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Abstract

Artificial Intelligence (AT) is becoming more and more complex every day, while
simultaneously becoming more important for our everyday life. A day without
interacting with an Al has become a rarity for most people. But what if an
Al we're engaging with is not just a lifeless form of machinery, but a conscious
being, with thoughts and feelings of its own? The resulting ethical problems of
this scenario could have enormous consequences; nations could create new laws
limiting and regulating the use of AI, which would change a lot of things we
became accustomed to over the last few years. Before any of that happens, one
would first have to establish whether a machine is conscious or not. However,
there are not a lot of methods for testing the consciousness of a machine at
the moment of writing this thesis. One of the most promising approach is the
Integrated Information Theory (IIT) 3.0 developed by Professor Tononi and
his students [61], which aims to make consciousness testable.

Using the integrated information theory, the goal of this thesis is to investi-
gate the consciousness, measured by their integrated information, of a swarm
of evolved organisms interacting with each other over the course of a multi-
objective evolutionary algorithm. The basis for that is a simulation based on
Fischer [32], in which organisms are placed in one of two rooms, which are
connected through a gate passage, but are otherwise surrounded by an im-
pervious wall. The organisms have three different objectives: Maximise goal
passages, minimise collisions and minimise movement penalties. To gain a
better understanding of the integrated information of the evolved organisms,
two different selection algorithms are used throughout this thesis. The first
selection algorithm is based on the nondominated sorting genetic algorithm
IT (NSGA-II) by Deb et al. [25], while the second is a decentralised algorithm
operating on a solution’s neighbourhood, which was developed for this thesis.
Comparing the results of these two fundamentally different approaches should
allow for insights about what influence the choice of selection algorithm has
on the end result, thus assisting in understanding how the consciousness of a
solution evolves over time.
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1 Introduction

This chapter will act as an introduction to this thesis. After motivating the
research of machine consciousness and other work done in this thesis, the
goals of this work will be explained. Lastly, the structure of this thesis will be
presented.

1.1 Motivation

One of the research areas currently receiving the most attention by both the
scientific world and the media is AI. A lot of hugely successful companies, like
Google or Amazon, are investing a substantial amount of money and time into
the research of Al products. But Al can’t just be found in these newly devel-
oped items, it is also slowly being integrated in some of the more common-place
products like refrigerators or dish washers [30]. In addition to AI becoming
close to ever-present in the life of many people, it is also getting more complex
every day.

At the time of writing this thesis, most Al found in the previously mentioned
products can easily be identified as artificial, but given the current rate of
development, the rise in complexity could one day lead to bigger and bigger
difficulties differentiating human and machine. After reaching a certain com-
plexity, one has to ask whether the Al we're interacting with every day might
actually have become conscious. If it was, a lot of discussions about machine
ethics would have to be held, which would eventually lead to huge changes
to the life we became used to in the last few years. However, one would first
have to prove with certainty that an Artificial Intelligence has given rise to
consciousness.

There are a lot of theories about the consciousness of machines [72][86][12].
Without an easy way to create conscious individuals, testing them is very
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hard though. One would have to rely on experiments on live humans or other
conscious organisms, which limits the research possibilities and increases the
time, cost and effort needed for testing. Simulating a population of conscious
individuals or even just one conscious organism, which would both also be
useful for a lot of studies in the field of neuroscience, is a problem that doesn’t
seem to have a good universal solution yet. With the help of such a simulation,
the internal structures of an individual or the environment the population is
simulated in could easily be changed, which could make testing these theories
a lot easier.

One theory that aims to make consciousness testable, which would thus help
with the aforementioned problems, is the Integrated Information Theory 3.0
by Tononi et al [61]. Taking the opposite approach to other neuroscientific
theories about consciousness, II'T starts from a set of axioms describing the
fundamental characteristics of consciousness and translates these into postu-
lates, which outline the conditions that a physical mechanism, e.g. a neuron
and its connections, has to fulfil to be able to give rise to consciousness. Accord-
ing to IIT, an experience is defined in its quality by its Mazimally Irreducible
Conceptual Structure (MICS), while the experience’s intensity, or quantity, is

specified through its integrated information ®Me

There are existing works [44][29], which show that the integrated information
of a simulated adaptive system increases with its fitness over the course of an
evolutionary algorithm. However, the organisms, or animats, in these works
were simulated individually and thus only interact with their environment and
not with each other. In Fischer [32] this topic was investigated further by
observing how the system’s integrated information evolves within a group of
animats that can interact with each other. This interaction could only occur
between copies of the organism though.

1.2 Goals of this work

Collective behaviour between animals can form in various different ways. Some
examples are species of birds travelling in a group during foraging or ants
building nests. Depending on the species, this cooperation can have multiple
advantages such as being able spot and fight predators more easily [55] or an
increased efficiency in finding food [65]. However, collective behaviour can
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also occur between animals of different species, e.g. between clownfish and sea
anemone. As a group they exhibit a better fitness and can be considered more
intelligent than alone. In this work, we want to explore how the integrated
information of such a collaborative, heterogeneous set of organisms evolves
when presented with different environmental conditions.

The main goal of this thesis is thus to examine the development of the in-
tegrated information of a heterogeneous group of organisms interacting with
each other over the course of an evolutionary algorithm. A simulation was de-
veloped as an extension of Fischer’s work [32]. Instead of confining organisms
to one isolated simulation per organism, the whole population will be placed
inside one simulation, allowing for interactions between any organism. To keep
the diversity of the population high, a multi-objective optimisation strategy
will be used in this work. For this, three different, conflicting objectives were
identified. This should result in a more heterogeneous set of organisms, which
could help alleviate problems like premature convergence due to organisms
being stuck in a local minimum. Additionally, a higher diversity should also
improve results of the crossover operator and makes it easier to cover more of
the search space [79).

Various different simulation parameter combinations were tested to determine
the impact of each of them on the resulting performance and integrated in-
formation. One of these parameters controls the selection algorithm used in
the evaluation phase of the evolutionary process, for which two fundamen-
tally different approaches were developed. The first algorithm considers and
modifies a globally accessible pool of organisms, while the second divides the
population into neighbourhoods and applies the genetic operators on a more
local scale. By comparing the results of these two contrasting methods and
examining the influence of the choice of selection algorithm, we hope to gain a
better understanding of how the integrated information of such a population
evolves over time.

1.3 Structure of this thesis

This thesis is structured as follows:

Chapter 2 gives an overview over the themes and the related work of this
thesis. First, some concepts of multi-objective optimisation will be explained,
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followed by a discussion of different performance measurements for the results
of said optimisations. Based on this, the next section focuses on how these
concepts are applied to Evolutionary Algorithms (EAs). After presenting the
basics of EAs, two different, i.e. centralised and decentralised, kinds of multi-
objective EAs will be described and discussed. Lastly, an overview over the
concepts and applications of the integrated information theory 3.0 is given.

Chapter 3 outlines the structure of the experiment. The chapter starts with
a description of the design of the simulation, ranging from its spatial layout
and the organisms inhabiting that world to the identified objectives and the
selection algorithm developed for this thesis. Afterwards, the chapter goes into
more detail about the data analysis of the simulation and the implementation
of both.

Chapter 4 contains the evaluation of the experiment presented in chapter 3
and is split into two parts. The first part focuses on the direct analysis of the
multi-objective simulation by evaluating the distribution and convergence of
the fronts of each simulation run. This directly leads into the second part,
in which the connections between experimental settings and the resulting in-
tegrated information and the brain structure of some of the best performing
organisms are analysed.

Chapter 5 will sum up the results of this thesis and Chapter 6 will provide
an outlook on some of the possible future works.




2 Background

This chapter provides an overview over the concepts used in this thesis. After
an introduction to the basics of multi-objective optimisation, we will explore
various ways to evaluate the results of such an optimisation. This is followed
by a discussion about EAs and how they can be used to generate solutions
for multi-objective problems. Finally, we will describe the principles of the
current iteration of II'T (3.0), which is followed by a brief discussion thereof.

2.1 Multi-objective Optimisation

Optimisation is the study of finding an optimal solution by either minimising
or maximising at least one objective while simultaneously satisfying all given
constraints [24]. To evaluate a solution for a given problem, a so-called ob-
jective function is used, which usually has one or more input values and a
single output value. Finding the optimal solution thus means optimizing the
objective function. While single-objective optimisation is concerned with op-
timising the value of just one objective, multi-objective optimisation involves
a set of objectives which are subject to either minimisation or maximisation.
Mathematically, a multi-objective optimisation problem can be defined as

— —

min(f(Z)) where : f(Z) = [fi(x), ..., fum(z)], (2.1)

where m is the amount of objectives. Note that this definition assumes that
every objective is subject to minimisation. An example of a multi-objective
optimisation problem involving two objectives would be minimising cost while
also maximising computing power when buying a new computer. However, in
most applications the amount of objectives is way higher. Since the objec-
tive functions are often in conflict with each other, there is no single optimal
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solution. Optimising one objective usually entails a drop-off in quality in a
different objective. Therefore, the general goal of multi-objective optimisation
is to generate a diverse set of good solutions, from which an external decision
maker, e.g. a human, can choose the final solution.

The population’s “best” solutions can be found by applying the dominance
criterion. When considering an optimisation problem whose objectives are all
subject to minimisation as in 2.1, a solution z; dominates solution -

if Vi € {1, ,m} : fl(.’lfl) < fl(.’ll'g)

) (2.2)
and 37 € {1,....,m}: fi(z1) < fj(xa)

In other words, a solution x; dominates solution x5 if all of z1’s objective values
are at least equal to x5’s with at least one value being better. A solution x;
is called non-dominated or Pareto optimal if there is no other solution in the
solution set X that dominates x;. The set of all Pareto optimal solutions
is called the Pareto front [24]. An example of a solution set, in which one
objective is maximised and one is minimised, and its corresponding Pareto
front is shown in Figure 2.1.

2.1.1 Evaluation Methods

Two desirable qualities of a front are diversity and its convergence to the
true Pareto front [50]. Diversity describes how spread out the solutions are
across the different dimensions. The higher the distance between objective
values, the higher, and thus better, the diversity. A high diversity allows
the algorithm to explore more of the solution space, which could also help
overcome local minima during the optimisation process. A front’s convergence
is basically defined by how close the solutions are to the true Pareto front,
i.e. the optimal set of solutions. Both criteria are important for good results.
High diversity alone doesn’t help much if the front’s values are far away from
the optimum. Similarly, high convergence without the accompanying high
diversity results in the solutions being extremely close together, thus making
the final choice of the external decision maker close to irrelevant.
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Figure 2.1: The solution set of a multi-objective optimisation problem with
two objectives 88| plotted on a 2D scatter plot. The black line
indicates the Pareto front of the set, i.e. the solutions that are not
dominated by any other point in the set.

Front spread and uniformity

The convergence of a front can be measured in multiple ways. One measure
presented by Goel and Stander in their 2009 paper [37] is comparing how the
number of non-dominated solutions evolves over the generations. The basic
idea is that a smaller number of dominated solutions also implies a higher
convergence. While simple, this measure can give the user an effective, com-
putationally cheap overview over the evolutionary process. However, it doesn’t
necessarily show how the quality of the solutions evolves, since a solution set
without any dominated organisms can still be far away from the true Pareto
front.

Goel and Stander also introduce two different diversity metrics: The front
spread and the front uniformity, which work in tandem with each other. The
front spread is defined as the diagonal of the largest hypercube in the function
space that includes all points. The longer the diagonal, the larger the spread
of solutions and thus the diversity. A few extreme points can skew the re-
sults though, since such a point can increase the diagonal’s length immensely,
even when most of the solutions are close together. In such cases, the user
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can consult the uniformity measure. The uniformity measure estimates the
homogeneity of the points in the Pareto optimal set. It is defined as:

N 1d; — d| 1
A= Z lT where d = N Z di, (23)
=1 =1

where d; is the crowding distance of an organism ¢. It behaves similarly to the
standard deviation, i.e. a small uniformity is desired for a nicely distributed
set of points. It also helps alleviate the extreme point issues, when combining
it with the spread metric.

Generational Distance

The Generational Distance (GD) [87] is a metric for measuring the distance
from the current Pareto front P Fl,opn to the true Pareto front PFj,,.. As such
it only measures the quality, i.e. convergence, of the solutions and not their
diversity. It is one of the most commonly used Multi-objective Evolutionary
Algorithm (MOEA) measures [68]. Mathematically, it can be defined as:

n 1
oo (L} -
n
where n is the size of generated Pareto front PFj,ou, and d. is the euclidean
distance between point p; and the nearest point of PFj.... If P, is not
known, one has to generate a set of reference points. For instance, the so-
called 7-point [71| method achieves an approximation of the GD by generating
equidistantly spaced points along each objective between the minimum and
maximum possible values thereof. For a two-dimensional optimisation problem
the seven points would consist of the origin point and three points for each of
the objectives, i.e. one point at the objectives’ maximum and the two evenly
spaced points along the axis.

Hypervolume

Another one of the most important and also widely used [68] convergence and
diversity metrics used in multi-objective optimisation is the hypervolume [97].
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Introduced in 1998 by Zitzlar and Thiele, it is also used as a selection criterion
in some evolutionary algorithms [45|[31] as a way apply to selection pressure,
which rewards both convergence and solution diversity.

The hypervolume indicator represents the n-dimensional space covered by a
n-dimensional set of points, i.e. a Pareto front of the population mapped to
points in the objective space, relative to a chosen reference point. A popular
method for choosing that reference point is taking the worst possible point
in the objective space with respect to the objective functions and other con-
straints and shifting it further out by a certain amount, e.g. 5% [58][7]. Thus,
the hypervolume can also be defined as the n-dimensional space dominated by
a set of points. Figure 2.2 shows an illustration of the hypervolume in the
3-dimensional space.

—_
—_ &3
WA=
T T

;y_ C
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—
-

a

N\ T

Figure 2.2: An illustration of the hypervolume of a set of four three-
dimensional points [16], in which all objectives are to be maximised.
On the left one can see the volumes dominated exclusively by each
point, which in this case also form the hypervolume when summed
up, while the right table shows the corresponding objective values
of each point.

Without any additional measures or calculations, hypervolume encapsulates
both convergence and diversity in one value. Only when a front excels in both
categories is the hypervolume maximised, which consequently means that the
hypervolume is only maximised if and only if the set of points include the
points of all non-dominated solutions [33].
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The biggest shortcoming of the hypervolume indicator is the high compu-
tational complexity of its calculation, which was proven by Bringmann and
Friedric to be #P-hard in the number of dimensions, i.e. objectives [17]. How-
ever, because of its useful mathematical properties, a lot of research is focused
on finding a faster or otherwise more efficient algorithm, which results in a
variety of different solutions each with different complexities and varying lev-
els of precision. What follows is a description of three ways of calculating the
exact hypervolume of a set of points.

One of the simplest methods for calculating an exact hypervolume is the
Inclusion-FEzxclusion method 93], which applies the inclusion-exclusion prin-
ciple from combinatorial mathematics to the problem. The hypervolume is
found by first adding up the n-dimensional volumes dominated by each point,
then subtracting volumes encompassed by the intersection of two points, then
adding back those dominated by the intersection of three points, and so on.
The algorithm continues until all subsets of the set of m points have been con-
sidered. Even though the algorithm is simple in its idea, the computational
complexity of the Inclusion-Exclusion method is enormous. Since one volume
calculation already is at least O(n) and the volume of every subset of m has
to be calculated, the complexity of the whole algorithm is O(n2™), i.e. it is
exponential to the number of points, making it unusable for most scenarios.

A more efficient way of calculating an exact hypervolume is the LebMeasure
algorithm [33]. The LebMeasure algorithm works by “lopping off” and adding
up exclusively dominated hypercuboids from the total hypervolume one at a
time until there is nothing left to remove. First, the hypervolume exclusively
dominated by the currently processed point P is considered. If the dominated
area is not a hypercuboid, then the largest hypercuboid dominated by P is
calculated and “lopped oft”, while P is replaced with a set of so-called spawn
points that dominate the rest of the volume not covered by the aforemen-
tioned lopped off cuboid. Otherwise, the dominated volume is simply added
to the partial sum and its associated point P will be removed from the cal-
culation. The spawn points are generated by calculating the opposite corner
() of the dominated hypercuboid and replacing one of the objective values
of P with those of ), for each objective. For example, consider the points
P =1(6,9,4),(9,7,5),(1,12,3),(4,2,9)]. The opposite corner of the hyper-
cuboid dominated by the first point (6,9, 4) is located at (4,7, 3), which means
the resulting three spawn point candidates are S = [(4,9,4), (6,7,4), (6,9, 3)].
From that list of candidates, only those spawn points that dominate an exclu-

10
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sive hypervolume are considered. This procedure continues until there are no
more points left to process. Originally, the LebMeasure algorithm was thought
to have a polynomial worst case complexity. However, this was later disproved
by While [90], in which the lower bound of the complexity was corrected to
be O(2"71), i.e. it is also exponential in the number of objectives. While this
makes it unusable for high-dimensional data sets, the LebMeasure algorithm
is nevertheless still suitable for cases with a low amount of objectives.

An algorithm that takes a different approach to both presented methods is the
Hypervolume by Slicing Objectives (HSO) algorithm developed by While et
al [91]. Instead of handling points and volumes in the n-dimensional space,
HSO considers one objective at a time. After sorting the set of points in
order of the objective being processed, “slices” are created by visiting each
point in order. A slice is the hypervolume between the current and the last
visited point, whose depth is defined as the distance between those two points.
Since each slice is itself an (n — 1)-dimensional hypervolume, it is calculated
recursively and multiplied by the depth of the slice. This process is repeated
until all points have been visited. Even though the worst-case complexity of
HSO is still exponential in the number of objectives, While et al. found that
it outperforms LebMeasure in most cases [91]. Like LebMeasure, HSO should
not be used for high-dimensional data though.

Although HSO offers a better performance for most data sets, the ease of imple-
mentation of the LebMeasure algorithm and its still comparable performance
for the low amount of objectives covered in this work made it a good fit for the
calculations in this thesis. If this work was to be extended, e.g. by adding more
objectives or by increasing the population size, a better performing solution
should be considered.

2.2 Evolutionary Multi-objective Optimisation

A commonly utilised technique for multi-objective optimisation problems is
the genetic algorithm (GA), which is a subset of the more generic EA. As
the name suggests, several of the concepts used in GAs are derived from the
Darwinian theory of evolution [21][56]. They operate on a population of or-
ganisms, from which an GA selects the best organisms and constructs a new
population by applying a set of evolutionary operators, such as mutation or

11
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crossover. This makes GAs a great choice for multi-objective optimisation
problems, because they generate multiple different solutions per iteration by
design [88]. In the following, the basic structure and principles of a GA will
be explained. Afterwards, we will examine how the previously introduced
concepts used in multi-objective optimisation can be applied to a GA by pre-
senting several different popular MOEAs. Building on that, centralised and
decentralised MOEAs and the differences between them will be explored.

2.2.1 Genetic Algorithms

The first systems based on the evolutionary theory can be traced back to the
1950s and 1960s, where various computer scientists independently developed
such systems [56], from Rechenbergs “evolution strategies” [66] to Fogel et
al. [34] developing a technique called “evolutionary programming”. However,
a lot of the groundwork for genetic algorithms as they are used today first
appeared in 1975 in Holland’s Adaptation in Nature and Artificial Systems
[41]. Genetic Algorithms are population-based meta-heuristic optimisation
algorithms. They start by randomly initialising a population of organisms PO,
which is then repeatedly evaluated and modified through a series of genetic
operators until a halting criterion is reached. The population of each of these
iterations is also called a generation. This process is illustrated in Figure 2.3.

The organisms generated and optimised in a GA are represented by their
chromosomes, which the genetic operators are applied to. These chromosomes
are each made up of genes, which can be modelled as a list of bits, strings,
integers or other data structures, depending on the implementation. Each gene
is an instance of a particular allele, e.g. 0 or 1. A chromosome’s composition
determines how an organism will behave. For example, one could treat the
chromosome as a list of numbers, which are used as indexes for actions in an
instruction table. In the following, every step of a GA will be explained in
more detail, starting with the initialisation.

Initialisation

The initialisation of a population is usually done randomly to ensure a wide
spread of solutions and to mitigate premature convergence issues. In some
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Figure 2.3: The structure of an evolutionary algorithm.

cases, a weight or seed can be applied to steer the initialisation to areas with
better chances of finding optimal solutions [56].

Evaluation

Organisms are then evaluated by a so-called fitness function, which measures
the quality of a solution and influences whether an organism will survive.
Fitness functions are inherently problem-specific. For example, the fitness
function for solutions to the Travelling salesman problem (TSP) could be based
on the length of that solution’s route. The shorter the route of the individual,
the better its fitness [49].

Selection

Following the evaluation, a fitness-based selection algorithm will then decide
which organisms will be used as parents for the next generation. Organisms
with a higher fitness generally have better chances to be chosen for reproduc-
tion than those with a low fitness. Two popular methods of selecting organisms
are Tournament and Roulette selection [56]. Tournament selection randomly
chooses two or more organisms from the population, where the one with the
highest fitness, i.e. the winner of the tournament, will be added to the list of
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parents. Roulette selection, which is also called fitness proportionate selection,
assigns a probability of selection to each organisms based on its fitness relative
to the sum of every organisms’ fitness.

Recombination

After selecting the best parents from the current generation, new organisms
are created by combining the chromosomes of two or more parents. This
recombination of chromosomes is also called “crossover”. The simplest form of
crossover is the single-point crossover [76], which randomly chooses a point in
the parents’ chromosomes and combines the part left to the point of one parent
with the part right to the point of another parent to form new chromosomes. As
an example, consider the two parent chromosomes represented by bit arrays
A =0,0,0,0,0,0] and B = [1,1,1,1,1,1] with the crossover index I. = 3.
The resulting children chromosomes would then be C' = [0,0,0,0,1,1] and
D =[1,1,1,1,0,0]. These newly created organisms are then added to next
generation’s population.

Mutation

Before moving onto the next iteration and thus starting the cycle anew, each
chromosome has a chance to trigger a mutation. There are a lot of different
types of mutations, the most common being the point mutation, which changes
the allele of a single gene, e.g. from 0 to 1. Other types include the insertion
mutation, wherein a section of the chromosome is copied from one place to
another, or swap mutation, where one gene is swapped with another gene [75].

Mutation helps increasing or at the minimum retaining the diversity of a pop-
ulation by introducing new values and gene combinations. It thus also lowers
the chance of a population being stuck in a local minimum forever. Conse-
quently, mutation also makes it easier for the algorithm to find the best possible
solutions by allowing it to explore more of the solution space. However, the
mutation rate has to be chosen carefully and with respect to the problem at
hand. A too high rate prevents the population from converging to an opti-
mal solution, while a too low rate will lead to premature convergence and the
population being stuck in a local minimum [56].
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2.2.2 Multi-objective Selection

In single-objective optimisation problems, like the aforementioned TSP, find-
ing the best fitness value of two or more solutions is usually just a matter of
sorting in ascending order and choosing the first or last value, depending on
whether the objective should be maximised or minimised. Having said that, in
multi-objective optimisation problems the organisms cannot be easily ordered.
An organism could be the best in one objective, while having the worst per-
formance in another objective, which is why techniques like partial ordering
by Pareto dominance have to be used instead.

NSGA-II

One popular algorithm implementing such techniques is the NSGA-II, which
was first introduced in Deb et al [26]. It was built on top of the first
nondominated sorting genetic algorithm (NSGA) iteration [77]|, improving on
a lot of its predecessor’s problems. Whereas the original NSGA has a complex-
ity of O(MN?®), where M is the number of objectives and N is the number of
organisms, this version reduces the complexity to O(M N?). Furthermore, the
sharing parameter o, was removed in favour of a more dynamic diversity-
preserving mechanism. And lastly an elitism operator was added, improving
on both the speed and the solution quality of the algorithm [95]. NSGA-II in-
troduces three important operators: Nondominated sorting, crowding distance
and the crowded comparison operator <,,.

Nondominated sorting acts as the algorithm’s convergence measure. Similar
to other Pareto-dominance based algorithms [35], solutions are assigned a rank
DPrank, Which is defined as the number of solutions that dominate p. The solu-
tions are then split into fronts by their ranks, creating a rough ordering of the
population.

In addition to the rank, each solution is also assigned a crowding distance
Ddistance; Which acts as a diversity measure. The crowding distance measures
how far away neighbouring solutions are from p along each objective, where
a higher total distance indicates a higher diversity and thus a better solution.
First, the fronts are sorted by each of the organisms’ objective values in ascend-
ing order. The solution’s crowding distance is then determined by summing
the distances between the objective values of their left and right neighbours
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for every objective. The exception are edge cases, i.e. those solutions that
don’t have a left or right number for any objective, who are instead assigned
an infinite crowding distance, since they increase the population’s diversity the
most. However, if the crowding distance value is needed for further analysis
that doesn’t handle infinity, the crowding distance of edge cases can also be
calculated by doubling the neighbours distance to p.

Lastly, both rank and crowding distance are combined to form the crowded
comparison operator <,, which is defined as

i =n j lf irank < jrank

or (irank = jrank and Z-distance > jdistance)

(2.5)

Strength Pareto Evolutionary Algorithm (SPEA)

Around the same time, Zitzler and Thiele developed an algorithm based on
many of the same principles: the Strength Pareto Evolutionary Algorithm [98].
Instead of storing the whole previous population like the NSGA-II algorithm,
SPEA only keeps an archive of the non-dominated solutions that have been
found so far. Every generation the non-dominated solutions of the current
iteration are moved from the population to the archive. If an older archived
solution is dominated by any of the newly added organisms or if it is a dupli-
cate, it will be removed from the archive. This means that the archive always
only contains solutions that have been non-dominated across all generations
processed so far. Individuals in the archive are then each assigned a fitness
value that is equal to the amount of population members dominated by that
individual, divided by the population size plus one. On the other hand, the
fitness of a population member p; is calculated by summing the fitness values
of every archived solution that dominate p; plus one. Based on these fitness
values, a binary tournament across both archive and population is performed
to find the next generation’s parents. Since SPEA specifies that these fitness
values are to be minimised, archived, i.e. non-dominated, solutions have a
better chance at reproduction and survival.

Two years later [96], an improved version (SPEA2) was released by Zitzler et
al. To prevent the low selection pressure issues that occurred when the archive
only contained one individual, which lead to a drastic performance degradation
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in the first version, the size of the archive has been changed to a fixed value. If
the archive’s size falls below that value, dominated individuals from the popu-
lation are added until it has reached capacity again. Furthermore, the fitness
assignment procedure has been adjusted slightly and density information was
added to the organisms, which made tournaments between individuals with
otherwise identical fitness values less random and helped lessen the problems
that arose from configurations with more than two objectives. When com-
pared with other state-of-the-art MOEA algorithms, the SPEA2 showed the
best overall performance, together with NSGA-IT [96].

Multi-objective evolutionary algorithm based on
decomposition (MOEA/D)

A method that takes a completely different approach from both presented
algorithms is the multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) developed by Zhang et al [94]. Rather than considering
all objectives at once and using measures like Pareto dominance to perform
comparisons between solutions like most other MOEAs did at the time, the
MOEA/D instead applies the concepts of multi-objective decomposition to an
EA, breaking down the problem into a number of scalar optimisation subprob-
lems and optimizing them simultaneously with an EA. Every solution in the
population is associated with a specific subproblem through the use of a weight
vector. Solutions, whose weight vectors are close to each other, are considered
to be part of a neighbourhood. Genetic operators like recombination are only
performed inside these neighbourhoods since close weight vectors also imply
close optimal solutions to the associated subproblem. When compared with
NSGA-II and Multi-objective genetic local search algorithm (MOGLS) [57] on
multi-objective knapsack problems, MOEA /D has shown to have a lower com-
putation complexity than both, while producing solutions of similar or higher
quality. Furthermore, it was also shown to produce a very uniform distribution
of representative Pareto optimal solutions [94].

2.2.3 Decentralised Approach

To gain a better understanding of how the integrated information of a swarm
optimised by an MOEA evolves over time, two different kinds of GAs will be
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used and compared throughout the following and the result chapter of this
thesis: Centralised and Decentralised GAs. In centralised GAs, there is one
global deciding force that selects the next generation’s parents from the whole
population pool. On the other hand, decentralised selection occurs on a more
local scale, usually by dividing the population into smaller neighbourhoods
and selecting the best organisms from each to form the new generation.

Centralised, or panmictic [2], selection is typically the default configuration
for a genetic algorithm. It always takes the whole population of a generation
into account, which means that the chances of a poorly performing organism
being considered for reproduction in a fitness-based centralised selection are
small, but not non-existent. While this quickly eliminates unsatisfactory solu-
tions, it can also lead to a rapid loss of diversity and, ultimately, to premature
convergence. Examples of centralised selection algorithms are those presented
in the previous chapter, e.g. NSGA-II or SPEA2.

Decentralised GAs, or Spatially structured evolutionary algorithms (SSEAs)
[83], offer a way to increase the genetic diversity in the population [27]. Instead
of considering the whole population pool during parent selection, the solutions
are divided into subpopulations for processing. This allows us to easily divide
the work between multiple workstations, processors or threads, increasing the
computational performance considerably, while still maintaining the quality of
solutions [27].

Since we need a way to define what constitutes a subpopulation, a spatial topol-
ogy has to be chosen [23]. Depending on the chosen topology, the exchange of
solutions between subpopulations can either be performed separately, which is
the case with distributed EAs, or more organically in the form of neighbour-
hoods, in which case the EAs are cellular [1].

Distributed

Distributed GAs are said to be inspired by several different evolutionary the-
ories, including the shifting balance theory in evolutionary biology developed
by Sewall Wright [92][46]. They are defined by an insular topology [81]{63][20],
where each subpopulation represents an island connected via “bridges”, which
are defined by a migration policy that controls which organisms are allowed
to be exchanged between each group. Additionally, this migration policy also
controls the islands’ topology, the interval in which a migration of organisms

18



2.2 Evolutionary Multi-objective Optimisation

Subpop 1

Subpop 5 Subpop 2

OO0OO0OO0O0 OO0 @0O0 [ONeN NeNe)

[OleN NeNe] [ONeN NONe) Cee®eo

Cee®eOo o0 000 o0 000

[ONeN NeNe] (OOl NeNe) Cee®eo

OO0OO0O0O0 OO @O0O0 OO @00
n=5 n=9 n=13

(a) (b)

Figure 2.4: Example topologies for distributed (a) and cellular (b) decen-
tralised GAs. Subfigure (a) shows an example of the so-called
Ring topology [82], in which sub-populations can only communi-
cate with their directional neighbour. The subfigure on the right
side (b) illustrates different possible neighbourhood structures on
a two-dimensional grid [23].

occurs and how the migrated individuals are integrated into their new subpop-
ulation [1].

There are a lot of different options when choosing the islands’ topology such
as hierarchical, hypercube or ring topology [3]. The choice of topology di-
rectly influences how much focus will be put on exploitation (convergence)
and exploration (diversity) respectively. For example, a fully connected topol-
ogy would result in good solutions quickly spreading across the entire network,
which would lead to a reduction in the diversity of the population and possi-
bly a premature convergence. A topology with few connections also has the
advantage of easier parallelisation and scalability [3]. Figure 2.4 (a) shows
an example of the ring topology, which limits communication to directionally
adjacent subpopulations [82]. It has been shown that a distributed algorithm
with such a configuration can achieve better performance in both solution
quality and computational speed than a typical sequential GA [42].

One advantage of distributed GAs is the ease of parallelisation, e.g. by simply
assigning one workstation or process for each island, while a separate work-
station controls the migration policy. Since subpopulations only seldom com-
municate with each other, individuals in these islands are less restricted in the
direction they want to evolve in. Due to this limited communication, good
solutions spread slower, which means that the diversity of a distributed GA
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can be maintained more easily than with a classical GA [64][51]. Apolloni et
al. [6] found that their custom island-based distributed GA achieved better
performance than eight sequential EAs when applied to the CEC 2005 test
suite [80].

Cellular

The structure of cellular GAs is, contrasted with island-model GAs, more fine-
grained [38|. Instead of dividing the population into smaller subpopulations,
cellular GAs instead position organisms onto a grid, where individuals can only
interact and compete with each other if they are part of the same neighbour-
hood [62], i.e. if the amount of “steps” between their positions on the grid is
smaller than a given neighbourhood size. Figure 2.4 (b) shows an example of
how different neighbourhood sizes might be realised for a 2D grid. Neighbour-
hoods can overlap each other, which means that an organism can be part of
more than one neighbourhood. Compared to GAs with unrestricted interac-
tions between organisms, which are also called panmictic GAs [2], cellular GAs
have a much lower selection pressure, resulting in a slow diffusion of solutions
across the grid and thus a more stable population diversity [62]

One popular multi-objective cellular GA is the Multi-objective cellular genetic
algorithm (MOCell) algorithm developed by Nebro et al [60]. Similar to other
previously mentioned algorithms, MOCell keeps an external population con-
taining the best solutions (according to the crowded comparison operator <,,)
encountered so far, from which a few randomly selected solutions are moved
into the current population in each iteration. Genetic operators like recombi-
nation and mutation are applied on a per-neighbourhood basis. If an offspring
performs better than their parent, the former will replace the latter in the
next generation. This next generation is saved in a separate auxiliary popu-
lation during this process, which means that the original population remains
unchanged from the genetic operators. After all neighbourhoods have been
considered and the archive has been updated with the newly created offspring,
the changes in the auxiliary population are applied to the real population simul-
taneously, i.e. the original MOCell implementation is a synchronous cellular

GA [59].

When compared to NSGA-IT and SPEA2, the solutions produced by the origi-
nal algorithm achieve a similar or superior performance in most of the problems
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of the WFG catalogue [60]. The authors further improved the performance of
the algorithm in [59], in which Nebro et al. compared six different MOCell
variations with each other, by slightly changing the archive solution merging
process and making the population update process asynchronously, i.e. updat-
ing the solutions sequentially. Another algorithm based on MOCell is CellDE
[28], which replaces the original genetic operators with the reproductive oper-
ators of differential evolution [78].

To sum up, it can be said that SSEAs offer various advantages over sequential
GAs. On the one hand they provide a more robust way of finding a diverse
set of Pareto-optimal solutions, and on the other hand they also often offer
a better performance in both computation time and solution quality [3| than
conventional GAs. However, there is also higher effort, e.g. building the com-
munication layers or finding the right cutoff point for distributions, associated
with using an SSEA, which means that they are not necessarily the best option
for every optimisation problem.

The synchronous cellular genetic algorithm used in this thesis will be presented
in the third chapter.

2.3 Integrated Information Theory 3.0

One of the most prominent leading theories in the field of machine con-
sciousness is the Integrated Information Theory 3.0 developed by Tononi et
al [84][85][8][61]. It provides a mathematical framework, which allows one to
evaluate the consciousness of a system in both quantity and quality, effec-
tively making consciousness testable. Contrary to a lot of other theories in
the field that take the physical properties of a system and attempt to arrive
at consciousness, II'T 3.0 identifies the fundamental properties of conscious-
ness, from which the authors derive the essential traits of a conscious system.
The five basic properties of consciousness defined by the authors, which are
also called axioms, are: Existence, Composition, Information, Integration and
Exclusion. For each axiom a corresponding postulate is inferred, which collec-
tively describe how a physical mechanism, e.g. a neuron or a logic gate, must
be configured to allow them to give rise to consciousness. By applying these
axioms and postulates on the level of both mechanisms and systems, the the-
ory finally defines an experience as a MICS [61]|9]. This structure essentially
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describes the quality of an experience, while its integrated information, which
is measured in ®M% describes its quantity.

In the following section, the groundwork for the machine consciousness related
part of this thesis will be laid. First, the current iteration of the integrated
information theory (IIT 3.0) will be explained in more detail. This is followed
by a discussion about II'T’s limitations and criticisms. Finally, the underlying
brain structure of the organisms analysed in this thesis, the Markov Brain, will
be presented.

2.3.1 Axioms

Tononi et al. define axioms in the context of II'T as self-evident truths about
consciousness, i.e. undeniable statements that, "with Descartes, do not need
proof" [61].

The first axiom, the Existence axiom, simply states that consciousness exists.
Each experience exists intrinsically, independent from outside observers.

The Composition axiom implies that every experience consists of several
different elementary components in various combinations. For instance, the
experience of a blue car driving by consists of the combination of seeing the
colour blue, the car, the car moving from left to right and possibly feeling the
wind produced by said movement.

The Information axiom states that every experience is informative, which
means that it is distinct from all other possible experiences. Even an experience
consisting of pure darkness contains information, since it differs from other
scenarios like the car driving by.

The Integration axiom implies that experiences are also integrated, i.e. they
are strongly irreducible to non-interdependent components. One cannot take
away a part or component of the experience without changing its information.

Finally, the Exclusion axiom states that every experience excludes all other
experiences. It is not possible for experiences to overlap each other partially,
for every possible time and place only one experience can have its full content.
In other words, experiences have a specific spatio-temporal grain [9].
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2.3.2 Postulates

In the following section, the postulates of IIT will be applied on individual
mechanisms. With the resulting findings we will then apply the postulates
at the level of systems of mechanisms. The concepts shown in both sections
will then allow us to quantify and analyse a system’s ability to give rise to
consciousness.

At the mechanism level

The Existence postulate acts as a simple starting point in finding a conscious
entity. It simply states that mechanisms in a state exists and that a set of
mechanisms form a system. “Mechanism” in this case meaning anything having
a causal role within a system, e.g. a neuron in a brain or a logic gate in a
computer.

Mechanisms
in a state

XOR (F
candldate / \

i

|

“ B ‘__’ "
\

_AND  XOR/

1 (ON) 0 (OFF)
Figure 2.5: An example mechanism in the state ABCDEF = 100010 [61].

In this work, systems are built from combinations of discrete logic gates. Fig-
ure 2.5 shows an example of such a system [61]. The nodes A, B and C each
specify their own logic gate mechanisms, OR, AND and XOR respectively,
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which are connected through inputs and outputs. These three form a candi-
date set for integrated information analysis, which is indicated by the dotted
line, while D, E and F' can be thought of as external background conditions.
In this case D is the only external node that has an impact on the candidate
set, since its output is directly connected to A, whereas the other two nodes
are only connected through their inputs or not at all. The node colouring
indicates the state the nodes are in, where yellow means 1 and white means 0,
which means the state depicted in Figure 2.5 is ABC' = 100 with background
conditions DEF' = 010.

Building on the existence postulate, the Composition [61] postulate states
that these mechanisms can be combined into high-order mechanisms. In the
aforementioned figure, the candidate set’s elementary, or first-order, mecha-
nisms are the nodes A, B and C'. Combining two of these yields a correspond-
ing second-order mechanism (AB, AC or BC'), while integrating all elementary
mechanisms creates the third-order mechanism ABC'. The set of all possible
combinations of such a candidate set is called a power set. When analysing a
specific mechanism that doesn’t include all nodes of a mechanism, the left-out
nodes are treated as independent noise.

The Information [61] postulate requires that a mechanism’s state S has to
influence the state of a system from its own intrinsic perspective for it to gener-
ate information and thus be able to give rise to consciousness. The probability
distribution of all possible past states given the current state S is called the
cause repertoire. This distribution is compared to the unconstrained distri-
bution of the system’s past states, where the distance between both indicates
the amount of cause information (ci) the mechanism generates. Similarly,
the constrained distribution of future states, the effect repertoire, is compared
with the unconstrained effect repertoire to calculate the mechanism’s effect
information (ei). Typically, the distance measure used is the Earth Mover’s
Distance (EMD) [69]. A mechanism’s combined generated information, or ces,
is then defined as:

cei = min(ci, ei) (2.6)

To illustrate why the minimum of both measures was chosen, consider a mech-
anism X that constrains the system’s past, but not the future states. Since

24



2.3 Integrated Information Theory 3.0

the result of X doesn’t have an influence on the system, it doesn’t make a
difference from the intrinsic perspective of the system itself, even though it
conveys information about the system’s past states for an external observer.
The other way around, consider a mechanism Y that constrains the future,
but not the past states. In that case, what the system does doesn’t have an
effect on the mechanism, which means it cannot at all control the state of Y,
thus decreasing the overall information to zero.

The Integration [61] postulate states that only mechanisms that generate
integrated information can give rise to consciousness. Removing any part of
such an integrated mechanism results in a change or loss of information. Sub-
sequently, mechanisms that contain redundant or unused parts cannot specify
integrated information. Put differently, they are irreducible with respect to
their information.

To calculate the integrated information ¢, the cause-effect repertoire, i.e. the
probability distributions of past and future states, of every possible partition of
the mechanism is determined. The partitions whose cause or effect repertoire
are closest to the one of the whole mechanism are called Minimum Informa-
tion Partition (MIP). The distance D between the MIP’s distribution and the
distribution of the whole system is then calculated separately for the cause
and effect repertoires. Similar to the way a mechanism’s information is de-
fined, the integrated information is defined as the minimum of both distances.
Mathematically, ¢ can be defined as:

MPIMe = S
MIP D c _ — D c _
uIr (| = ) = Dp(arr|are = §)|p( =)
. . MY |Me =S 2.7
uir (| = 8) = D(p(u! 17 = §)llp( =5 2.7

M (MPI M = S) = min(Gpguee(MP|M® = 8), $fee(M!|M° = 5))

cause

where M is the mechanism we want to analyse and S is the current state of
M [61].

The Exclusion [61] [9] postulate at the level of individual mechanisms states
that only a mechanism’s maximally irreducible cause and effect are considered,
whereas other causes and effects are excluded from analysis. To find the so-
called core cause and core effect of a mechanism, the integrated information
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of all possible partitions, i.e. its power set, is calculated. The partition with
the highest ¢ value is considered maximally irreducible. As before, the core
cause and core effect are determined separately. Mechanisms that specify both
a core cause and a core effect, also called the Mazimally Irreducible Cause and
Effect (MICE), form a (core) concept. The integrated information of those
core cause and effects is called ¢***. While the MICE describes the quality
of an experience or concept, »M specifies its quantity, i.e. how strongly it is
integrated.

At the system level

0 (© o

Core causes Core effects

OR
A ABC </ABC 0.5 ABC </AC’
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Figure 2.6: A conceptual analysis of a set of elements ABC' [61]. (A) depicts
the structure of the brain. Every permutation of ABC' (shown
in (B)) that produces cei greater than 0 specifies a concept. The
cause-effect repertoires of said concepts are plotted in (C). (D)
shows these same concepts mapped onto the so-called concept
space, which is also called a conceptual constellation.

Similar to its description at the level of a single mechanism, the Informa-
tion [61] postulate at the system level states that information is only generated
by sets of “differences that make a difference” [61], which in this case refers to a
constellation of concepts. This constellation is constructed by iterating over all
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possible mechanisms of the power set of the candidate set and computing the
integrated information ¢ for each of them. Those that generate non-zero
integrated information each specify a concept. Together, the concepts form a
conceptual structure.

Figure 2.6 (D) shows such a structure represented in the so-called concept
space. The axes of the concept space each map to a possible past or future state
of the mechanism. For instance, three nodes would allow for eight different
states and thus sixteen axes (eight for each past and future). The position of a
concept on those axes is determined by the corresponding probability specified
by the concept’s cause-effect repertoire, while the size of the dot is determined
by its integrated information. Visualisations of the concept space (see Figure
2.6 (D)) typically separate past and future states from each other and restrict
them to three dimensions or axes each to make it easier to read.

To quantify the amount of information generated by a system, the Conceptual
Information (CI) is calculated. Similar to the cause-effect information at the
mechanism level, CI is defined as the minimum distance from the constrained
to the unconstrained repertoire p“¢, corresponding to the null concept, i.e. a
concept that specifies nothing.

The Integration [61] postulate at the system level states that only systems
whose mechanisms form an irreducible conceptual structure are able to give
rise to consciousness. Analogous to the postulate at the mechanism level,
excluding any mechanism from an integrated system would result in a change
of conceptual information. Accordingly, if a system can be partitioned in such
a way that the information is unchanged, it cannot be integrated.

To find a system’s integrated information ®, the system is partitioned unidi-
rectionally until the partition with the least amount of impact on the system’s
conceptual information, i.e. the MIP, has been found. ® is then defined as the
EMD between the conceptual constellation of the whole system and the MIP.

Lastly, the Exclusion [61] 9] postulate at the system level states that only
MICSs [9] can lead to consciousness. Furthermore, mechanisms can only be
part of one such structure, i.e. elements cannot overlap each other. The set of
elements in a system that generate a local maximum of integrated information
dMaz constitute a complex. To find such a complez, the integrated information
® of each member of the power set of the system, excluding the single-order

elements since they cannot be partitioned any further, is determined. The
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candidate set with the highest ® value is called the major complex. Any
additional complexes that the system consists of are called minor complexes.
However, as mentioned previously, elements inside one complex cannot be part
of another one. For instance, a system of five nodes ABCDE with a major
complex C'DFE cannot form a second complex that contains either C', D or E.
A minor complex AB would still be possible though.

2.3.3 Discussion

The Integrated Information Theory 3.0 provides a strong mathematical frame-
work for the exploration and evaluation of consciousness. However, there are
also some limitations and criticisms other researchers in the field of conscious-
ness have brought up. For instance, Manzotti [52| argues that the phi value
might only measure the information processing properties of a system rather
than a subjective experience or consciousness [67]. Furthermore, Seth et al.
[74] showed that it is possible to nearly arbitrarily inflate the phi value of a
fully-connected neural network with a suitable set of synaptic weights. This
doesn’t necessarily discredit the theory in itself, but it would mean that such
a network would at some point exhibit a substantial amount of consciousness,
which leads some to doubt whether the theory can actually share any light
on the nature of consciousness at all [73]. It has also been argued that IIT
lacks some basic properties, like structural coherence and an organisational
invariance, that are required for a theory about consciousness to be consid-
ered well-formed [19]. Another very recent paper by Bayne [10] is sceptical
about the axiomatic nature of IIT. In it he claims that the theory’s axioms
don’t necessarily correspond to essential properties of consciousness and even
argues that we as humans are ill-equipped to identify these properties due to
our limited access to different forms of consciousness.

Aside from these criticisms, there are also some practical problems that limit
the use of II'T. Determining the integrated information of a larger network,
such as the human brain, is simply not feasible since the computational com-
plexity is too high. However, there already exists some preliminary research
focused on finding a computationally efficient way to approximate the inte-
grated information of such a network [36] [5], which could help alleviate these
problems. At the moment of writing this thesis there also doesn’t yet exist
a gold standard, such as a human brain’s integrated information, to compare
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calculated phi values to, which makes the interpretation of results hard [36].
In the future, such a gold standard could be established by applying the afore-
mentioned approximation algorithms on large-scale brain models such as the

ones reviewed in [18] and [22].

2.3.4 Markov Brains

nodes

ssa20id

t+1 nodes

I Input DOutput

Figure 2.7: An example Markov Brain with 5 input, 3 output and 2 hidden
nodes [13]. The first row of nodes inside the brain correspond to
the time step ¢, while the bottom row represent the nodes at state
t + 1. The three gates between both time steps each implement a
specific function and are essentially responsible for the functionality

of the whole brain.

One of the possibilities of modelling an organism in an IIT-compatible way
is the Markov Brain (MB). MBs are a subcategory of evolvable Artificial
Neural Networks (ANNs) [70], which consists of different components, or gates,
linked together in various ways [39]. Rather than layering the components and
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thereby restricting the possible connections between nodes, any component
can be connected to any other component. The components are divided into
input nodes, output nodes and hidden nodes. Input nodes receive their values
from the environment a Markov Brain agent is living in, i.e. updates caused by
connections to input nodes will be overwritten in the next time step. If needed,
one could read them before the environment writes into them though. While
hidden nodes are used to perform additional auxiliary tasks, e.g. storing the
previous update’s results, the outputs of a brain, i.e. the values of its output
nodes, are used to control the agent’s actions. A visualisation of a MB can be
seen in figure 2.7.

A MB can be encoded by a genome that controls the topology of the network
and the function of its components. Evolving such a genetically encoded MB
can then be achieved by performing genetic operators on its genome, which
also changes the network. Alternatively, one could also perform these operators
directly on the network, thereby directly changing the wiring of connections be-
tween components and their behaviour. These kinds of MB are called directly
encoded Markov Brains. However, most implementations use the genetically
encoded variant, since directly encoded MBs are considered to be too fragile

39].

The genome of a Markov Brain is implemented as a vector of up to 20000
randomly initialised elements, or sites, that are each represented by a num-
ber. This genome is then interpreted from left to right. First, the interpreter
searches for a specific sequence of numbers, or start codon, that indicates the
start of the gene. The numbers used as a start codon depend on the gate type
of the network. For instance, deterministic gates use the codon (42,212) to
mark the start of the gene, while probabilistic gates use (42,213). Once the
starting codon has been found, the numbers following that marker will then
be interpreted according to a specific scheme to form a gate. The first two
sites respectively specify the amount of inputs and outputs of the gate. The
next chunk determines how the gate is connected to the nodes of the brain,
followed by additional values that define the gate’s functionality.

Components used in a Markov Brain can be of one of many different types
of gates [39]. Hintze et al. provide a set of already implemented gate types
in their paper and the accompanying framework MABE[15]. However, there
is technically no limitation to the functionality of a gate. The first developed
gate types were the deterministic and the probabilistic gates. Deterministic
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gates work similar to logic tables in that they operate on binary values and
map an input to a specific output. Such a gate can have an arbitrary amount
of input and output values. However, they are usually limited to at least one
and less than five values each. An example of a deterministic gate with one
input and output each would be a gate that takes its input value (0 or 1)
and simply negates it, emulating the behaviour of a NOT-gate. Probabilistic
gates on the other hand map their input values to stochastic values, i.e. values
between 0 and 1, that are interpreted as probabilities of the output states. It
is apparent that deterministic gates are a special case of probabilistic gates
where all values are either 0 or 1. Other gate types presented by Hintze et
al. include the ANN gate that acts as a single-layer artificial neural network,
the Threshold gate, which accumulates its inputs and only outputs a one once
the accumulation exceeds a certain threshold, and the Feedback gate, which
incorporates external positive and negative feedback into the probabilities of
each input-to-output mapping.

Since their introduction in [39], Markov Brains have been used in various publi-
cations, including some that furthered the research on the Integrated Informa-
tion Theory. Since Markov Brains allow connections between any component,
meaning one can easily create an integrated system inside a MB, and feature
state-based behaviour, they are a suitable candidate for IIT analysis. For in-
stance, in [44] the authors analysed how the amount of integrated information
of an agent equipped with a MB correlates to their fitness, which was de-
termined by measuring how well that agent could navigate out of a maze-like
room. Joshi et al.’s results indicated that the minimal complexity of an agent’s
brain is proportional to its fitness, noting that the integration levels above that
minimum may deviate substantially from said proportionality. Edlund et al.
[29] investigated whether the IIT can accurately provide a measure of com-
plexity of an agent’s brain for navigation scenarios. While initially similar, the
authors differ from the previously mentioned paper by focusing on agents that
consist of Markov Brains with an internal memory. [4] explored a scenario, in
which agents with a Markov Brain have to solve a Tetris-like game, i.e. falling
blocks of different sizes and shapes have to be arranged in a certain way. Al-
bantakis et al. found that the agents whose tasks required more of the brain’s
internal memory displayed a higher amount of integrated information over the
course of an evolutionary algorithm.
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3 Experiment

In the following chapter we will describe the experiment and how it is struc-
tured in more detail. First, an overview of the general setup of the experiment,
which includes the level layout, the animat design and details about the multi-
objective selection process, will be given. Afterwards, the different experi-
mental configurations and specifics about other parameters will be presented.
Lastly, we will present implementation details of the experiment.

3.1 Setup

This section will provide an overview over the multi-objective simulation of
this thesis. First, the spatial layout, a two-dimensional grid, will be described.
Then, the design and functionality of the organisms will be explained. Lastly,
the last two subsection focus on details of the multi-objective optimisation,
namely the identified objectives and the neighbourhood selection algorithm
developed for this thesis.

3.1.1 Layout

The foundation for the generation of the organisms we want to analyse is an
evolutionary simulation, whose layout was inspired by the work by Koenig et
al[47] and Fischer [32]. Figure 3.1 shows the layout used in this thesis. It
consists of a 2D world on an equilateral Cartesian grid of size 32, where two
“rooms” of the same size are connected via a 7 block wide gateway. The rooms
are surrounded by 1-block thick walls with the wall between them being 3
blocks thick, i.e. the left rooms” dimensions are 14x30, while the right room is
one block thinner.

These rooms each contain 36 starting points for organisms, which each have
at least two ‘“normal” grid block between them and the next starting slot.
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Figure 3.1: The grid the organisms are placed on [32]. Black cells mark the
non-passable walls, red cells are starting positions, green cells make
up the goal and white cells are regular passable cells.

For each generation, up to 72 organisms are being distributed across these two
rooms. To avoid initial positioning playing too large of a role for an organism’s
fitness and thus survival, the order in which they are assigned is calculated in
a non-linear fashion and each generation is repeated multiple times.

The pseudo code of the organism placement algorithm is shown in 1. Each un-
used position P is assigned a weight corresponding to the amount of organisms
placed on the same row or column as P. To increase the spread of organisms
across the grid, the position with the lowest weight is chosen. If there are mul-
tiple grid points with the same weight, the algorithm will fall back to simply
randomly choosing from that subset of points. Compared to placing the or-
ganisms linearly, this positioning strategy can significantly reduce the amount
of collisions, since it allows the organisms to move more freely, especially for
simulation runs where N is smaller than 72, i.e. when not every slot is filled.
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Algorithm 1 Organism Placement

1: function GETNEXTPOSITION(used Positions, availableSlots)

2: u <— unusedPositions(used Positions, availableSlots)

3: weightMap < {} > the weight map indicates how many agents
are placed on the same row or column as the
unused position. A lower value is more de-
sirable since it leads to an increased spread
of the population.

for unused in u do
posOnSameRowOrCol <+ 0
for used in usedPositions do
if unused.x == used.x or unused.y == used.y then
posOnSameRowOrCol <+ posOnSameRowOrCol + 1
10: end if

11: end for

12:

13: weight Maplunused] < posOnSameRowOrCol
14: end for

15:

16: return get PositionWith LowestW eight(weight M ap)
17: end function
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3.1.2 Animat Design

A\
A~

A 4
AN
~

Figure 3.2: The design of the agents used in the simulation. The yellow sym-
bols are the two inputs, which are generated by the front sensor
of the organism. The green circles represent the five hidden nodes
and the blue triangles symbolise the outputs. Recreated from [32].

The organisms, or animats, are each controlled by a Markov brain. The brain
structure chosen for this thesis consists of two inputs, five hidden nodes and
two output nodes to maximise the probability of an integrated mechanism in
the system [32] while limiting the amount of possible states. This design, which
is also shown in figure 3.2, corresponds to the 7 design in [32].

Located at the front of the organism, the input sensor measures two distinct
values, resulting in two sensor values each corresponding to one of the input
nodes. While the first value measures whether the given grid point is valid,
which in this case means that the point is not out of bounds and also not
a wall, the second sensor value indicates whether that field already hosts an
agent.

The output nodes form a binary value which is mapped onto a set of four
possible actions. These actions are all applied relative to the current position
of the animat and the direction it is facing. If both output nodes are off, i.e.
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0, the animat will do nothing in this time step. Both nodes being set to 1
results in the animat moving forward one step, provided it is possible to do
so. However, if only one of the nodes is set to 1, the organism will turn either
left, when the first node is 1, or right, when the second node is 1.

There is no direct active communication between animats outside of sensing a
neighbouring organism through one of the inputs.

3.1.3 Objectives

Three objectives have been chosen for the simulation’s multi-objective optimi-
sation: Maximising Gate Passages and minimising Collisions and Movement
Penalties.

Gate Passages measure how often an organism has passed through the gate
connecting the two rooms. Since that measure alone caused a few behavioural
problems, some additional preconditions were introduced. The first condition
is that the organism has to walk in a straight line through the gate to score,
which acts as a counter measure against standing still on the gate line and
scoring points by not moving at all. To fulfil this condition, the organism
has to touch one non-goal field directly before and after being on a goal field.
Additionally, a timer was added, which is set to a fixed value after successfully
performing a gate passage and counts down by one each time step. While
that timer is greater than zero, all gate passages performed by an organism
are ignored. This makes strategies like only moving the bare minimum of a
straight line to satisfy the first condition less viable and incites the organisms
to make more use of the two rooms.

Collisions happen when an organism tries to move forward by one step, but is
blocked by another organism already standing on that field. Only the organism
who initiated the move, and is thus responsible for the collision, is penalised,
the other animat is spared.

Using only these two measures resulted in a lot of organisms standing still in a
corner to try and minimise the collisions by minimising how much the animat
moves. Since this effectively meant that one of two objectives was perfectly
optimised, the selection algorithm considered their fitness values superior to
most other animats, which lead to more and more organisms standing still the
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longer the simulation was performed. To counteract this trend, the movement
penalties were introduced.

Movement Penalties quantify how often an organism performed a non-
desirable move. These consist of standing still and rotating on the spot for
an extended period of time, which in this case means three time steps. With
this additional objective, the organisms are incentivised to move more freely,
resulting in less animats standing still during the simulation.

3.1.4 Selection Algorithm

To gain a better understanding of how the integrated information of the pop-
ulation evolves over the course of a multi-objective evolutionary algorithm,
multiple different experiment settings were used (see 3.2). One of these pa-
rameters is the selection Algorithm parameter, which controls the algorithm
used in the selection part of the evolutionary process. There are two dif-
ferent options: a centralised algorithm based on the previously established
NSGA-IT algorithm by Deb et al. [26] and a decentralised synchronous cellular
neighbourhood-based selection algorithm, which was developed as part of this
work. In the following, the neighbourhood solution will be explained in more
detail.

As opposed to the centralised selection process of the NSGA-II algorithm, the
neighbourhood solution operates in a decentralised way. Instead of selecting
possible parents from a single, global pool of organisms, competition occurs
only between those individuals that are near each other. A neighbourhood of
organism o of a population P is defined as

Ny, =A{z|x € PNd(o,2) < dpas} (3.1)

where d(o,x) is the Manhattan Distance [48| between the last position of or-
ganisms x and o on the grid and d,,,, has been set to 2, i.e. it is a von Neumann
neighbourhood with r = 2.

The neighbourhood selection algorithm can be divided into two alternating
stages, the copy stage and the mutation stage. In the copy stage, the neigh-
bourhood of every solution o is scanned for solutions dominating it. If it is not
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dominated by any other solution, o will not be changed and will stay in the
population. Otherwise, the best dominant solution, which is determined by
their non-dominated rank and crowding distance, is copied onto o’s place and
replaces it in the next generation. The pseudocode for the copy assignment is
also shown in 2.

Algorithm 2 Copy Assignment

1: function ASSIGNCOPY(p, n)> where p is the population and n is a list of
neighbourhoods

2 assignments < {}

3 for i =0 to |p| do

4 dom < {zx|r e n ANz <, p;}

5: if |dom| == 0 then

6: assignments.push(p;) > No copy
7 else if |dom| == 1 then

8 assignments.push(dom.first) > dominating org. replaces p;
9 else

10: dom < dom. fastNonDominatedSort() > sort by <,
11: assignments.push(dom. first) > best org. replaces p;
12: end if

13: end for

14: return assignments

15: end function

Rather than directly producing a mutated offspring, mutation is delayed until
the mutation stage. Every other generation, all organisms have a chance to be
replaced with mutated versions of themselves, regardless of their neighbour-
hood status.

When using the neighbourhood-based approach, organisms that are more ac-
tive have a better chance at spreading their genetic information, because they
get in more contact with more organisms. Due to the slow diffusion of solutions
we hope to achieve a higher diversity of solutions than the NSGA-II approach.

3.2 Data Analysis

For our data analysis we considered 24 different parameter combinations. To
avoid randomness playing too much of a role, which could possibly distort the
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evaluation results, every configuration is repeated 31 times. The simulation
is set to run for 5000 generations, with a snapshot of the population being
taken every 100th generation, which results in around 1.7 million database
rows. Additionally, the objective values and identifiers of the fronts of every
100th selection process and corresponding supplementary front meta-data like
the hypervolume are stored as well, resulting in another 38000 rows. Taking
a snapshot more often, possibly even at every generation, in hopes of a higher
accuracy was at first considered, but quickly discarded. Firstly, it would have
had a large impact on the performance of the simulation, since the calculation
of the hypervolume takes up a lot of time, and secondly it would have resulted
in way too much data.

Every generation consists of 2000 time steps. In each time step, every organism
is updated once, allowing for one action per time step. This update is computed
sequentially, which means that if two organisms would go for the same grid
field, the first one to be updated would take precedence over the other one.
In fact, the second organism would not even know that the field was empty,
since their input sensor would not report the state of the field until it is that
organism’s turn to be updated.

Due to the large amounts of organisms and the high computational cost as-
sociated with each IIT calculation, we only consider the first two fronts of
each snapshot for IIT-related analysis. Similar to [4] and [32], we apply five
different measures. ®9 specifies the amount of integrated information gen-
erated by the Main Complex (MC) of the brain. ®}1  and ®J%_ . respec-
tively measure the amount of concepts and mechanisms contained in the MC.
Lastly, > ¢™9 i.e. the sum of the highest ¢ values of each mechanism, and
ookl ., the number of concepts specified by all mechanisms in the brain,
are stored as well. In contrast to the first three, these last two measures are
not limited to just the MC, but provide information about the whole brain of

the animat.

The different parameter values that make up the 24 experiment settings are
shown in Table 3.1. The first parameter, selectionAlgorithm, controls which
evolutionary optimisation is performed during the simulation and can be set to
either NSGA2 or Neighbourhood. The second parameter nAgents determines
the amount of organisms in the simulation and thus the population size. For
our experiment we chose to use population sizes of 72, 36, 18 and 1 or 100%,
50%, 25% and 1%, respectively. Lastly, the mutation Rate parameter controls
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the probability of a point mutation occurring during recombination, which
are set to 0.001 (low), 0.005 (medium) and 0.01 (high) in this thesis. Other

mutation rates offered by MABE are fixed for every experiment.

The NSGA-IT algorithm used in this thesis uses a tournament size of five
for every experiment setting. For recombination, two parents are used to
create a single offspring for the next generation, except for experiments with
a population size of 1, where only parent is used.

selectionAlgorithm popSize mutationRate Identifier
NSGA-II 1 low alew
NSGA-II 1 medium q/pedium
NSGA-II 1 high ol
NSGA-II 25% low alow
NSGA-II 25% medium quiptedium
NSGA-II 25% high alioh
NSGA-II 50% low alew
NSGA-II 50% medium qedium
NSGA-II 50% high aligh
NSGA-II 100% low alow
NSGA-II 100% medium agdium
NSGA-II 100% high oligh
Neighbourhood 1 low low
Neighbourhood 1 medium medium
Neighbourhood 1 high high
Neighbourhood 25% low low
Neighbourhood 25% medium [Bpredium
Neighbourhood 25% high high
Neighbourhood 50% low Low
Neighbourhood 50% medium medium
Neighbourhood 50% high high
Neighbourhood 100% low low
Neighbourhood 100% medium medium
Neighbourhood 100% high o0

Table 3.1: All 24 different experiment settings.
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3.3 Implementation

The implementation of the experiment consisted of two separate modules: the
simulation and the data analysis. While the simulation was written in C+-+
to leverage the language’s high performance, the data analysis part was im-
plemented in Python for its extensive library of analysis and visualisation
modules.

4 B

Group p‘ World
Archivist Optimizer Organism
Genome Brain

- /

Figure 3.3: An overview over the general structure of the MABE framework
[15]]14].

The simulation is an extension of the Modular Agent-Based Evolver (MABE)
framework developed by Hintze et al [15]. MABE is a framework for developing
and running evolutionary algorithm experiments. The framework’s first-class
support for Markov Brains and its ease of use made it a good choice for this
thesis. It provides interfaces and sample implementations thereof for every part
of the evolutionary process. An overview of the structure of MABE can be
seen in figure 3.3. An organism consists of a brain that controls the organism’s
actions and a genome that acts as a blueprint for said brain. At the moment
of writing this thesis, there are seven different brain types, like the Markov
Brain or Long Short-Term Memory Brain, one can choose from. A group of
organisms form a population. A population is placed inside a world, which
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is essentially equivalent to the setting the experiment is performed in and is
responsible for evaluating the organisms. For instance, a world could be a
maze organisms have to find a way out of that rewards organisms whenever
they find the exit in a given time limit. Once the world finished evaluating the
population, the optimiser is in charge of generating the population of the next
generation by applying the genetic operators on the current set of organisms.
The archivist is responsible for storing data about the organisms, e.g. objective
values or the line of descent. Together, the archivist, the optimiser and the
population form a group.

For this thesis a custom implementation of a world originally developed in [32]
was extended. Instead of evaluating how each organism interacts with clones of
itself, every organism is placed in the same room. Since MABE only supports
single-objective optimisation in its base framework, the two multi-objective op-
timisers, i.e. NSGA-II and the neighbourhood algorithm, were implemented as
part of this thesis. Additionally, the archivist was slightly changed so that or-
ganisms that are archived will have their Transition Probability Matrix (TPM)
and Connectivity Matrix (CM) stored as well, which eliminates the need for
a second "visualisation" run of the simulation. And lastly, the two multi-
objective optimisers also periodically store data about the Pareto fronts like
the hypervolume and which organism is part of which front. After performing
the simulation, the archived data of every experiment is moved into a sqlite3
database [40] to allow for easier indexing and manipulation.

The PyPhi python package developed by Mayner et al [53] was used for the II'T
analysis of the organisms’ brains. It acts as a reference implementation of II'T,
enabling users to analyse the cause-effect structures and integrated information
of networks such as those used in this thesis. Other python libraries used in
the analysis of the experiment are pandas [54|, which is an open source library
containing various data analysis tools, matplotlib [43], a 2D plotting library,
and seaborn [89], a high-level data visualisation library based on matplotlib.
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In this chapter we will perform an analysis of the results of the experiments de-
scribed in the previous chapter. The first section focuses on the multi-objective
nature of the simulation by analysing the evolution of the hypervolume and
correlations between the objectives. The second section then takes a closer
look at the integrated information generated by the produced organisms.

4.1 Multi-objective Analysis

Before diving into the analysis of the organisms’ integrated information, we
first want to evaluate the convergence and diversity of the population. For
this we look at both the hypervolume of each experiment with a focus on
the influence of each of the parameters, followed by a front analysis and a
correlation analysis of the three objectives.

4.1.1 Convergence

Figure 4.1 shows three different plots, which each visualise the evolution of the
population’s hypervolume for every experiment. Since each experiment is re-
peated 31 times, the median of the repeated experiments is used. The first line
plot shows a line for each of the 24 different experiments with a different colour,
style and thickness depending on the selection algorithm (selection Algorithm),
mutation rate (mutationRate) and population Size (popSize) parameters, re-
spectively. From this plot it is apparent that the experiments that used the
NSGA-IT algorithm, shown here in blue, all have a higher median hypervolume
than those that applied the Neighbourhood algorithm. The best performing
combination of parameters in terms of hypervolume also has a normal muta-
tion rate and a population size of 100%, while the worst combinations all have
a population size of 1.
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Figure 4.1: Evolution of the population’s hypervolume
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The following two plots focus on the effect of the mutation rate and the popula-
tion size. Experiments with the same mutation or population size parameters
are grouped together, i.e. there are as many lines as there are different pa-
rameter values. Each line is the mean of all corresponding values and the
area around each line is the Standard Error of the Mean (Standard Error of
the Mean (SEM)). One can see that a fully populated simulation (Pjgg) also
results in the highest hypervolume on average. However, the standard error is
also much higher than for less densely populated experiments. The reason for
this large span could be that more organisms usually result in more opportu-
nities for collisions and thus a lower hypervolume, while the larger population
size also allows for a higher diversity, increasing the hypervolume. Depending
on the random seed, this could then result in either a low or a really high
diversity and convergence. Population sizes of 25% (Ps5) and 50% (Psg) seem
to perform similarly. Until around generation 4000 Psq had a slightly higher
average Hypervolume (HV) than P,5 and even came close to the HV of Pjgo.
After that point, Ps slowly decreased, allowing Psq to overtake it. Experi-
ments with a population size of 1 (P;) have the lowest hypervolume by far,
since they have to rely on a good starting genome and mutation to guide the
lone organism towards the true Pareto front, even though the collision value
is already the best it can be (0).

Even though populations with a medium mutation rate (Pyormar), which are
displayed in blue, have the highest mean hypervolume, the differences to P,
and Py,gn, not being that large in combination with the high spread of all three
imply that the mutation rate does not have that much of an effect on the
overall performance of population. The mean hypervolume of both P, ,ma
and Py;g, are on par with each other for most of the generation until Py;gp’s
performance stagnates at around generation 3200. Fj,,, even overtakes Ph;gp
in the last few generations because of its steady rise in performance. Overall,
the mutation rate doesn’t have as much influence on the result as the selection
algorithm or population size parameter though.

4.1.2 Objective Correlation

Table 4.1 shows the pearson correlation coefficient p with the corresponding p
values between each of the objectives. It shows that there is no clear universal
strong correlation between any of the objectives. The relatively high correla-
tion between collisions and movement penalties is due to organisms blocking
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P Pys Pso P P Ps
C|M p|0.135 0.247 0.139 0.023 0.084 0.181

p | 0.00e+00 0.00e+00 0.00e+00 6.96e-11 1.6e-262 0.00e+00
C|G p|0.000 0.020 0.018 0.002 0.009 0.069

p | 8.75e-01 3.73e-09  1.64e-07 5.46e-01 2.90e-04 8.2e-107
M|G p|-0.012 0.153 0.185 0.066 -0.038 0.184

p | 3.25e-10  0.00e+00 0.00e+00 3.96e-82 1.59e-53 0.00e+00

Table 4.1: Pearson correlation p and its p-value for each pair of objectives,
which are abbreviated here (C' = Collisions, M = Movement Penal-
ties, G = Gate Passages). The X | Y syntax stands for the corre-
lation between objectives X and Y. P, and Pj correspond to the
identifiers assigned in 3.1, i.e. NSGA-IT and Neighbourhood respec-
tively.

one another. Consider a situation where organism A is standing still in a corner
or at some other fixed point pos on the grid and organism B approaches pos.
If B’s capabilities don’t include circumventing other agents, it will try to move
forward through A, at which point B is stopped in its tracks and is awarded
a collision point. As long as the situation stays the same, i.e. no other organ-
isms move into the field of vision of A or B, it is probable that the collisions
will keep happening. This causes A to stay at the same place for an extended
amount of time, triggering a movement penalty. Only if A’s functionality is
complex enough to escape from such a situation or if other organisms change
the scenario will the cycle stop, i.e. both collisions and movement penalties rise
indefinitely. The highest correlation between the two can be observed for P,
where collisions are less likely to happen, which means the described scenario
has more impact on the data.

One would expect collisions and gate passages to have a high correlation, since
more gate passages imply more movement, which would imply a higher chance
of encountering another organism, which in turn would lead to a higher collision
count. However, there is close to no correlation between the two objectives.
One reason for this could be the scenario described above. Another explanation
could be that there are a lot of organisms that only move around inside one
room, which would increase the chance of collisions without increasing gate
passages.
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4.1.3 Organism Distribution

Figure 4.2 shows the objective distribution of ai¢dum and Bredium aeross all

repeats at the end of the simulation, i.e. at the 5000th generation. To avoid
overplotting issues only the first Pareto front of each run is visualised. Due
to the high density of organisms the points are also both jittered and drawn
semi-transparently (o = 0.3).

Most of the organisms produced by afied®™ perform vastly better than those
of paedivm While Sjedm’s hest performing organisms have at most two gate
passages, those from a3 achieve up to seven. Most organisms in both sets
have the same amount of collisions and movement penalties, namely 0, while
only differing in their amount of gate passages. However, the population of
both experiment settings also include a few organisms that are located off this
main cluster. Although both sets of these kinds of organisms are around the
medium

same size, those produced by aff still perform better than their gyedivm
counterpart on average.

Overall, there is no obvious difference in diversity between the results of the
two experiment settings, but a difference in convergence or general performance
can be observed. That means afi&?™™’s superior hypervolume (85280360 vs.
4488440) is mostly a result of a better convergence to the Pareto front. One of
the reasons for the worse performance of B7réd®™ could be the slow diffusion
of solutions, which might have slowed down the population’s progression. It is
possible that a longer running simulation of B¢ ™ might generate similarly

performing organisms.

4.2 Integrated Information

In the following we will analyse the evolution of the IIT measures (see 3.2), the
correlations between them and the three objectives and how the experiment
parameters affect the overall integrated information. Afterwards, we will take
a more detailed look at the brain structure of the best performing organisms
of the experiments.
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Figure 4.2: Scatterplot distributions of two experiments’ best organisms, i.e
those that are part of the first pareto front, at generation 5000.
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4.2.1 Development

Figure 4.3 shows the average hypervolume and integrated information of all
experiments with a population size of 25% (i.e. Ps5). The area surrounding
the average line corresponds to the SEM. Additionally, a linear regression line
is displayed in red. To make the plots easier to read, lines of IIT measures
that are only concerned with the main complex of the brain are displayed in
blue, while the rest are drawn in purple.

When comparing the NSGA-II and Neighbourhood runs, some differences be-
come apparent. The ®M9* values of a5 are all higher on average, with the

exception of the low mutation run, in which both o and g have a similar

Max
concepts

Mazx 3 ; Mazx 3
and ¢ . but is not as noticeable for ®2;%" . . The differences become

most notable when contrasting @™ and gyedivm, oMz and other related

performance. The same applies for the other MC centric measures, ®

measures of the former are rising steadily, while the latter shows the oppo-
site development. The complexity of the whole brain, which is measured in
ST oMam and Y gMaz . of a seems to be higher than that of 8 on the whole.

concepts’

The mutation rate has a noticeable impact on the integrated information of
both a and 8. While the complexity of low mutation rate organisms in « is
either stagnant or slowly declining, experiments with high and medium muta-
tion rates appear to produce organisms with an increasingly better integrated
main complex over time. For 3, the opposite is true. In both gyedm and

3;9", organisms appear to lose their complexity very quickly, while the low
mutation rate run is more stable. The reason for this could be that the higher
mutation rate combined with the slower spread of good solutions results in
well-integrated organisms mutating too often and becoming less integrated

before they get a chance to spread.

Figure 4.4 illustrates how the population size influences the evolution of the

integrated information. When looking at the o graphs, one can see that a

population size of 25% results in a higher level of integrated information on

average. Similar to the findings in [32], we assume that this is because or-

ganisms in higher density populations don’t need a complex brain to generate

good results, since they can use other organisms for guidance. The MC com-
medium>

plexity of aj¥ s population appears to continue rising if the simulation ran
longer, which could be explored in a future work.
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Figure 4.4: Development of II'T measures of three different population sizes for
each of the two selection algorithms.
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Unlike the « plots in 4.4, the three plots on the right side show the effect of
population size on the low mutation rate § experiments. However, they show
a similar trend. While the lower population sizes, i.e. 25% and 50%, display

a steady, albeit stagnant, development, £19%’s integrated information declines

over time.
P Pos Psg Pioo P, P

C | pMazx p 10.002 -0.014 0.002 0.001 0.025 -0.011

p|2.47e-01 1.85e-05 5.20e-01 7.90e-01 2.86e-25 4.80e-04
M | pMaz p -0.092 -0.106 -0.025 -0.013 -0.096 -0.080

p|8.75e-01 1.2e-213 6.60e-14 1.17e-04 0.00e+00 2.44e-142
G | pMazx p -0.012 -0.084 -0.042 -0.056 -0.160 -0.035

pl3.25e-10 3.6e-134 1.08e-35 5.26e-60 0.00e+00 4.80e-29
C|S oM 510035 -0070 -0.020 -0005 -0.006  -0.055

D |5.760-77 1.556-94 1.47¢-09 1.71e-01 1.59¢-02  9.53¢-70
M S oM 0279 0224  -0.063 -0.067  -0.268  -0.319

p | 0.00e4+00 0.00e+00 8.08e-78 2.41e-83 0.00e+00 0.00e+00
G | ZQﬁM‘m p 0.100 -0.019 0.114 0.211 0.013 -0.066

p | 0.00e4+00 5.79e-09 7.5e-251 0.00e+00 4.61e-08 1.91e-98

Table 4.2: Pearson correlation p [11]| and its p-value for every objective (C' =
Collisions, M = Movement Penalties, G = Gate Passages) and each
of the two main II'T measures.

Table 4.2 shows the Pearson correlation [11] between the optimised objectives
and two of the IIT measures, namely ®¥* and Y~ ¢, When looking at the
movement penalty correlations, one can see the trend from above continued
here. The larger the population, the less likely it is that a low amount of
movement penalties is associated with a high main complex and overall brain
complexity, and the other way around. However, the correlation between goal

»™Ma® appears to become stronger the larger the population is.

passages and ) |
A reason for this difference in overall brain complexity could be that organisms
have to navigate around more obstacles, i.e. other organisms, to perform a gate
passage, which might require a well-working decision centre. The complexity

of the main complex is not affected in the same way though.
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Table 4.3: Small multiple of the most common and best performing, accord-

ing to their ®”% and gate passages value, brains of the NSGA-II

experiments and overall best brains.
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experiments.
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4.2 Integrated Information

4.2.2 Brain Analysis

Tables 4.3 and 4.4 show the most common brains and those with the highest
dMar and gate passages values grouped by their associated experiment as a
small multiple. Additionally, we chose to include the best performing and most
common brains across all experiments ("All"). The graphs representing the
brains are divided into three parts or rows: inputs (blue), hidden nodes (green)
and outputs (yellow). An edge between two nodes A and B means that the
state of A at time step ¢ influences the state of B at t+ 1, i.e. A; and By, are
connected through a gate. We chose to use gate passages as the representative
of the objectives, because a good gate passages value requires more deliberate
action than either of the other two. For instance, an organism can just do
nothing for the whole simulation and will have a perfect collision score, but

will probably not contain an interesting brain structure.

One of the first things one notices is that the most common brain across all
experiments has no edges at all. As expected, these organisms exhibit a poor
performance of 0.295 gate passages, 54.311 collisions and 1986.051 movement
penalties on average and a mean ®%® and Y~ ¢ of 0. They can be mostly
found in the P, experiments, but are also the most common graph structure of

3;'9", suggesting that experiments in which mutation plays too much of a role
suffer from a loss of complexity and integration over time. The graph with the
overall highest integrated information of ®%* = 3.253 and Y~ ¢ = 1.108,
displayed in the first row and maz(®**) column of 4.3, does not consider its
inputs at all, which means the environment has no impact on the organism’s
output. Consequently, if such an organism would still display a good objective
performance, it would probably be the result of mostly luck. This supports
the observations from 4.2 that a high integration does not necessarily lead to
a good performance. When looking at the graphs that resulted in the highest
gate passages values (shown in the last column), one can see the difference more
clearly. With a few exceptions, most of these graphs are highly integrated with
their input nodes, but generate close to or no integrated information.

When comparing the graphs of a and [, the differences between the two sce-
narios become more apparent. «’s best gate passages graphs include vastly
more edges between nodes than those generated by 3, which could explain the
difference in performance and thus hypervolume (see 4.1.3 and 4.2.1). This dis-
parity becomes even more clear when looking at 9" and 3"9" graphs. For

instance, ozgégh’s most common graph is close to fully connected, whereas the
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neighbourhood equivalent Bgégh includes four nodes without any connection,
which are also called orphan nodes. This can be seen in the most common

graphs of various other neighbourhood experiments, e.g. B%gh. In fact, the

most common graph of nggh has no edges at all. Similar to the findings in
4.2.1, we think this is due to the little amount of crossover opportunity for
smaller populations in £, which in combination with the higher mutation rate

might result in the loss of brain complexity.
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5 Conclusion

The detection and quantification of consciousness in machines is an ever-
evolving field of research. With more and more products that feature some
form of Al becoming part of the everyday life and the simultaneous rise in
complexity of such Als, the ability to identify consciousness in machines is
more important than ever. One of the most promising and popular theories in
this field is the Integrated Information Theory 3.0 [61], whose mathematical
framework aims to make consciousness testable.

To explore and further the research of II'T and machine consciousness in gen-
eral, we extended the single-objective EA simulation developed by Fischer [32],
in which they evaluated the integrated information of a homogeneous swarm
of organisms interacting with each other. In order to keep the diversity of
the solution set high, we developed a multi-objective GA, for which we iden-
tified three objectives: GatePassages, which measure how often an organism
crosses the goal line of the two-dimensional grid, Collisions, which quantify
the amount of collisions an organism causes, and MovementPenalties, which
measures how often an organism performs an unwanted action, e.g. standing
still for too long. Additionally, the organisms are evaluated simultaneously as
a group, which means they are able to interact with each other in the same
simulation run and can thus influence each other’s behaviour directly.

To gain a better understanding of the integrated information generated by
these organisms and what influence the environment of the organism has on
it, we created a set of 24 different experiment parameter combinations out
of the mutation rate, population size and selection algorithm choices. For
this we implemented a centralised algorithm based on NSGA-II by Deb et al.
[26] and a decentralised cellular, i.e. neighbourhood-based, algorithm. The
neighbourhood algorithm performs genetic operators such as recombination
only inside so-called neighbourhoods, i.e. between organisms whose distance
on the grid is smaller than a given distance limit d,,q;.
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5 Conclusion

We then evaluated the results of said multi-objective simulation with a focus
on the influence of the different parameters. First, we analysed the multi-
objective aspects of the results such as the Pareto fronts’ convergence and
diversity. After an comparison of the evolution of the experiments’ hypervol-
umes, the correlation between the three objectives was examined, followed by
an analysis of the front distribution of organisms of two sample experiments.
We then evaluated the complexity of the internals of the organisms over time
by applying five IIT measures that quantify the integrated information of both
the MC and the whole brain and comparing their development over time. Af-
terwards we investigated the correlation between the simulation’s objectives
and the II'T measures. Finally, an analysis of the brain structures of the most
common and best performing brains was performed.
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6 Future Work

During the writing of this thesis, we have identified a few problems and research
questions that could be explored in a future work.

In this thesis we focused on the development and evolution of a single kind
of organism in a static world. Instead of using the same amount of inputs,
hidden nodes and outputs for every organism and only changing its wiring, it
would be interesting to analyse how organism with completely different internal
structures would interact with each other and how this affects the generated
integrated information. These different internal structures could also include
different gate types.

An interesting idea would be to replace the static grid used here with a more
dynamic world, which means organisms would have to be able to adapt to
different environments, which could result in more complex and interesting
organism structures.

One of the main problems was the high computational complexity of the IIT
measures, which severely limited the amount and type of organisms we could
analyse. If one were to build a more complex organism structure, a better
performing alternative or an approximation of the measures, such as [36] and
[5], would have to be used instead.

Another idea that was brought up during development is to use the integrated
information of the organisms as an objective in the optimisation process in
order to find structures that generate the highest possible integrated informa-
tion. This would require an interface from the C-++ simulation to the python
PyPhi module [53] though.
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