natural limitations, different and nevertheless promising values are chosen. 

 

Procedure of parameterization:  

In order to find a good parameter setting for both the SO SACCGA and the MO SACCGA, the 

following was done: In the first step, the parameters were improved by finding a promising basic 

setting. In the second step, the MO SACCGA and the SO SACCGA were parameterized separately. 

In order to find the basic setting, all parameters were set to a promising pre-basic setting. Then, for 

each value setting of a parameter, 31 runs were carried out on seven different test setups illustrated 

in table 5. Before moving on to the next parameter, the tested parameter was reset to the default 

setting. The results for all settings of a parameter were then compared against one another. The 

Convergence and Diversity Metric hypervolume was used for the comparison. To do this, the pareto 

front fitness values of the repetitions were first normalized and then the hypervolume value was 

calculated. The settings were then compared by the hypervolume value in dependency to the number 

of function evaluations or in dependency to the number of nodes that the A* algorithm ran through. 

After the values for every parameter were compared against each other. The winning settings of the 

comparison formed the basic setting. This basic setting was then used as start setting to parameterize 

the MO SACCGA and the SO SACCGA separately. For the separate parameterization, the same 

procedure as in the first step was used, with the exception that the procedure was done separately for 

the MO SACCGA and SO SACCGA. 

For calculation of the hypervolume values the python implementation from Wessing [43] was used. 
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Table 5: Test problems for parametrization.  

The Feature setting refers to the map types’ special feature described in chapter 5.1 

 
 

The seven test setups contain different maps with an adapted numbers of agents. Care was taken to 

ensure that the number of agents is high enough to create an interesting problem. The starting and 

target points were taken from the even scenarios for each map. 

To measure somehow the computational cost of the algorithm, function evaluations and A* traversed 

nodes are measured. While functional evaluations are used more frequently in the literature (like for 

example in Weise et al. [42]), the measurement of the A* traversed nodes is rarer. However, the only 

two parameters that effectively influence the number of function-evaluations are the population size 

of the SA and the population size of the MA. In the current state of the algorithm the A* algorithm 

takes a lot of time. Since precomputed distances are used as heuristic, there is not much room to 

optimize the A*. Additionally, the number of traversed nodes grows proportionally to the population 

size of the SA, which has probably the biggest impact on the number of function evaluations 

considering the SA has to run once for every agent every generation. For these reasons, all parameters, 

which have an effect on the number of function evaluations, are parameterized using the hypervolume 

value in dependence to the number of function evaluations. All the parameters, which have no effect 

on the number of function evaluation but might have an effect on the number of A*-traversed nodes, 

are optimized using the hypervolume value in dependence to the number of A*-traversed nodes. 

For comparing the hypervolume values in dependence to the computational time the average 

hypervolume of the 31 runs of all values of a parameter were visualized with a 68% confidence 

interval (standard error) and put into a graph.  

For the comparison a parameter value a was considered better than another value b of the same 

parameter if the graph showed that: 

 a has a better average hypervolume value at generation 100 than b is having with the same 

computational cost while a has a smaller or as high computational cost as gen b after 100 

generations 

 or b has a smaller average hypervolume value at generation 100 than a is having with the 

same computational cost. 

Maptype Size Featuresetting Number of Agents

Empty 8 x 8 - 32

Empty 16 x 16 - 45

Maze 32 x 32 2 32

Random 32 x 32 20 40

Random 64 x 64 20 50

Room 32 x 32 3 x 3 40

Room 64 x 64 7 x 7 50
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If both values a and b had the same hypervolume value in dependency to the computational cost after 

one value reaches generation 100, it was checked which value reached it first. Else the values were 

considered being as good as one another. The procedure was used to create the ranking tables 6 to 8 

Table 6 shows the results of the first step of finding a basic setting. Table 7 and 8 show the results of 

the optimization of the MO SACCGA and SO SACCGA. The tables show for each parameter how 

their values were ranked on each environment. The resulting value on the far right of the table shows, 

which value won the comparison over all maps together.  Table 9 explains the icons used in table 6 

to 8. 
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Table 6: Parametrization Ranking table Basic setting 

 
 

 

Table 7: Parametrization Ranking table MO SACCGA 

 

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 20 20>28>>12 28>20>12 28>/20>12 28>20>>12 28>/20>>12 28>20>>12 28/20>>12 28

Maximal-Number-of-Starting-Chromosones 3 1>3>/2>>5 1>2>/3>5 5>3/2>1 1>2>>3>5 1>/2>/3>>5 1>2>3>>5 1>2>3>>5 1

SA-Crossover-Probability 0,25 0.25>0>0.5>1>0.75 1>/0.75>0.5/0.75>0 0.5>0>0.25>/0.75>1 0.75>/1>0.5>0>0.25 1/0.75/0.25>0.5>>0 1>0.75>0.5/0.25/0 1>/0.75>0.5>0.25>0 0.75

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.75>1>0.5/0>0.25 0.5>1/0.75>0.25>0 1/0.75>0.5>0.25>>0 0.5>1>0.25>0>>0.75 0.75>/1>0/0.25/0.5 0.75/1>0.5>0/0.25 1/0.5>0.75>0.25>0 0.75

SA-Mutation-Probability-Gene-Deletion 0,25 1>0.25>/0.5/0>0.75 1/0.75>0.25>0.5>0 0.5>/1/0.75>0/0.25 1>0>0.5>>0.25/0.75 0.75/0.25/0.5>1>0 0.5>1>0.25>0.75/0 1>0.25>0.5/0/0.75 1

SA-Mutation-Probability-Insert-Random-Waypoint 0,5 0.5/0.25>0.75>1/0 0>0.25>0.5>0.75>1 0.25>0.5>0>0.75>1 0>0.25>1>0.5>0.75 0>0.25>0.5>0.75/1 0>0.25>0.5>1>0.75 0.25>0.5>0>0.75>1 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>>False False>True True>>False True>>False True>>False True>>False True

Weight-Collisioncount 0,75 0.75>0.99>0.5>>0.25>0.001 0.5>0.75>0.25>0.99>>0.01 0.75>0.999>0.5>>0.25>>0.001 0.5>0.25/0.75/0.999>>0.0001 0.5/0.25>/0.75>0.999>>0.001 0.5/0.75>0.999/0.25>>0.001 0.75/0.5>/0.999>0.25>>0.001 0.5

Collision-Swapping-Penalty-Value 0,25 0.25>0.1>0>0.5 0.1>0.25>0>0.5 0.5>0.25>0.1>>0 0.1>/0>0.5>>0.25 0.25>0.1/0.5>>0 0.25>0.5>>0.1>0 0.1/0.25>/0.5>>0 0.25

Crossover-Variant-Switch True True>>False True>Flase True>False True>False True>False True>False True>False True

Extra-Waypoint-Datasets Set 4 Set3>Set1>Set4>Set2 Set3/Set1>Set2/Set4 Set3>Set2>Set4/Set1 Set3>Set1>Set2>Set4 Set3>/Set4>Set2/Set1 Set3>Set4>Set1>Set2 Set1>Set2/Set4>Set3 Set 3

Crossover-deletion-value 75% 75>100>25>50>0>False 75>100>0/25/False/50 25/0/100>75/50/False 100>50>25>False>75 75>100>50>False/0>25 75/100/>/25>0>False>50 100>75/50>25/False/0 100%

Mutation-deletion-value 75% 75>0>100/50>25 100>75>25>0>50 100>50/0>75/25 50>100>25>0>75 75>100>50/0>25 75/25>100>0>50 100>75>50>25>0 100%

MA-Population-Size 100 100>148/48>>28 148>100>48>28 148>100>48>28 148>28/48>100 100/148>48>28 148>100>48>28 148>100>48>>28 148

MA-Mutation-Probability 0,5 0.5>0.75>0/0.25>1 0.5/0.25>/1>0.75/0 1>0.75>0.25>0.5/0 1>0.75>0>0.25>0.5 0.5/0.25>1>0.75>0 0.75>0.5/1>0/0.25 0.75>0.25/1/0.5>/0 0.75

MA-Crossover.Probability 1 0.75>1>>0.5>0.25>0 1>0.75>0.5>0.25>>0 0.25>0.5/0.75>1>0 0.5>/0.75>/0.25>1>0 1/0.75>0.5>0.25>>0 1>0.75>/0.5>0.25>0 1>/0.75>0.5/0.25>>0 0.75

Number-of-Representatives 5 5>10/20 5>10>>20 10>5>>20 5/10>>20 5>10>>20 5>/10>>20 5>10>>20 5

Finding the Basic setting

Paramters Startingvalue

Maptypes

Resulting value

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 28 20>28>40 40>20>28 28>40/20 40>28/20 28>40>20 40>28>20 20>28>40 28

Max-Number-of-Starting-Chromosones 1 1>3>5>2 5>1/2>3 5>1>3/2 2/1>3/5 3>/1/2>5 2/5>1>/3 5/3>1>2 1

SA-Crossover-Probability 0,75 0.25>0.75>/0.5>1>0 0.25/0>0.75>0.5>1 0.25>0>0.75>0.5>1 0.75>0>0.25/1>0.5 1>0>0.5/0.25>0.75 0.5>1/0.75>0.25>0 1/0.75/0>0.25>0.5 0.25

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.75>1>/0>0.5>0.25 1>0.75>0/0.5>0.25 0.75/0.5>1>0.25>>0 1>0.75>0.5>0.25>0 1>0/0.75/0.5>0.25 1>0.75>0.5>0.25>0 0.75>0.5/0.25/0/1 0.75

SA-Mutation-Probability-Gene-Deletion 1 0.5/0.25>1>0>0.75 0.5>0.75>0.25/0>1 0/0.25>0.5>1/>0.75 0.5>/1>0.25>/0>0.75 0.5>1>0.25/0.75/0 0.75>0.25>0>/1>0.5 0>0.25>0.5>0.75>1 0.25

SA-Mutation-Probability-Insert-Random-Waypoint 0,25 0.75>0.25>1>0>0.5 0.25>0.5>0.75>1>>0 0.25>0.5>0.75>1>>0 0.25>0.5>0.75>0>1 0.5>0.25>0.75>1/0 0.25>0.5/0.75/0.5>>0 0.25>0.5>0.75>1>0 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>False False>True True>False True>>False True>False True>>False True

Weight-Collisioncount Moop - - - - - - - MOOP

Collision-Swapping-Penalty-Value 0,25 0.1>0.25>0>0.5 0.1>0.25>0>0.5 0.25>0.1>0.5>>0 0.1/0.25>/0.5>0 0.1>0>0.25>0.5 0.1>0.25/0.5>>0 0.25>0.1>0.5>0 0.1

Crossover-Variant-Switch True True>/False False>/True True>/False False>/True True>False True>False False/True True

Extra-Waypoint-Datasets Set 3 Set3>Set2/Set4>Set1 Set1>Set2/Set3/Set4 Set2>Set4>Set1>Set3 Set3>Set1>Set2>Set4 Set4>Set3>Set2>>Set1 Set1>Set2/Set3>Set4 Set2>Set4/Set1>Set3 Set2

Crossover-deletion-value 100% 0>50>100>75>25 25>100>75/0>50 25>0>50/75>100 25>100/50>75/0 50>0>25>100>75 25>0>100>50>75 25/0>50>100/75 25%

Mutation-deletion-value 100% 75>0>50>100>25 75/50>100>25/0 100>75>0>/50/25 75>100>0>25>50 50/100>75>0>25 25>100>0>50>75 100>50>25/75>0 75%

MA-Population-Size 148 148>100>28>48 148>100>48>28 148>100/48>28 148/100/48>28 100>148>48>28 148>100>48/28 148>100>48>28 148

MA-Mutation-Probability 0,75 0.75/0.5>1/0.25>>0 1/0.75/0.5>0.25>>0 1/0.75>0.5>0.25>>0 1>0.75>0.5>0.25>>0 0.25>0.75>/0.5>/1>>0 1>0.75>0.5>>0.25>0 1>/0.75>0.5>0.25>>0 0.75

MA-Crossoverprobability 0,75 1>0.75>0>0.25>0.5 0.5>/0.75/1>0.25>0 0/0.25>0.75>0.5>1 1/0.75>0.5>/0.25>0 0>0.25/0.75>0.5>1 0.25>0/0.75>1/0.5 0.25>/0.5>/0.75>0>1 0.5

Number-Representatives 5 10>/5>20 5>10/20 5/10>20 5>10>20 5>10>20 5>10>20 5>10>20 5

Optimizing the MO SACCGA

Paramters Startingvalue

Maptypes

Resulting value
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Table 8: Parametrization Ranking table SO SACCGA 

 
 

Table 9: Ranking tables Icon Legend 

empty-8-8.map empty-16-16.map maze-32-32-2.map "random-32-32-20.map random-64-64-20.map "room-32-32-4.map room-64-64-8.map

SA-Population-Size 28 20>>28>40 40>>20>28 40>28/20 20>40>28 28>20>40 20>28>40 40>28>20 28

Max-Number-of-Starting-Chromosones 1 3>5>1>2 5>/3>1>2 3>/5>1>2 1>2>3>5 1>2>3>5 1/2/3>5 5>3/2>1 3

SA-Crossover-Probability 0,75 0>0.25>0.75>1>/0.5 0.5>0.25>0.75/0>1 0/0.25/0.5>0.75>1 1>0.5>0.75>0.25>0 0.75>0>1>0.5>0.25 0.5>0/0.75>0.25/1 0>0.25>0.75>0.5>1 0.25

SA-Mutation-Probability-Shift-in-Neighborhood 0,75 0.5>0.75>0/0.25>1 0.5>1>0.75>0>0.25 0.75>1>0.5>0.25>0 0.25>1>0.75>0.5>>0 0.25>0.75>0.5/0>1 1>0.75>0.5>0.25>0 1>/0.75>0.5>0.25>0 0.75

SA-Mutation-Probability-Gene-Deletion 1 0.5>1>0.75>0>0.25 0.5>0.25>0.75>0>1 0>0.25>0.5>0.75>1 0.5>1>0.25>0.75>0 1>0.75>/0.25>0.5>0 0>0.75>/1>0.5>0.25 0>0.25>0.75>/1/0.5 0.5

SA-Mutation-Probability-Insert-Random-Waypoint 0,25 0.5>0.25/1>0.75>>>0 1/0.75>0.5>0.25>>0 0.25>0.5>0.75>1>>0 0.25>/0.5>0.75>1>>0 0.25>0.5/0.75>1>>0 0.5/0.25>0.75>1>>0 0.25/0.5/0.75>1>>0 0.25

A-star-Random-or-Stochastic-Variant-Switch True True>>False True>False False>True True>>False True>>False True>>False True>False True

Weight-Collisioncount 0,5 1>0.75>0.5>0.25>0 0.75>0.5>1>0.25>0 0.75>1>0.5>0.25>0 0.25/0.5/0.75>1>>0 0.25>0.5>0.75>1>0 0.5>0.75>1>0.25>>0 0.75>1>0.5>0.25>0 0.75

Collision-Swapping-Penalty-Value 0,25 0.1>0.25>0>0.5 0.1>0.25>0>0.5 0.25>0.5>0.1>0 0.5>0.25>0.1>0 0.25>0.5/0.1>0 0.25>0.1>0.5>0 0.25>0.5>0.1>0 0.25

Crossover-Variant-Switch True True>False False>True False>True True>False True>False True>False False>True True

Extra-Waypoint-Datasets Set 3 Set1>/Set3>Set4>Set2 Set4>Set1>Set2/Set3 Set4/Set2>Set1>/Set3 Set3>Set1>Set4>Set2 Set3>Set2>/Set4>Set1 Set3>Set1>Set4>Set2 Set4>Set2>Set1>Set3 Set4

Crossover-deletion-value 100% 75>100>50>0>25 0>100>50>75/25 25>50/0>100>75 75>50/0>/100>25 75>100/25>50>0 75>25>0>100>50 25>0>50>75/100 75%

Mutation-deletion-value 100% 75>0>100/50>25 0>25>75/100>50 100>25>75/0>50 75>0>/100>25/50 50>/100>25>75/0 50>25>75>100>0 100/75>50>25>0 75%

MA-Population-Size 148 100>/148>48>28 100>/148>48>28 148>100>48>28 100>/148>48>28 148>100>48>28 148>100>48>28 148>100>48>28 148

MA-Mutation-Probability 0,75 0.5>1>/0.75>0.25>0 0.25>0.5>0.75/1>0 0.75>0.5>1>0.25>0 0>0.5>0.25>0.75>1 0.75>1>/0.5>0.25>0 1>0.5>0.75>0.25>0 0.75>1>0.25>0.5>0 0.5

MA-Crossover Probability 0,75 0.75>0>/1>0.5>0.25 0.5/0.75>1>0>0.25 0.75>0>0.25>0.5>1 0.5>0.25>0.75>1>0 0.75>1>0.5/0.25>0 1/0.75>0.5>0.25>0 0.25/0.75>0.5>0/1 0.75

Number-Representatives 5 5>10>20 5>10>20 5>10>20 10>20>5 20>10>5 5>10>20 5>10>20 5

Optimizing the SO SACCGA

Paramters Startingvalue

Maptypes

Resulting value

Icon Explanation

a>>b: a is by much better than b

a>b: a is better than b

a>/ b: a is a little better than b 

a/b: a and b are equal



5 Experiments and Evaluation 

51 

 

Analysis of results of the parametrization: For the population size of the MA, a population 

of 148 individuals clearly seems to get the best results. A population of 100 sometimes seems 

to work better for some maps. Since a MA population of 100 uses less function evaluations it 

might converge faster. The reason why a population of 148 individuals is getting better results 

might be that the decision space of the MA grows exponential with the number of agents. For 

the mutation probability of the MA and the crossover probability of the MA values between 

0.75 and 0.5 appear to work well. 

The population size of the SAs seems to converge the fastest in both variants with the value of 

28. From the two crossover variants, the second crossover operator was chosen which places 

the crossover point in front of the values that are close together. The small crossover probability 

of the SA shows that even that crossover operator is not working effectively. The selected 

crossover probability value is 0.25 for both variants and was closely followed by a crossover 

probability value of zero, which shows that there is potential for a better crossover operator. 

The crossover deletion value is at 25% for the MO SACCGA and 75% for the SO SACCGA. 

The 0% value seems to work well for some maps, especially for the MO SACCGA. This, 

coupled with the high degree of randomness of the algorithm, does not allow a clear statement 

to be made as to whether the deletion value in the crossover is useful for this algorithm. The 

fact that the dominant value for the mutation probability for the Mutation in Neighborhood 

operator is at 75% indicates that the mutation operator works well. The selected values for the 

probability of the Gene Deletion mutation operator of the SA are 25% and 50% for both 

variants. However, for both variants the decisions were difficult since for many maps the best 

value was different and the result is more of a compromise between the results for the different 

maps. The reason might be that the original effect of making the route smoother is reduced due 

to the adding of new waypoints. Deleting a through A* added waypoint doesn‘t shrink the path 

length but increases the number of A* traversed nodes. The Mutation Random Waypoint 

operator seems to be very important for the algorithm. Although this operator greatly increases 

the number of A* traversed nodes - far more than the other operators do - the value of zero 

leads to very bad results in contrast to the other values for all tested environments. However, a 

high value does not produce good results either for most maps. The operator takes care of two 

things: It introduces new waypoints and deletes waypoints in the process. The algorithm works 

best with a high maximum deletion value. In the Comparison of the stochastic A* variant with 

the deterministic A* variant, the stochastic one seems to dominate. The stochastic variant is for 

every map except the maze map in all three parametrization runs by far better. This might be 

the case because the maze environment gives less room for the stochastic algorithm to change 
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a path to a not yet used path. But it must be kept in mind that the way the algorithm is structured, 

the way the algorithm was tested and the way the problem was defined benefit the stochastic 

variant:   

 The algorithm creates extra waypoints when creating long paths. This shrinks the 

randomness effect of the stochastic variant and makes the algorithm more reliable. 

 The increase in complexity of the stochastic variant is not taken into account in the 

comparison. 

 The simplification of the cost of vertical movements to one time step leads to a higher 

amount of fastest routes between two waypoints and therefore increases the effect of the 

stochastic variant. 

For the number of representatives the lowest value of five representatives dominates. The 

number of representatives has two main effects in this algorithm. First, the decision space of 

the MA increases/decreases proportionally with this value. Secondly, the objective collision 

count of the SA is determined by checking how many collisions an individual has with the 

representatives of the other agents. The tests for the Collision-Swapping-Penalty-Value 𝐶𝑆𝑃𝑉 

lead for maps with less obstacles to smaller values and for maps with more obstacles to higher 

values. For the SO SACCGA, a value of 0.25 works best, while for the MO SACCGA a value 

of 0.1 seems to dominate. For the Extra-Waypoint-Datasets, which determines how many 

waypoints are added by the A* algorithm depending on the path length between two waypoints, 

the MO SACCGA works best with the Set, which creates the most waypoints, and the SO 

SACCGA works best with a Set, which creates a moderate number of waypoints. As for the 

weight of the collision count objective of the SO SACCGA 0.75 works best. A close second 

best is the value 0.5. The value 0.0001, which changes the optimization to a lexicographical 

optimization by prioritizing the path length objectives, achieves the worst results for all maps, 

while the value 0.9999, which prioritizes the collision count works fine. This shows that the 

collision count variable works well in terms of optimizing the three objectives. The weight for 

the path length is thereby 0.25. 

The parameterization done in this chapter does by no means lead to an optimal parameter 

setting. Neither all combinations of settings are compared with one another, nor have enough 

test runs been carried out to make statistically stable statements. Furthermore, the settings were 

only applied to seven test problems with only one combination of start and target points used. 

However, using a parametrization, which leads to an optimal setting, would have gone beyond 

the scope of this thesis. 

 



5 Experiments and Evaluation 

53 

 

5.3 Comparison of the Single-objective Slave algorithm and the Multi-objective 

Slave algorithm 
 

In this chapter, the results of the SO SACCGA and the MO SACCGA comparison are shown 

and analyzed. For the comparison, both variants were tested on the twelve different 

environments mentioned in chapter 5.1. Three different starting- and target-point-sets for each 

environment and different number of agents were used. For each problem setting (environment 

+ scenario + agent count) 31 runs were done. For the three starting and target point sets the first 

three even scenarios from mapf.info [19] were used by taking the starting and ending point 

combinations from the front (for a 40 agents scenario 1 problem, the first 40 starting and target 

points from scenario 1 for the selected environment are taken). Starting with two agents for 

each problem the number of agents is increased by one until an agent count was reached for 

which it was expected that the quality of the solutions gets too low. The pareto front of each 

run was normalized and the GD and IGD values were calculated by using a fake pareto front, 

which was formed out of all pareto fronts found for this problem. The GD and IGD values were 

calculated as described in Ishibuchi et al. [17]. 

Out of the GD and IGD values for the 31 runs of each variants, the median and the interquartile 

range were calculated. These values were used to decide which variant does better for a given 

problem. Ties were determined using the Mann-Whitney-U-test with a significance level of 

0.05 using the Mann-Whitney-U function from the SciPy module [41]. If the tests did not lead 

to a tie, the variant which found the fake pareto front in 100% of the cases was crowned as a 

winner for the problem. If no variant found the fake pareto front in 100% of the 31 runs, then 

the variant with the higher median was determined as the winner. If the median was the same, 

the visualized box plots were analyzed to determine the winner.  

Additionally, the runs were compared by assuming that a decision maker weighs the objectives 

of the MA with the same weights, which were used to form the weighted sum in the SA. The 

collision count objective of the SA is designed to optimize the overlaps objective of the MA 

and the path length objective to optimize the makespan and sum of costs objective. Since the 

weights, which work best for the SA, are the 0.75 for the collision count objective and the 0.25 

for the path length objective, the decision maker weighs the overlaps-objective with a weight 

of 0.75 and the makespan and sum of costs each with a weight of 0.125. The solution of the 

pareto front of each run, which minimizes the weighted sum is used for comparison. The 

weighted sum values were used to calculate the medians and interquartile ranges for both 

variants for each problem to decide, which variant solves the problem better. Ties are again 
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determined using the Mann-Whitney-U-test with a significance level of 0.05 and the winner 

was chosen like for the IGD and GD comparison. 

Since both variants have the same population sizes for the SA and the MA it is assumed that 

the number of function evaluations is the same for both variants. To simplify things the results 

after 100 generations are compared against each other. 

Figure 17 to 19 show grouped bar plots of a Win-Lose-Tie-Table (table 16 appendix section C) 

showing the results of the comparison in regards to the GD values, IGD values and weighted 

sums. 
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Figure 17: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values 

of the SO SACCGA and the MO SACCGA 
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Figure 18: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values 

of the SO SACCGA and the MO SACCGA 
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Figure 19: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted 

sum values of the SO SACCGA and the MO SACCGA 
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First of all, these results show that the MO SACCGA works overall better for all scenario-map-

combinations regarding GD and IGD. For three of the four map types, the SO SACCGA is not 

able to solve one problem better than the MO SACCGA. Only when it comes to the problem 

types Maze 32-32-2 with the scenarios one and two and Maze-32-32-4 with the scenario three, 

the SO SACCGA seems to work better for a few problems. But the results also indicate that the 

MO SACCGA solves most of the problems better in these environment-scenario combinations. 

There is only a small difference between the GD and IGD results. Only for the map types for 

which the SO SACCGA is a little more competitive, the MO SACCGA tents to work slightly 

better in the comparison of the IGD values than in the comparison of the GD values. 

Accordingly, one can conclude that the SA of the MO SACCGA passes on solutions that ensure 

more diversity than the SA of the SO SACCGA. The large proportion of ties is caused by 

problems with a small number of agents, for which both versions are able to find the pareto 

front in 100% of the cases. 

In the case, where the decision maker weighs the objectives with the same weight the SO SA 

uses for its objectives, the results show that the MO SACCGA again gets overall better results 

than the SO SACCGA. For the empty and random map types, the MO SACCGA solves every 

problem as good as or better than the SO SACCGA. The SO SACCGA is only able to get a few 

more ties for these map types. In contrast to the GD IGD results, the SO SACCGA is able to 

solve many problems for the map types room and maze better than the MO SACCGA. 

Especially for the map Maze 32-32-2 with the scenarios one and two, the SO SACCGA solves 

more problems in a better way than the MO SACCGA does. For this particular scenario map 

combinations, the MO SACCGA solves in respect to the weighted sums the problems with a 

smaller number of agents better. The SO SACCGA solves the problems with a higher agent 

count better like illustrated in figure 20. However, even for those environments the MO 

SACCGA works far better than the SO SACCGA if all problems are considered. For Maze-32-

32-4, the SO SACCGA gets even worse results than in the GD IGD comparison. For all other 

environments, however, the SO SACCGA performs either just as well or better as in the GD 

IGD comparison. 
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Figure 20: Boxplot-comparison of weighted sum values (minimization) of SO SACCGA and 

MO SACCGA for the problem of Maze-32-32-2 Scene 1 and 2  

 

To analyze why the SO SACCGA is worse than the MO SACCGA and where the algorithm 

fails, it is examined what kind of problems lead the SO SACCGA and the MO SACCGA to not 

being able to find the whole pareto front. Table 10 shows with at which agent count the SO 

SACCGA and the MO SACCGA versions are still able to find the complete fake pareto front 

in over 90%, over 75% and over 50% of the runs for a particular map scenario combination. 

Additionally, the column „Single Dominant solution“ shows until which number of agents the 

pareto front consists of just one solution, which dominates every other solution. 
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Table 10: Number of agents, at which the algorithm results get worse 

 
 

What can be seen is that for many map-scenario combinations the performance does not 

decrease granularly as the number of agents increases, but decreases sharply at some point by 

increasing the agent count by one. The word performance in this context refers to the quality 

of the solution and not to the computational cost.  These cases are often found when the set of 

pareto optimal solutions changes from a single-dominant solution to several solutions. This 

shows that some features of the problem, which leads the problem to have a pareto front 

consisting of more than one solution, leads also the algorithms to have a worse performance. 

Furthermore, this particular case often only affects the SO SACCGA. To analyze these effects 

even farther table 11 lists all the cases, in which by increasing the number of agents by one a 

high drop in the percentage of runs occurs, in which the whole pareto front was found. 

Moreover, they are categorized according to the number of versions they affect and whether or 

not the pareto front consists of more than one solution. 

 

90% 75% 50% 90% 75% 50%

32 Empty 8 Sz1 26 18 26 26 17 17 26

32 Empty 8 Sz2 25 12 13 16 12 13 16

32 Empty 8 Sz3 8 23 23 26 8 8 8

50 Empty 16 S1 till the end 14 20 28 11 13 14

50 Empty 16 S2 23 23 39 39 16 16 19

50 Empty 16 S3 49 (unsure) 36 36 45 10 25 35

65 Empty 32 Sz1 till the end 65 65 65 33 36 51

65 Empty 32 Sz2 till the end 65 65 65 11 36 36

65 Empty 32 Sz3 till the end 42 53 56 25 26 26

40 Maze 32 2 Sz1 7 13 13 14 7 7 7

40 Maze 32 2 Sz2 5 5 5 15 5 5 5

40 Maze 32 2 Sz3 8 9 9 10 8 8 8

40 Maze 32 4 Sz1 never existed 0 12 15 0 0 0

40 Maze 32 4 Sz2 3 3 3 3 3 3 3

40 Maze 32 4 Sz3 5 5 5 5 5 5 5

50 Random 32 10 Sz1 till the end 46 48 50 31 31 33

50 Random 32 10 Sz2 49 (unsure) 40 47 48 25 25 35

50 Random 32 10 Sz3 45 (unsure) 35 35 38 26 26 38

50 Ramdom 32 20 Sz1 23 30 32 39 21 23 23

50 Ramdom 32 20 Sz2 10 (unsure) 10 10 12 10 10 10

50 Ramdom 32 20 Sz3 37 (unsure) 18 18 18 4 18 18

60 Ramdom 64 10 Sz1 till the end 24 24 46 20 21 24

60 Ramdom 64 10 Sz2 till the end 29 29 50 21 21 30

60 Ramdom 64 10 Sz3 till the end 31 38 42 17 17 25

60 Random 64 20 Sz1 54 43 43 43 19 22 31

60 Random 64 20 Sz2 18 41 53 60 18 18 18

60 Random 64 20 Sz3 56 41 50 52 24 40 44

40 Room 32 4 Sz1 8 11 11 11 8 10 11

40 Room 32 4 Sz2 11 17 17 19 11 11 11

40 Room 32 4 Sz3 12 22 22 22 14 16 20

50 Room 64 8 Sz1 5 14 14 14 5 5 5

50 Room 64 8 Sz2 5 10 14 15 5 5 5

50 Room 64 8 Sz3 22 22 22 22 22 22 22

50 Room 64 16 Sz1 26 31 32 34 21 26 26

50 Room 64 16 Sz2 19 21 22 22 19 19 19

50 Room 64 16 Sz3 11 17 29 32 11 11 11

MO SACCGA SO SACCGASingle dominant 

solution
Maptype and Scenario

Max number 

of agents
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Table 11: Problems, which show high drops in performance categorized by how many 

versions they affect and if the pareto front consists of more than one solution before and after 

the drop 

 
 

It becomes clear that there is a large amount of cases, in which a high drop in performance 

occurs. These cases either affect both the SO SACCGA and the MO SACCGA or only the SO 

SACCGA. The MO SACCGA is not affected by any major drop in performance, which does 

not also affect the SO SACCGA. However, there are cases, which only affect the performance 

of the SO SACCGA. One can see that most of the high drops in performance happen in cases 

in which the pareto front changes from consisting of one solution to multiple ones and most of 

them only affect the SO SACCGA.  

It can also be seen that each scenario of the room maps appears in the table. The SO SACCGA, 

in particular, suffers from high drops in performance in room map-problems when the pareto 

front changes from a single-dominant one to multiple solutions. The two Maze Maps are also 

represented with all scenarios. It can be seen that the Maze-32-32-4 always causes problems 

Category Map Szenario
Agentcount before drop in 

performance to after

High drops in performance both version, just one solution in pareto front SO SACCGA Values MO SACCGA Values

Empty 8-8 2 16 to 17 70-25 70-38

Ramdom 32 20 3 18 to 19 87-6 100-32

Random 64-10 1 24 to 25 74-16 100-67

Random 64-20 1 43 to 44 22-3 96-41

Empty 16-16 2 39 to 40 0-0* 80-22

Room 32-32-4 1 11 to 12 70-3 100-16

Room 32-32-4 3 22 to 23 22-0 100-6

High drops in performance one version, just one solution in pareto front

Random 32-32-10 2 25 to 26 96-58 100-100

Random 32-32-10 3 26 to 27 100-65 100-97

Random 64 10 2 21 to 22 100-58 100-100

Random 64-10 3 17 to 28 93-35 100-97

Random 64-20 1 19 to 20 100-54 100-100

High drops in performance one version, more than one solution in pareto front

- - - - -

High drops in performance both version, by transition from one solution in pareto front to more solutions

Empty 8-8 1 26 to 27 54-0 80-22

Random 32 20 2 10 to 11 97-0 100-51

Maze 32-32 2 2 5 to 6 100-12 100-45

Maze 32-32 4 1 nothing to 2 (100)-6 (100)-41

Maze 32-32 4 2 3 to 4 100-0 100-19

Maze 32-32-4 3 5 to 6 100-6 100-0

Room-64-64-8 3 22 to 23 100-0 100-42

High drops in performance one version, by transition from one solution in pareto front to more solutions

Empty 8-8 3 8 to 9 100-0 100-100

Random 32 20 1 23 to 24 87-29 100-100

Random 64 20 2 18 to 19 100-12 100-100

Maze 32-32-2 1 7 to 8 100-9 100-100

Maze 32-32-2 3 8 to 9 100-19 100-97

Room 32-32-4 1 8 to 9 100-71 100-100

Room 32-32-4 2 11 to 12 100-12 100-97

Room-64-64-8 1 5 to 6 100-10 100-100

Room-64-64-8 2 5 to 6 100-0 100-83

Room-64-64-16 1 26 to 27 84-35 100-100

Room-64-64-16 2 19 to 29 97-19 100-100

Room-64-64-16 3 11 to 12 100-6 100-100

Percentage of finding whole pareto front before 

agentcount increase and after in %

High drops in performance both version, more than one solution in pareto front
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for both variants, as well as when the pareto front changes from a single solution to multiple 

ones. In addition, such a change happens for both maze maps while the agent-count is still low. 

Maze-32-32-4 Scenario 1 presents the most striking problem, as both versions show low 

performance, starting with an agent count of two. Empty-8-8 of the Empty maps is represented 

with all scenarios, two of which also occur when the pareto front switches from a single to 

multiple solutions. With the exception of Empty-16-16 scenario 2 and Empty-8-8, the Empty 

maps show only granular changes in the performance during the increase of the agent-count. 

The Random maps scenarios with 10% obstacles are represented in the list but do not show the 

greatest performance drops. The low amount of high performance drops in the large Empty and 

the Random maps with 10% obstacles can be explained. The high performance drops happen 

mostly when the pareto front changes from consisting of one solution to multiple ones. 

Meanwhile all examined problems from the scenarios of Empty-32-32 and Random-64-64-10 

as well as scenario 1 from Random-32-32-10 and scenario 1 from Empty-16-16 never changed 

from having just one dominant solution in the pareto front. For Empty-16-16 scenario 3 and 

Random-32-32-10 scenario 2 and 3 it is also very likely that a single dominant solution existed, 

but the two variants were not able to find them. This can be the case because the performance 

of the variants decreased sharply towards the end. In contrast to the Random environments with 

10% obstacles, all three scenarios of Random-32-32-20 and two of the scenarios of Random 

64-64 20 are represented in the list, which means that the 10% obstacles more leads to cases 

which the algorithm handles badly. 

In this chapter, many problems and a few problem-characteristics were identified, which the 

SO SACCGA and partially the MO SACCGA solve poorly. In the following, the reasons behind 

the high drops in performance are further analyzed.  

Chapter 5.3.1 examines whether the difference in the calculation of the swapping conflict in the 

SA and the MA lead to some of the problems mentioned. 

In chapter 5.3.2 the representatives of the SA of both versions are further analyzed to find out 

if they lead to some problems mentioned in this chapter. 

 

5.3.1 Further analyzation of the SO SACCGA and MO SACCGA results: Swapping Conflict 

Calculation 

The swapping conflict in the SA is not precisely calculated but rather estimated. The SA just 

penalizes an individual i with a higher collision count fitness value for every representative r 

of the other agents, which are in the same vertex at time step x+1, in which individual i was at 
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time step x. In contrast to that, the MA calculates the real number of swapping-conflicts. 

Additionally, the separate parametrization of the SO SACCGA and the MO SACCGA lead to 

different penalty values for the swapping conflict, which might have an influence on the results 

of the comparison.  

To analyze the swapping-conflict calculation the Maze-32-32-4 Scenario 1 Number of Agent 2 

problem was analyzed. Although the problem only has two agents, it belongs to the cases in 

which both variants have low performances like shown in table 11. 

The illustration 21 shows a solution for the problem visualized. For the following analyzation, 

the blue path in figure 21 belongs to the blue agent and the green path belongs to the green 

agent. This solution is an excerpt from the "fake pareto front" found where the makespan values 

and the sum of costs are optimal and the overlaps value has the value 1. That means the agents 

take the fastest route and collide with each other once, which results in the objective values: 

Makespan = 49.0, sum of costs = 97.0, overlaps = 1.0. In figure 21 it can be seen that the conflict 

is a swapping conflict. The agents can only avoid each other if one extends its route because 

the vertices, at which the agents cross, are mandatory for the fastest route given the start- and 

target points. Figure 23 shows the mandatory points of the fastest routes around the conflict 

point. This means that the true pareto front must consist of at least two solutions. The second 

solution of the pareto front requires that the agent in blue avoids the agent in green like to see 

in figure 22. This results in the objective values: Makespan = 49.0 sum of costs = 98.0, overlaps 

= 0.0. Although it does not matter what the route to get there looks like, as long as it is one of 

the fastest ways, the agents have no leeway in the area around the conflict point. 
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Figure 21: Maze-32-32-4, scenario 1, agent-count 2: Paths with Swapping Collision 

 

Figure 22: Maze-32-32-4, scenario 1, agent-count 2: Paths to avoid Swapping Collision 

 

 

 

Figure 23:Maze-32-32-4, scenario 1, agent-count 2:Mandatory vertices for fastest path both 

agents 
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Figure 24:Maze-32-32-4, scenario 1, agent-count 2: Agent Green path for pareto optimal 

solution  

 

 

 

Figure 25:Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal 

solution with avoiding 

 

Figure 26: Maze-32-32-4, scenario 1, agent-count 2: Agent Blue path for pareto optimal 

solution without avoiding 

 

 

If we assume that there is only one representative in green, whose route around the conflict 

point looks exactly as it does in the illustration 24 the “with avoiding”(figure 25) and “without 

avoiding” (figure 26) routes for the blue agent are evaluated in the SA, then:  

 The route "with avoiding" receives a path length of 49 and a collision count of one time 

the swapping collision penalty value 𝐶𝑆𝑃𝑉, because agent green moves into the vertex 

at time step 27 at which agent blue was at time step 26. 

 The route “without evading” receives a path length of 48 and a collision count of one 

time collision penalty value 𝐶𝑆𝑃𝑉, since agent green also moves here into the vertex at 

time step 27, at which agent blue was at time step 26. 

This means that the route without evasion dominates the route with evasion in the SA. They 

both have the same value in the collision count objective, although one solution leads to 

collision and the other does not. Therefore, the algorithm would not be able to find the route 

with a robustness value of zero anymore. The algorithm is much more likely to produce a 
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solution without evasion because individuals are initialized with a low amount of waypoints 

and because in the first generation, individuals are only evaluated by their path length.  

This would not be the case if the swapping conflicts were calculated precisely. To prove that 

another calculation of the collision count of the SA was programmed. In this version, the 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 has been modified. 

The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 is a three dimensional matrix with the dimensions Vertices V, Time steps 

X, and Agents A. Instead of showing how many agents are in a particular vertex at a particular 

time step, it stores a pointer of the representatives in a list on the vertex and time step index. As 

a result, it can refer to the agents that are in a particular vertex at a particular time step. This 

way it is possible to determine exactly how many representatives of the other agents are at a 

time step x + 1 in the same vertex as an individual i at the time step x and how many of the 

same representatives are in time step x in the same vertex as the individual i at the time step x 

+ 1 during the evaluation in the SA as seen in algorithm 9. Algorithm 10 and 11 show how the 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 is created and updated. In the new version, the collision count 𝐶𝐿𝐶_𝑝𝑟𝑒𝑐𝑖𝑠𝑒 

of an individual is increased by one for every representative with which it has a swapping 

collision like seen in equation 5.1: 

δ(x)={
1, 𝑥 = 0
0, 𝑥 ≠ 1

 

𝜀(x)={
1, 𝑥 = 2
0, 𝑥 ≠ 2

 

𝐶𝐿𝐶_𝑝𝑟𝑒𝑐𝑖𝑠𝑒 = ∑𝑥=0
|𝜋𝑖|

∑𝑗=1,𝑖≠𝑗
𝑘 ∑𝑟=1

NR (δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x)) + 𝜀(δ(𝜋𝑖(x) − 𝜋𝑗𝑟(x + 1))+ δ(𝜋𝑖(x +

1) − 𝜋𝑗𝑟(x))) (5.1) 

 

With |𝜋𝑖| being used as maximal time step value since time and path length are unitless, 

discrete, and increase by the same value at each step. 

 

Algorithm 9: Evaluate collision count with precise collision swapping conflict calculation 

Input: Population of agent A: 𝑆𝐴𝑃𝑜𝑝𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴, 𝐶𝑆𝑤𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑉𝑎𝑙𝑢𝑒  

Output: 𝐹𝑖𝑡𝐶   

for 𝜋𝑖  in 𝑆𝐴𝑃𝑜𝑝𝐴:  

|    𝐹𝑖𝑡𝐶,𝑖=0 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    𝐹𝑖𝑡𝐶,𝑖  = 𝐹𝑖𝑡𝐶,𝑖  + getLength(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 [x][𝜋𝑖[x]]) 

|    |    for 𝜋𝑗  in 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋 [x][𝜋𝑖[x+1]]: 

|    |    | if  𝜋𝑖[x] ==  𝜋𝑗  [x+1]:     

|    |    | |    𝐹𝑖𝑡𝐶,𝑖  = 𝐹𝑖𝑡𝐶,𝑖  +1 
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Algorithm 10: Remove Representatives from Collision list with precise collision swapping conflict 

calculation 

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴 

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴’ 

for 𝜋𝑖  in 𝑅𝐴: 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    for 𝜋𝑗  in 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋𝐴[x] 

|    |    |    if 𝜋𝑗==𝜋𝑖: 

|    |    |    |    del 𝜋𝑗  #delete pointer  

 

Algorithm 11: Collisionlist update/Creation with precise collision swapping conflict calculation 

Input: Representatives of Agent A: 𝑅𝐴, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋# if Gen one 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋=[] 

Output: 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋’ 

CollisionlistVertices=[]*𝑁𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠   

for 𝜋𝑖  in 𝑅𝐴: 

|    for x=0; x< 𝜋𝑖; x++ : 

|    |    if length(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋)<x: 

|    |    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋.append(copy.copy(CollisionlistVertices)) 

|    |    𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑙𝑖𝑠𝑡𝑉𝑋[x][𝜋𝑖[x]].append(𝜋𝑖) #append pointer 

 

This calculation was used in the MO SACCGA and the SO SACCGA for each problem of the 

category “high drops in performance both version, by transition from one solution in pareto 

front to more solutions”; the same category the Maze-32-32-4 scenario 1 agent count 2 problem 

was belonging to. Table 12 shows the results for the new swapping calculation in comparison 

to the results of the old swapping calculation in the context of finding the whole set of pareto 

dominant solutions. 

Table 12: Using the new swapping calculation for the problems of the category “high drops in 

performance both version, by transition from one solution in pareto front to more solutions” 

 

 
 

While the performance for the maps Empty-8-8, Random-32-32-20 and Room-64-64-8 

remained largely the same, the performance for all four maze problems generally improved. 
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This demonstrates that the difference in the calculation of the swapping conflicts between the 

SA and the MA lead to a few of the categorized problems. 

Additionally it was checked if the problems of the category “high drops in performance for one 

version (SO SACCGA), by transition from one solution in pareto front to more solutions”, 

which only affected the SO SACCGA, are also solved with better performance when using the 

precise calculation of the swapping conflicts. 

Table 13: Using the new swapping calculation for the problems of the category “high drops in 

performance for one version (SO SACCGA), by transition from one solution in pareto front to 

more solutions” 

 

 

The outcomes show that results for the Empty-8-8, Random-32-32-20 and the Room-64-64 

environments got far better and that some of the high drops in performance were traced back to 

the swapping calculation. This shows that the SO SACCGA was more affected by the swapping 

conflict calculation than the MO SACCGA. The reason behind this might be that differences in 

the evaluation between subpopulation and overall solution might have less negative influence 

when the subpopulations are solved multi-objectively, as this provides more diversity. Another 

explanation could be that the higher penalty value of the SO SACCGA was leading the SO 

SACCGA to obtain worse solutions. Although it might be interesting to find out what the reason 

behind this effect is, it will not be further analyzed in this thesis. 

The precise calculation of the swapping collisions was also used for the problems of Empty-8-

8, Random-32-32-20, Room-32-32-4 and Maze-32-32-2 scene 1 to find out if the calculation 

also had an effect on the comparison of the two variants.  This was done because the collision 

count parameter of 0.25, which the SO SACCGA uses, worked better for the maze and room –

Mapname Scenario
Number of 

Agents

Pareto_Front_found SO 

SACCGA with new 

swapping calculation

Pareto_Front_found SO 

SACCGA with old 

swapping calculation

Empty-8-8 3 9 100% 0%

Random-32-32-20 1 24 74% 29%

Random-64-64-20 2 19 0% 12%

Maze-32-32-2 1 8 25% 9%

Maze 32-32-2 3 9 6% 19%

Room-32-32-4 1 9 80% 71%

Room-32-32-4 2 12 3% 12%

Room-64-64-8 1 6 100% 10%

Room-64-64-8 2 6 0% 0%

Room-64-64-16 1 27 58% 35%

Room-64-64-16 2 20 83% 19%

Room-64-64-16 3 12 54% 6%
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maps and the collision count parameter of 0.1 worked better for empty and random maps (like 

seen in table 6 to 8). For the room and maze maps, the SO SACCGA was able to solve some 

problems in respect to the weighted sum value better than the MO SACCGA, while the MO 

SACCGA was better for the other maps than the SO SACCGA in respect of every used metric.  

 

 

Figure 27: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the GD values 

of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation 

 

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%
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Figure 28: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the IGD values 

of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation 

 

Figure 29: Grouped bar plot of the Win- Lose- Tie- Table of the comparison of the weighted 

sum values of the SO SACCGA and the MO SACCGA with precise swapping conflict calculation 

 

The results shown in figure 27 to 29 are similar to the results without the precise swapping 
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weighted sum values, with the same weights used as in the SA of the SO SACCGA version, 

the SO SACCGA version solves the problems of the Maze-32-32-2 and the Room-32-32-4 

scenario 2 with high agent count better, while the MO SACCGA solves problems for the same 

map scenario combinations with lower number of agents better.  

It is to conclude that the MO SACCGA solves most problems better than the SO SACCGA. 

For some problems, in which the environment is more complex (maze/ room map with high 

number of agents), the SO SACCGA is better in finding solutions in terms of the same weighing 

of the objectives as in the SA. However, in most of the examined problems this is not the case.  

 

5.3.2 Further analyzation of the SO SACCGA and MO SACCGA results: Local Optima 

 

As shown in table 12 the results for the examined “Maze-32-32-4, scenario 1, agent-count 2” – 

problem got much better. However, although the problem is not too complex, the SO SACCGA 

does still not find all pareto optimal solutions in every run. To assure that this only affects the 

SO SACCGA, 101 additional runs were performed for the same test setup. The results show 

that the MO SACCGA is able to find the whole pareto front 132 times out of the overall 132 

runs. The SO SACCGA is only able to find the whole pareto front 118 times out of the 132 

runs. It is certain that the 11% of the runs, in which the SO SACCGA is not able to find the 

whole pareto front, embody a problem of the algorithm that seems to only affect the SO 

SACCGA. All repetitions from the 11% were able to find the pareto optimal solution with the 

fastest routes and one collision: Makespan=49; sum of costs=97; overlaps=1 (figure 21). 

However, they were not able to find the pareto optimal solution in which agent blue evades the 

agent green:  makespan=49; sum of costs=98; overlaps=0 (figure 22). Instead, solutions were 

generated in which agent green evades agent blue, which leads to the same value in the sum of 

costs objective but to a worse value in the makespan objective:  makespan=50; sum of costs=98; 

overlaps=0 and makespan=50; sum of costs=99; overlaps=0. The SO SACCGA ends up in a 

local optima. This is particularly interesting in the context of the thesis, because the solution 

with the fitness values makespan=49, sum of costs=98 and overlaps=0 is also the optimal 

solution for the calculation of the weighted sum value, where the decision maker weighs the 

objectives with the same weights as used in the SO SA. For one of the runs of the 11% the paths 

of the representatives slave algorithm at generation 99 were visualized in the conflict-enabling 

part of the map in figure 30a. Although the whole paths of the representatives are not completely 

the same, they act the same in the part of the map in, which the collisions occur. The 

representatives show no diversity in this crucial part of the path. In this state of the run, it is 
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impossible to plant a new solution into the populations, which would be integrated as 

representative even if this new solution is part of the global optimum because the paths of the 

representatives of both agents are fitted perfect to each other. Therefore, it is impossible for the 

SO SACCGA to leave the local optima. A visualization of the representatives of the SO SA of 

a run (figure 30b), which found the whole pareto front was found, shows the same phenomenon. 

Although the whole pareto front was found in this run, the paths of the representatives do not 

show any diversity around the conflict point. In both SO SA runs, the solution where the agents 

take the fastest routes and collide once is not represented in the representatives anymore. This 

solution was found in generation one. This is very likely to happen, since many solutions start 

with a small number of waypoints and in the first generation solutions are only evaluated by 

their path length, because no representatives exist at that point. This means the SO SA finds 

parts for a pareto optimal solution by the first generation and converges away from this solution. 

If the problem made this solution harder to obtain it would not be able to find it anymore. For 

the comparison, the paths of the representatives of the MO SACCGA around the conflict area 

were visualized too. The representatives of both agents of the MO SACCGA run show diversity 

around the conflict area. Also all solutions from the pareto front are represented in the 

representatives. Several solutions that would lead to local optima are represented as well. 

 

 

Figure 30: Paths of representatives around the conflict for the “maze-32-32-4 scene 1 number 

of agents 2” –problem 

a)SO SACCGA run, where parts of the pareto front were not found; b) SO SACCGA run, 

where whole pareto front was found; c) MO SACCGA run, where whole pareto front was 

found 
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In conclusion, the lack of diversity in the SA leads to the SO SACCGA being partially unable 

to grasp the entire pareto front and ending up in a local optima. Additionally, the SO SA 

converges from some solutions away, which are part of the pareto front. The MO SA in contrast 

has more diversity in the paths of the representatives, which leads it to find the entire pareto 

front more easily. 

In Wiegand [44] it was already stated that co-evolutionary algorithms often find themselves 

even in simple problems in local optima and Ahmed and Deb [1] stated that solving single agent 

pathfinding multi-objectively often leads to better a solution (or at least feasible ones) than if 

solved single objectively. Solving the subpopulations in coevolution multi-objectively, leads 

less often to local optima, was somewhat similarly stated in Bucci and Pollack [3]. Solving the 

subpopulation of every agent in MAPF multi-objectively and avoiding local optima with this 

procedure is a new finding as far as the literature research of this work goes.  

 

5.4 Summary of the Experiments and discussion 

This chapter first explained the MAPF.info benchmarks, on which the various tests were carried 

out. The MO SACCGA and the SO SACCGA versions were initially parameterized, so that the 

variants could be compared with one another. The SO SACCGA and MO SACCGA were then 

compared with regard to their GD and IGD values as well as weighted sum values. It turned 

out that the MO SACCGA dominated on most of the problems according to all used metrics. 

The MO SACCGA did work even better in the comparison of the IGD values than in the 

comparison of the GD values. Only for some maze map problems and room map problems with 

a high agent count did the SO SACCGA seem to be better in respect to the weighted sum value 

than the MO SACCGA. 

To find out why the SO SACCGA was worse on most of the maps and where the limitations of 

both algorithms lay, problems and problem properties were sought, leading to poorer 

performance on the versions. It was found out that the performance often does not decrease 

granularly when the agent count increases, but suddenly by the increase of the agent count by 

one. Problems found that showed this feature were categorized and a correlation was identified 

between the change of the pareto front consisting of one solution to more than one solution and 

the drops in performance.  

One of the problems, which showed a high drop in performance and a pareto front consisting 

of more than one solution, showed that the drops in performance were related to the different 

calculation of the swapping collision between the SA and the MA. To test whether this affects 
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several problems, the calculation of the SA was changed. The new calculation was applied to 

several problems that had high drops in performance when increasing the agent count by one. 

Several of these problems were solved with far better performance. Therefore, it is very likely 

that the difference in the calculation of the SA and the MA lead to the high performance drops. 

Some of these low performances, which got better after the new calculation only affected the 

SO SACCGA. It is therefore plausible that the difference in calculation of the collisions 

between the SA and the MA affected the SO SACCGA more than the MO SACCGA. The 

theories have been voiced in this thesis that the reason behind this might be: 

 That differences in the evaluation between subpopulation and overall solution might 

have a less negative influence when the subpopulations are solved multi-objectively, 

because of the higher diversity in the subpopulation  

 Or that the higher penalty value was leading the SO SACCGA to obtain worse solutions.  

The correctness of the theories were not analyzed further. Additionally, with the precise 

calculation of the swapping collision the SO SACCGA and MO SACCGA were again 

compared against one another. The results showed that the MO SACCGA is still better in all 

maps except the maze map in terms of weighted sum and dominated in terms of the other 

metrics for all other environments. The SO SACCGA was able to solve high agent counts for 

more complex maps (partially the room map and the maze map) better in terms of the weighted 

sum than the MO SACCGA. 

The behavior of the representatives of the SO SACCGA, which leads the algorithm to fall into 

a local optima, was analyzed based on one problem. It was found out that the representatives 

of the weighted sum approach converge to one solution and only find the other solutions of the 

multi objective MAPF problem by chance on the way. This shows that the weighted sum 

approach in the subpopulation is not fitting to be part of a multi objective MAPF solver. This 

also explains the bad IGD values compared to the MO SACCGA version. Furthermore, it was 

found out that the representatives do not show diversity in fitness and therefore do not offer 

different solutions in crucial parts of the path. It was also shown that the SO SACCGA lands in 

local optima even in less complex problems because the SA was solved single-objectively. For 

this particular test problem, this did not happen to the MO SACCGA and the representatives 

show diversity. It is possible that the representatives of the SO SA will quickly adapt to one 

another due to the lack of diversity of the routes and thus end up in a local optimum without a 

way out. The finding on the behaviour of the representatives of the SO SA are based on multiple 

runs for one problem. Although it is highly likely that this phenomenon applies to multiple of 

the problems, it was not proven. 
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The experiments in this thesis agree with the thesis 1 of this work: “MAPF multi-objective 

optimization with co-evolution works better if the subpopulations of the agents are optimized 

multi-objectively than if the subpopulations are optimized single-objectively with a weighted 

sum approach”. The reasons are most likely that the low diversity in the subpopulations of the 

weighted sum approach leads it to not finding the whole pareto front and falling into local 

optima. Additionally, the fact that the weighted sum approach converges from pareto optimal 

solutions away shows that a weighted sum approach should not be used to evaluate 

subpopulations, if the whole solution should be optimized multi-objectively. 

The experiments disagree for the most part the thesis 2 of this work: “Using a co-evolutionary 

approach, if the decision maker weighs the objectives of the Multi-objective MAPF problem 

with the same weights the objectives of the subpopulations of the agents are weighted using a 

weighted sum approach, then this weighted sum approach works better than optimizing the 

objectives of the subpopulations of the agents multi-objectively.” The experiments showed that 

the multi-objective solving of the subpopulations works best for most environments even if the 

decision maker uses the same weighs as the weighted sum approach uses. The SO SACCGA 

appeared to be better for some complex maps with high agent count. The reason why the SO 

SACCGA is worse for many maps could be the lower diversity in the representatives of the SO 

SA, which lead into the local optima. For the Maze-32-32-4 scenario 1 agent count 2 problem, 

this was certainly the case. It is also questionable, if all parts of a problem are optimally solved 

according to certain weights, that the overall solution is then optimized according to the same 

weights. That could be very problem-dependent. Why the SO SACCGA was better in solving 

more complex environments with high agent count sometimes better than the MO SACCGA 

was not found out in this thesis. Unfortunately, it is not proven that the same results will occur 

if different objectives are used or parts of the algorithm are changed. 

As far as the quality of the algorithm is concerned, the MO SACCGA is able to solve many of 

the problems well compared to the SO SACCGA. Table 10 shows the limitations, at which the 

algorithm is no longer able to find the entire fake pareto front reliable. Even so, optimality is 

not the goal of the algorithm, since this is not an optimal solver. However, the algorithm is very 

complex and requires a large number of function evaluations, as demonstrated with formula 

4.11. A comparison with similar work in the same field was not done. Furthermore, the correct 

Pareto front could not be determined, since there are still no optimal solvers for MAPF with for 

the three objectives used in this thesis.  
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6 Conclusion and Future Work 

 

This chapter summarizes the results of this thesis (chapter 6.1) and provides suggestions for 

future work (chapter 6.2). 

 

6.1 Conclusion 

 

In this thesis, the basics of cooperative coevolution were conveyed. Through literature search, 

an overview of the MAPF solver, the co-evolutionary MAPF approaches and the solver for the 

multi-objective MAPF problem is given. Furthermore, findings from comparing the solving of 

the single agent pathfinding problem single-objectively and multi-objectively are described. 

A cooperative co-evolutionary algorithm was presented in this master thesis. This algorithm 

has a subpopulation for every agent, which are optimized by a genetic slave algorithm. Using 

the best solutions of every agent a genetic master algorithm searches for the best combinations 

of the paths to optimize the objectives, makespan, sum of costs and overlaps of the multi-agent 

MAPF problem. The slave algorithm optimizes the objectives path length, which optimizes the 

solutions makespan and sum of costs as well as the collision count objective, which is supposed 

to optimize the overlaps objective.  

Two variants of the slave algorithm were implemented: One variant, which solves the 

subpopulations single objectively with a weighted sum approach (SO SACCGA), and another 

variant, which solves the subpopulations multi-objectively using the non-dominated sorting 

algorithm (MO SACCGA). The variants were parameterized and compared to each other. The 

comparison showed that MO SACCGA works better in terms of the GD and IGD metrics for 

nearly all the examined problems. Therefore, the experiments approve the content of the thesis 

1. Some of the reasons why the SO SACCGA is worse than the MO SACCGA for multi-

objective optimization of the MAPF problems are: 

 The low diversity in the subpopulations of the weighted sum approach, lead to a fall 

into local optima 

 The weighted sum approach converges away from some pareto optimal solutions, which 

do not satisfy the weights.  

The MO SACCGA showed diversity in its subpopulations and the ability to avoid local optima. 

This also shows that a weighted sum approach should not be used to evaluate subpopulations, 

if the whole solution should be optimized multi-objectively. 
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The MO SACCGA works better than the SO SACCGA in terms of having a decision maker, 

who weighs the objectives the same way, in which the subpopulations of the agents of the SO 

SACCGA weigh their objectives. The SO SACCGA appears to be better for some complex 

maps with high agent count. The experiments disapprove the content of the thesis 2. The reason 

why the SO SACCGA is worse for many problems is most likely the low diversity in the 

subpopulations, which leads into the local optima. Why the SO SACCGA was sometimes better 

in solving more complex environments with high agent count than the MO SACCGA is not 

further analyzed.  

The experiments also showed that solving the subpopulation of the agents multi-objectively 

avoids local optima and that the SO SACCGA is more affected by differences between the 

objectives of the subpopulation and the objectives of the whole solution. 

Since there are no optimal solvers with the corresponding answers, it is not clear how good the 

quality of the solutions produced by the algorithms is. However, it is safe to say that the MO 

SACCGA is better than the SO SACCGA in terms of solving the MAPF problem multi-

objectively. The algorithm is although computationally expensive. 

 

6.2 Future Work 
 

This work raised many research questions, which were out of the scope of this thesis:  

 

6.2.1 Research topics in MAPF with genetic algorithms: 
 

In this thesis, a stochastic A* algorithm was used to connect waypoints to each other. The 

parametrization showed that the stochastic A* algorithm works better for most environments 

than the deterministic one. However, it must be mentioned that the algorithm by adding 

waypoints and the test setup by neglecting the additional computational expenses and the 

movement simplifications greatly favoured the stochastic algorithm. One question that would 

be interesting for future work is whether and under what conditions a stochastic A* algorithm 

for connecting waypoints is better than a deterministic A* algorithm for genetic algorithms in 

MAPF. Many areas of application of MAPF require that MAPF concepts can also be used in 

Euclidean space. Further questions would be, if a stochastic A* algorithm is advantageous and 

how one can transfer these advantages of stochastic solutions to the Euclidean space, on which 

there are only rarely several fastest solutions. 
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6.2.2 Research topics in MAPF with co-evolution:  
 

The findings in Wiegand [44] showed that Co-evolution often leads to local optima. In Panait 

et al. [29] and in Bucci and Pollack [3] approaches were presented on how to avoid these local 

optima. The approach in Panait et al. [29] needs information about the best values. In Bucci and 

Pollack [3] it was suggested to use every test available to evaluate an individual and treat the 

evaluation multi-objectively with every test being one objective. Tests in this context are all 

solutions, which can be created by combining the solutions of the subpopulations. Forming 

every solution out of k agents and evaluating every individual by all these tests is 

computationally expensive. In this thesis, an agent was evaluated by its cooperation with the 

representatives of all other agents. The single objective solver of the slave algorithm was still 

leading into local optima. The multi objective solver was able to avoid these local optima. Since 

there are no studies on how local optima in co-evolution in MAPF can be avoided, this should 

be done in future works. The multi objective solver of this thesis is a good starting point for 

these works.   

 

6.2.3 Research topics in multi-objective MAPF 
 

Another interesting topic for future work is the multi-objective solving of MAPF. One thing, 

which was missing for this thesis, was an efficient optimal solver for multi-objective MAPF. 

Using overlaps as one of the objectives makes the problem more complex since agent path 

combinations, which lead to collisions, can still be part of a pareto optimal solution. If this 

solver can be adjustable for different objectives then the solution space of different MAPF 

problems can be further analyzed. 

The last research suggestion would be similar to the work done in Ahmed and Deb [1] in which 

the quality of solutions between the single objective and the multi-objective solving of single 

agent pathfinding was compared to each other. It is possible that multi-objective MAPF genetic 

algorithms can find better solutions for single objectives than single objective MAPF genetic 

algorithms because the multi-objective MAPF genetic algorithms might keep more diversity in 

the population. A comparison of the two algorithms would be interesting for future work. 
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Section A: Input Parameter 
 

Regarding the SA: 

SA Population Size 𝑵𝑺𝑨 𝑰𝒏𝒅𝒊𝒗𝒊𝒅𝒊𝒖𝒂𝒍𝒔: Defines the number of individuals in every SA 

subpopulation. 

Maximal Number of Starting Genes 𝑵𝐒𝐭𝐚𝐫𝐭𝐢𝐧𝐠𝐠𝐞𝐧𝐞𝐬: Defines the number of maximal starting 

genes for agents in initialization. The algorithm chooses a random number between zero and 

𝑁Startinggenes as number of waypoints for every fresh-initialized individuals. 

SA Crossover-probability: Defines the probability of the crossover operator of the SA. 

SA Mutation-probability Shift-in-Neighborhood SAMUTBP2: Defines the mutation 

probability of the Shift-in-Neighborhood-Mutation operator of the SA. 

SA Mutation-probability Gene Deletion SAMUTBP1: Defines the mutation probability of 

the Gene-Deletion-Mutation operator of the SA. 

SA Mutation-probability Insert Random Waypoint SAMUTBP3: Defines the mutation 

probability of the Insert Random Waypoint Mutation operator of the SA. 

A* Variant Switch: If true, the algorithm uses the stochastic A* version. If false, the algorithm 

uses the deterministic A* version. 

SA MOOP Switch: If true, the SA uses the multi-objective algorithm. If false, the SA uses the 

single-objective algorithm. 

Weight collision count 𝒘𝒆𝒊𝒈𝒉𝒕𝟐: Defines the weights used in the weighted sum approach of 

the SO SA. The weight-collision count variable is the weight of the objective collision count. 

Since only two weights are used, the path length objective 𝑤𝑒𝑖𝑔ℎ𝑡1 is automatically 𝑤𝑒𝑖𝑔ℎ𝑡1 =

(1 − 𝑤𝑒𝑖𝑔ℎ𝑡2). 

Collision-Swapping-Penalty-Value 𝑪𝑺𝑷𝑽: Defines how much the collision count objective is 

increased for each representative of the other agents which the individual might have a 

swapping collision with. A possible swapping conflict occurs if the representatives of the other 

agents are at the same vertex at time step x+1 as the individual at time step x. 

Crossover-Variant-Switch: Defines which of the two one point-crossover-variants is used. If 

true, the crossover operator chooses randomly one waypoint from one parent and the nearest 

waypoint to this waypoint from the second parent. If false, the crossover operator sets the 

crossover point in both parents into the same spot in dependence on the length of the parents. 

Crossover-deletion-value 𝑪𝑫𝑽: Defines how many waypoints are deleted by the crossover 

operator.  
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Mutation-deletion-value MDV: Defines how many waypoints are deleted by the mutation 

operator Insert Random Waypoint.  

Extra-Waypoint-Datasets: The Extra-Waypoint-Datasets defines how many consecutive 

vertices are converted into waypoints depending on the length of the path when using A* to 

translate waypoints into steps. 

        

Regarding the MA: 

MA Population Size 𝑵𝑴𝐀 𝐈𝐧𝐝𝐢𝐯𝐢𝐝𝐢𝐮𝐚𝐥𝐬: Defines the number of individuals in the MA population. 

MA Crossover-probability MACXPB : Defines the probability of the MA crossover operator. 

MA Mutation-probability MAMUTBP: Defines the individual mutation probability of the 

MA mutation. 

 

Regarding the SA and the MA 

Maximal Number of Generations: Defines the number of generations before the algorithm 

terminates. 

Number of Representatives 𝑵𝑹: Defines the number of representatives the SA selects. The 

MA individuals refer to these representatives. 
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Section B Parameter values 

 

Table 14:Parameter values 

 
 

 

 

Table 15: Extra waypoints dataset values 

 
 

The options for the Extra Waypoint Datasets are presented in table 15. The number of 

waypoints, which are being inserted, is always depending on the path length between two 

waypoints and the chosen Extra waypoint Dataset. Set 4 for instance creates 0 waypoints if path 

consists of 5 vertexes or less, 1 waypoint if path has 5 to 10 vertexes or less, 1 to 2 waypoints 

for 10 to 20 vertexes, 1 to 3 waypoints for 20 to 30 vertexes, 2-4 for 30 to 40 vertexes and 3 to 

5 if the path length exceeds 40 vertices. Set 2 creates the most waypoints, Set 3 the least and 

Set 1 and 4 are in between. 

 

SA Inputparameter Value 1 Value 2 Value 3 Value 4 Value 5

SA-Population-Size 12 20 28 40

Maximal-Number-of-Starting-Chromosones 1 2 3 5

SA-Crossover-probability 0 0,25 0,5 0,75 1

SA-Mutation-probability Shift in Neighborhood 0 0,25 0,5 0,75 1

SA-Mutation-Probability-Gene-Deletion 0 0,25 0,5 0,75 1

SA-Mutation-Probability-Insert-Random-Waypoint 0 0,25 0,5 0,75 1

A-star-Variant-Switch True False

Weight-Collisioncount 0,0001 0,25 0,5 0,75 0,9999

Collision-Swapping-Penalty-Value 0 0,1 0,25 0,5

Crossover-Variant-Switch True False

Extra-Waypoint-Datasets Set 1 Set 2 Set 3 Set 4

Crossover-deletion-value 0 0,25 0,5 0,75 1

Mutation-deletion-value 0 0,25 0,5 0,75 1

 MA Inputparameter:

MA-Population-Size 28 48 100 148

MA-Mutation-Probability 0 0,25 0,5 0,75 1

MA-Crossoverprobability 0 0,25 0,5 0,75 1

Regarding MA and SA

Maximal-Number-of-Generations 100

Number-of-Representatives 5 10 20

n k n k n k n k n k n k n k n k n k n k n k

Set 1 0-10 0 10-20 1 20-30 2 30-40 3 40-50 4 50-60 5 60-70 6 70-80 7 80-90 8 90+ 9

Set 2 0-5 0 5-10 1 10-15 2 15-20 3 20-25 4 25-30 5 20-35 6 35-40 7 40-45 8 45-50 9 50+ 10-15

Set 3 0-20 0 20-40 1-2 40-60 2-3 60-80 3-4 80+ 4

Set 4 0-5 0 5-10 1 10-20 1-2 20-30 1-3 30-40 2-4 40+ 3-5
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Section C Win Lose Tie Table 

Table 16: Win-Lose-Tie-Table of the comparison of the SO SACCGA and the MO SACCGA 

GD GD GD IGD IGD IGD

Maptype + Scene

Tie

SO 

SACCGA 

Win

MO 

SACCGA 

Win Tie

SO 

SACCGA 

Win

MO 

SACCGA 

Win Tie

SO 

SACCGA 

Win

MO 

SACCGA 

Win

Empty 8 S1 54,84% 0,00% 45,16% 54,84% 0,00% 45,16% 54,84% 0,00% 45,16%

Empty 8 S2 51,61% 0,00% 48,39% 51,61% 0,00% 48,39% 90,32% 0,00% 9,68%

Empty 8 S3 22,58% 0,00% 77,42% 22,58% 0,00% 77,42% 22,58% 0,00% 77,42%

Empty 8 all three scenes 43,01% 0,00% 56,99% 43,01% 0,00% 56,99% 55,91% 0,00% 44,09%

Empty 16 S1 18,37% 0,00% 81,63% 18,37% 0,00% 81,63% 18,37% 0,00% 81,63%

Empty 16 S2 30,61% 0,00% 69,39% 30,61% 0,00% 69,39% 30,61% 0,00% 69,39%

Empty 16 S3 20,41% 0,00% 79,59% 20,41% 0,00% 79,59% 20,41% 0,00% 79,59%

Empty 16  all three scenes 23,13% 0,00% 76,87% 23,13% 0,00% 76,87% 23,13% 0,00% 76,87%

Empty 32 S1 43,75% 0,00% 56,25% 43,75% 0,00% 56,25% 43,75% 0,00% 56,25%

Empty 32 S2 17,19% 0,00% 82,81% 17,19% 0,00% 82,81% 17,19% 0,00% 82,81%

Empty 32 S3 34,38% 0,00% 65,63% 34,38% 0,00% 65,63% 34,38% 0,00% 65,63%

Empty 32  all three scenes 31,77% 0,00% 68,23% 31,77% 0,00% 68,23% 31,77% 0,00% 68,23%

Maze 32 2 S1 41,03% 15,38% 43,59% 35,90% 7,69% 56,41% 25,64% 43,59% 30,77%

Maze 32 2 S2 28,21% 0,00% 71,79% 28,21% 2,56% 69,23% 25,64% 46,15% 28,21%

Maze 32 2 S3 20,51% 0,00% 79,49% 17,95% 0,00% 82,05% 35,90% 2,56% 61,54%

Maze 32 2  all three scenes 29,91% 5,13% 64,96% 27,35% 3,42% 69,23% 29,06% 30,77% 40,17%

Maze 32 4 S1 15,38% 0,00% 84,62% 0,00% 0,00% 100,00% 0,00% 0,00% 100,00%

Maze 32 4 S2 5,13% 0,00% 94,87% 5,13% 0,00% 94,87% 28,21% 0,00% 71,79%

Maze 32 4 S3 25,71% 8,57% 65,71% 25,64% 5,13% 69,23% 35,90% 5,13% 58,97%

Maze 32 4  all three scenes 15,04% 2,65% 82,30% 10,26% 1,71% 88,03% 21,37% 1,71% 76,92%

Random 32 10 S1 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 42,86% 0,00% 57,14%

Random 32 10 S2 46,94% 0,00% 53,06% 46,94% 0,00% 53,06% 46,94% 0,00% 53,06%

Random 32 10 S3 57,14% 0,00% 42,86% 57,14% 0,00% 42,86% 57,14% 0,00% 42,86%

Random 32 10  all three scenes 48,98% 0,00% 51,02% 48,98% 0,00% 51,02% 48,98% 0,00% 51,02%

Ramdom 32 20 S1 38,78% 0,00% 61,22% 38,78% 0,00% 61,22% 38,78% 0,00% 61,22%

Ramdom 32 20 S2 18,37% 0,00% 81,63% 18,37% 0,00% 81,63% 20,41% 0,00% 79,59%

Ramdom 32 20 S3 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 8,16% 0,00% 91,84%

Ramdom 32 20  all three scenes 21,77% 0,00% 78,23% 21,77% 0,00% 78,23% 22,45% 0,00% 77,55%

Ramdom 64 10 S1 30,51% 0,00% 69,49% 30,51% 0,00% 69,49% 30,51% 0,00% 69,49%

Ramdom 64 10 S2 35,59% 0,00% 64,41% 35,59% 0,00% 64,41% 35,59% 0,00% 64,41%

Ramdom 64 10 S3 27,12% 0,00% 72,88% 27,12% 0,00% 72,88% 27,12% 0,00% 72,88%

Ramdom 64 10  all three scenes 31,07% 0,00% 68,93% 31,07% 0,00% 68,93% 31,07% 0,00% 68,93%

Random 64 20 S1 30,51% 0,00% 69,49% 30,51% 0,00% 69,49% 30,51% 0,00% 69,49%

Random 64 20 S2 33,90% 0,00% 66,10% 33,90% 0,00% 66,10% 33,90% 0,00% 66,10%

Random 64 20 S3 50,85% 0,00% 49,15% 50,85% 0,00% 49,15% 50,85% 0,00% 49,15%

Random 64 20  all three scenes 38,42% 0,00% 61,58% 38,42% 0,00% 61,58% 38,42% 0,00% 61,58%

Room 32 4 S1 17,95% 0,00% 82,05% 17,95% 0,00% 82,05% 17,95% 0,00% 82,05%

Room 32 4 S2 25,64% 0,00% 74,36% 25,64% 0,00% 74,36% 51,28% 2,56% 46,15%

Room 32 4 S3 30,77% 0,00% 69,23% 30,77% 0,00% 69,23% 30,77% 0,00% 69,23%

Room 32 4  all three scenes 24,79% 0,00% 75,21% 24,79% 0,00% 75,21% 33,33% 0,85% 65,81%

Room 64 8 S1 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 34,69% 10,20% 55,10%

Room 64 8 S2 8,16% 0,00% 91,84% 8,16% 0,00% 91,84% 8,16% 0,00% 91,84%

Room 64 8 S3 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 44,90% 0,00% 55,10%

Room 64 8  all three scenes 19,73% 0,00% 80,27% 19,73% 0,00% 80,27% 29,25% 3,40% 67,35%

Room 64 16 S1 42,86% 0,00% 57,14% 42,86% 0,00% 57,14% 44,90% 0,00% 55,10%

Room 64 16 S2 32,65% 0,00% 67,35% 32,65% 0,00% 67,35% 32,65% 0,00% 67,35%

Room 64 16 S3 20,41% 0,00% 79,59% 20,41% 0,00% 79,59% 20,41% 0,00% 79,59%

Room 64 16  all three scenes 31,97% 0,00% 68,03% 31,97% 0,00% 68,03% 32,65% 0,00% 67,35%

Win Loose Tie Table

Weighted Sum
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