
Martin Wieczorek

Evolutionary Algorithm

for Parameter Optimization of

Context Steering Agents

Intelligent Cooperative Systems

Computational Intelligence

Evolutionary Algorithm

for Parameter Optimization of Context Steering

Agents

Master Thesis

Martin Wieczorek

June 16, 2020

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: Dr.-Ing. Heiner Zille

Advisor: Dr.-Ing. Christoph Steup

Martin Wieczorek: Evolutionary Algorithm
for Parameter Optimization of Context Steering Agents
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2020.

Abstract

Movement is a crucial aspect for agents navigating in a simulation. Several
steering approaches emerged over time. Traditional steering provides easy to
implement but simple movement pattern. Swarm simulation has a high focus
on the movement of the swarm as a whole. Context steering, in contrast, tries
to �nd a good movement solution for individuals by considering all of its sur-
roundings. Context steering was made modular and highly parameterizable so
that it can cope with many di�erent situations. The more modules are used to
create a movement pattern, the harder it gets to parameterize them. In this
work, context steering is combined with automatic parameter con�guration to
overcome this problem. Several parameter con�guration approaches are inves-
tigated, and evolutionary algorithms are considered to be the most promising
ones. Thus, an evolutionary algorithm is designed that can �nd parameter
con�gurations for context steering agents, and the context steering approach
is extended to be used by an evolutionary algorithm. Several experiments
are designed to evaluate the found solution quality. Di�erent aspects are in-
tegrated to enable the system to be user-guided. Furthermore, a robustness
criterion was developed that turns out to be useful for agents that shall deal
with a set of di�erent scenarios.

I

Preface

I want to give my gratitude to everyone who supported me in writing this
thesis. Actually, there are too many people involved to name everyone, but
I will try nevertheless. Let's start with the people who o�ered a topic to me
that was so fascinating that I could not resist working on it. Thanks to Martin
Kirst and Franz Pieper. I want to thank Sanaz Mostaghim for giving me the
opportunity to write this thesis at the chair of computational intelligence of
the Otto von Guericke University Magdeburg. A special thanks to Heiner
Zille for giving me direction and plenty of advice on writing a thesis, and
to Christoph Steup for improving it even more. Thanks to my coworker at
Polarith, especially Martin Zettwitz. Thanks to my family for supporting me
all the time and believing in me. And of course, I want to thank my friends
Max, Kay, Bernd, Max, Denny, Danny, Vivek, Ali, Calli, and everyone else
I forgot for giving me fun and refreshing time whenever I was exhausted of
writing.

III

Contents

List of Figures IX

List of Tables XI

1. Introduction and Motivation 1

1.1. Goals . 2

1.2. Structure . 2

2. Basics and Related Work 3

2.1. Movement . 3

2.1.1. Overview . 3

2.1.2. History of Context Steering 4

2.1.3. Context Steering . 6

2.1.4. Multi-objective Decision Making 9

2.1.5. State of the Art . 11

2.2. Evolutionary Algorithm . 13

2.2.1. Encoding . 13

2.2.2. Fitness . 15

2.2.3. Selection for Reproduction 15

2.2.4. Crossover . 16

2.2.5. Mutation . 17

2.2.6. Environmental Selection 18

2.2.7. Termination Criterion 18

2.2.8. State of the Art . 19

2.3. Robustness . 24

2.3.1. State of the Art . 27

2.4. Summary . 28

V

Contents

3. Methods 29

3.1. Robustness for Context Steering 29

3.2. Context Steering . 30

3.2.1. Behaviors and Parameters 30

3.2.2. Adjustments . 35

3.3. Algorithm Choice and Design 39

3.4. Fitness Function . 43

4. Benchmark Implementation 49

4.1. General Settings . 49

4.2. Scenes . 49

5. Experiments and Evaluation 53

5.1. Evaluation Non-Determinism 53

5.2. Evaluation of an Agent . 53

5.3. Settings . 54

5.4. Experiment 1 . 54

5.4.1. Description . 54

5.4.2. Results . 56

5.4.3. Interpretation . 60

5.5. Experiment 2 . 60

5.5.1. Description . 60

5.5.2. Results . 61

5.5.3. Interpretation . 65

5.6. Experiment 3 . 65

5.6.1. Description . 65

5.6.2. Results . 66

5.6.3. Interpretation . 67

6. Conclusion and Future Work 69

6.1. Conclusion . 69

6.2. Future Work . 70

Appendices 73

A. Scenario Variations 75

VI

Contents

Bibliography 79

VII

List of Figures

2.1. Basics: Traditional seek behavior 5

2.2. Basics: Deadlock example . 5

2.3. Basics: Sensor and context map 7

2.4. Basics: Behavior mapping . 8

2.5. Basics: Behavior combination 8

2.6. Basics: Pareto dominance and front 10

2.7. Basics: Evolutionary algorithm cycle 14

2.8. Basics: One-point crossover . 17

2.9. Basics: Robustness Type I . 26

2.10. Basics: Robustness Type II . 27

3.1. Context steering: seek and �ee mapping 31

3.2. Context steering: avoid mapping 32

3.3. Context steering: magnitude multiplier 32

3.4. Context steering: value mapping 34

3.5. Contest steering: URQ Mapping 37

3.6. Evolutionary algorithm: encoding 41

3.7. Evolutionary algorithm: algorithm design 43

4.1. Implementation: scene 1 . 50

4.2. Implementation: scene 2 . 50

4.3. Implementation: variation 1 scene 2 51

4.4. Implementation: scene 3 . 52

5.1. Experiment 1: trails of scene 1 56

IX

List of Figures

5.2. Experiment 1: trails of scene 2 58

5.3. Experiment 1: trails of scene 3 59

5.4. Experiment 2: trail of Scene 1 62

5.5. Experiment 2: Scene 1 - Fitness distributions 63

5.6. Experiment 2: trail of Scene 2 63

5.7. Experiment 2: Scene 2 - Fitness distributions 64

5.8. Experiment 2: trail of Scene 3 65

5.9. Experiment 2: Scene 3 - Fitness distributions 66

A.1. Implementation: variations scene 2 76

A.2. Implementation: variations scene 3 77

X

List of Tables

3.1. Parameters of context steering behaviors and their boundaries . 31

5.1. Experiment 1: Scene 1 - Fitness values 57

5.2. Experiment 1: Scene 1 - Mann-Whitney U Test 57

5.3. Experiment 1: Scene 2 - Fitness values 57

5.4. Experiment 1: Scene 2 - Mann-Whitney U Test 58

5.5. Experiment 1: Scene 3 - Fitness values 59

5.6. Experiment 1: Scene 3 - Mann-Whitney U Test 60

5.7. Experiment 2: Behavior Comparison 61

5.8. Experiment 2: Test Statistic . 61

5.9. Experiment 3: Scene 2 - Robustness Analysis 67

5.10. Experiment 3: Scene 3 - Robustness Analysis 67

XI

1. Introduction and Motivation

Movement is one of the essential aspects of believable non-player characters

(NPC) in video games. Traditional steering systems provide agent movements

that work well if there is a group of NPCs that is perceived as one entity. Minor

�aws of single agents are not that important since they are often not observed

or do not matter for the overall movement. However, when focusing on indi-

vidual agents, e.g., when �ghting them one on one or in a live simulation game,

every faulty behavior erases the illusion of an intelligent NPC. To prevent these

�aws, a system called context steering was developed, which enables agents to

make more accurate and believable movement decisions. Similar to traditional

steering, it provides a set of di�erent behaviors that can be combined to create

more advanced and di�cult movement patterns. The di�erence is that the

�nal decision-making is not based on the set of individual decisions from each

behavior like it is done in traditional steering, but on the whole contextual

information that each behavior gathered from its surroundings. To ensure

broad applicability, each behavior has several parameters for �ne-tuning. For

an agent that consists of several behaviors, this can be up to hundreds of pa-

rameters that need to be adjusted. This can be a very time-consuming task,

especially since some of the parameters in�uence each other.

The goal of this thesis is to reduce the work a user of context steering has with

�ne-tuning all parameters. A more abstract way to tell the context steering

system how an agent shall behave would be more user friendly. This could

be something as simple as drawing the desired path into the scene, and the

context steering system �nds itself the parameters that are needed to create

such a movement. This parameter optimization task could be solved, for ex-

ample, by an evolutionary algorithm that has already been used to solve many

optimization tasks, including algorithm parameter optimization.

1

1. Introduction and Motivation

1.1. Goals

This thesis aims to evaluate if evolutionary algorithms are a feasible method

to �nd parameter sets for context steering agents so that they behave believ-

ably and robustly. To achieve this goal, the following problems need to be

considered:

• A robustness de�nition for an evolutionary algorithm for context steering

needs to be de�ned.

• An encoding that �ts the needs of context steering has to be developed.

• A �tness function for context steering that leads to successful and robust

solutions needs to be found. Furthermore, this �tness function shall

enable the user to guide the evolution towards a desired behavior.

• It has to be examined if the algorithm can automatically �nd a set of

useful parameters for context steering behaviors.

• The robustness de�nition needs to be analyzed according to its property

to lead to solutions that apply to a broader range of scenarios.

1.2. Structure

In the next chapter, basic information and corresponding related work are

presented. This covers movement, especially the concept of context steer-

ing, evolutionary algorithms, and robustness of optimal solutions. The third

chapter describes the used methods in more detail. A robustness concept for

context steering optimization is introduced. Context steering behaviors and

their parameters are described. Limitations of the existing context steering

were shown, and solutions to overcome these are presented. Finally, the used

evolutionary algorithm and its operators are explained. The fourth chapter in-

troduces the used evaluation scenarios with all its parameters and variations.

Chapter �ve shows how the experiments are designed, the resulting data, and

how this could be interpreted. In the last chapter six, a conclusion for this

work is made, and future work will be discussed.

2

2. Basics and Related Work

This chapter covers all the background information that is needed to under-

stand the topic of this thesis. It starts with movement and especially context

steering and is followed by evolutionary algorithms and robustness.

2.1. Movement

This section explains what context steering is and how it works. Context

steering is a type of steering that not only considers the made decisions of

single behaviors when combining them but also the context in which they

were made. However, to understand what steering is in general and how it

is located in the general topic of movement, this section starts with a short

overview of movement types.

2.1.1. Overview

Movement as a word can have a lot of di�erent meanings that are mostly

related to changes. This could be the change in prices of products or the

change of a person's view towards a speci�c topic. Nevertheless, in the domain

of this work, movement is the change of position of an agent or object. How

this change of position occurs can be subdivided into three di�erent aspects:

locomotion, steering, and path planning.

Locomotion covers everything that can be considered as agent dependent mo-

tions that are needed to make the agent actually move. For humans, animals,

and humanoid robots, this would mean the motion or actuation of the indi-

vidual body parts to change location or perform actions in one place. Alter-

natively, for vehicles, it would be something as simple as turning the wheels

or spinning a rotor to change the position.

3

2. Basics and Related Work

Path planning is a more abstract task that enables an agent to �nd a way

from its current position to a given goal, mostly by de�ning sub-goals that are

easier and more clear to achieve.

Steering is the connecting piece between locomotion and path planning. It

utilizes the motion and actual movement of locomotion to move the agent

towards the goal or sub-goal given by the path planning. This is done by

deciding in which direction the movement shall happen to reach the goal.

Based on the type of steering, this can also incorporate more complex tasks

like local obstacle avoidance.

2.1.2. History of Context Steering

Reynolds described in [31] the di�erent components of movement for an agent.

He divides movement into action selection, steering, and locomotion, similar to

the aspects of movement in subsection 2.1.1. Action Selection is a higher-level

decision mechanism that detects, e.g., a change in world state and reacts to it.

Locomotion, in contrast, is the accurate actuation of each body part to enable

a character's motion, e.g., walking, running, or even standing in an idle posi-

tion. His main work is about steering, which is in between action selection and

locomotion. It takes the goals from action selection, decomposes it into a series

of simple subgoals, and utilizes locomotion to do the actual movement. Fur-

thermore, he describes di�erent steering behavior like seek, �ee, wander, avoid,

pursue, evade, and arrive. Figure 2.1 illustrates how the resulting movement

for a seek behavior looks like. The agent is currently moving along its current

movement direction. The seek behavior creates a desired direction towards

the target. The resulting steering direction is computed by the subtraction

of the desired direction and the current movement direction. If a force is ap-

plied to that steering direction, it will lead the agent towards the target. How

this exactly looks like depends on the controller that the agent uses. Either

the direction is directly applied, and the agent rotates in an instant towards

the target, or the controller has some turning limitations, and the change in

movement is done step by step. Here, the path for a controller with physical

limitations is shown.

More complex behaviors can be achieved by combining di�erent behaviors.

This is done by adding all resulting steering directions of each behavior. Other

ways of combining behaviors could be averaging or prioritizing. Nevertheless,

4

2.1. Movement

current direction

desired direction

seek

steering

seek path

agent

target

Figure 2.1.: The seek behavior of a traditional steering system is based on the

agent's current position and movement and the target's position.

The illustrated seek path is the result of the applied steering di-

rection for a physics based agent. Graphic adopted from Reynolds

[31].

the combination of merely steering directions can lead to unwanted behaviors

like a deadlock (see Figure 2.2). Here, a deadlock is shown as a situation where

the agent stops moving because the desired directions negate each other and

result in a null vector. Another possibility is that the agents endlessly cycles

in the same movement pattern without reaching the target. To prevent this

kind of fault, additional code needs to be written to get highly specialized

behaviors. This is contrary to the initial intention of having a modular and

lightweight behavior system.

seek

target
�ee

obstacle
resulting zero vector

Figure 2.2.: Example for a deadlock scenario where seek and �ee together result

in a zero vector.

5

2. Basics and Related Work

2.1.3. Context Steering

Aware of these issues, Fray developed context steering and published its con-

cept in [13]. Context steering keeps the same goals as traditional steering:

providing a set of small and lightweight behaviors that can be combined to

achieve more complex behaviors. Nevertheless, compared to traditional steer-

ing, it provides not only the steering directions of each behavior but also the

whole context in which the decision was made. Also, Fray extended this system

from a single objective function to multiple objective functions.

Before explaining each part of context steering, a short overview is given. To

perceive its surroundings, the agent has a sensor that consists of receptors.

Each receptor has a direction vector and is linked to an element of a context

map. This sensor enables the agent to get distance and direction-based infor-

mation of all objects around it. This information is stored in a context map.

Each behavior contributes its information into this context map. Based on the

accumulated information, a �nal steering direction is made.

Context Maps

A context map is a one-dimensional array of scalar values. As already men-

tioned, each element of the context map is linked with a receptor of the sensor

(illustrated in Figure 2.3). The direction vector each receptor has represents

a possible movement direction of an agent. To get scalar values that can be

written into the context map, the behavior needs to be sensitive to a particular

set of objects. If an object the behavior searches for lies in the same direction

as a receptor is pointing to, a scalar value is written into the corresponding

element of the context map. How signi�cant this value is, depends on the

type of mapping that is used for creating the context values. For example, the

closer an object is, the greater is the resulting context value.

Context Maps by Example

In Figure 2.4, a seek behavior is applied to the agent, and two objects A and B

are within its vicinity so that the seek behavior can detect them. The distance

between the agent and an object is described by the di�erence in positions:

the object vector veco = posobejct − posagent. For all receptors, it is checked if

6

2.1. Movement

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Figure 2.3.: Context map (left) and sensor (right) of an agent.

an object a�ects this receptor or not. This is done by the angle ω between the

receptors vector vr and the object vector.

ω = cos−1
〈~vr,~vo〉
‖~vr‖‖~vo‖

∈ [0, π] (2.1)

If the angle is smaller than a given threshold θ ∈ [0, π], the receptor is a�ected

by the object, and a context value z greater 0 is calculated.

z =
θ − ω
ω
‖~vo‖ ∈ [0, 1] (2.2)

Combining Behaviors and Context Maps

The example of context maps shows how a single behavior �lls the values of a

context map. For agents with more than one behavior, it needs to be de�ned

how a behavior deals with an already �lled context map. For the rest of this

work, it is the case that if there is already a value in a context map element,

then the greater one is chosen as the new context value. Other options are

that the lower value is taken, or the values are added or subtracted.

Besides combining multiple behaviors into one context map, the context steer-

ing system Fray developed is also able to handle multiple objective functions,

which means that multiple context maps can be combined to a �nal steering

direction. Figure 2.5 illustrates Fray's example of combining context maps.

7

2. Basics and Related Work

Figure 2.4.: Example of mapping information from a seek behavior into a con-

text map. A and B are interest objects at di�erent distances to-

wards the agent. Graphic adopted from Fray [13].

Obstacles that need to be avoided are detected and stored in the danger map

(i), and possible paths an agent can take are stored in the interest map. Next,

the lowest value in the danger map is searched, which is zero in this scenario.

So all values greater zero are masked out. This mask is also applied to the

interest map (ii). Out of the remaining values of the interest map (iii), the

largest one is chosen as the steering direction (iv).

Figure 2.5.: Combination of two context maps for a steering direction. Graphic

taken from Fray [13].

8

2.1. Movement

2.1.4. Multi-objective Decision Making

When using context steering with more than one context map, one has to

decide how these maps are combined to �nd a �nal steering direction. The

example from Figure 2.5 was Fray's approach to solve this problem. M. Kirst

decided to use another approach, multi-objective optimization (MCO). There-

fore the combination of several context maps can be formulated as a multi-

objective optimization problem, as shown by Miettinen [26].

De�nition 2.1 (Multi-objective optimization problem):

minimize {f1(x), f2(x), ..., fk(x)}
subject to x ∈ S,

(2.3)

with k(≥ 2) being the number of objective functions that shall be minimized

simultaneously and S as the search space.

This is done assuming that there is no single solution that is optimal with

respect to all objective functions. Thus, the objective functions can be consid-

ered at least partially con�icting.

For a context steering scenario with the two context maps Interest and Danger,

there are respectively the two objective functions fi for the Interest map values

and fd, which for the Danger map values. The corresponding MCO-problem

was taken from Kirst's work [20] and can be formulated as follows:

minimize {fd(x),−fi(x)}
subject to x ∈ 1, 2, ..., r,

(2.4)

Where r denotes the context map resolution. fi(x) is negated since the problem

is described as a minimization task and the maximal interest value shall be

found.

For multi-criteria problems, a concept called Pareto-dominance was developed

to �nd optimal solutions. For a minimization task, Pareto-dominance is de�ned

as follows:

De�nition 2.2 (Pareto Dominance). A solution x is dominant to solution y

if x is better or equal to y in all objectives i and better than y in at least one

objective j.

x ≺ y ⇔ fi(x) ≤ fi(y),∀i ∈ 1, ..., k ∧ ∃j : fj(x) < fj(y) (2.5)

9

2. Basics and Related Work

An optimal solution is one that is not dominated by any other solutions. Since

there are several non-dominated solutions for a multi-criteria optimization

problem, these are combined in a set that is also called Pareto-front. Figure 2.6

shows these concepts for a minimization task. Solution s2 dominates all so-

lutions that are worse than itself in all objectives. Although it is a dominant

solution, it gets dominated by solution s1. s1, in contrast, is not dominated by

any other solution, and thus, it belongs to the �rst non-dominated Pareto-front

F1.

F1

f1

f2

Figure 2.6.: Example for Pareto-dominance and Pareto-front for a minimiza-

tion task of objectives f1 and f2.

Since the solutions in the Pareto-front are all optimal, all of them can be

used to solve the MCO-problem. Nevertheless, one of them has to be chosen.

Therefore several approaches can be used: weighted sum, ε-constraint, and a

hybrid approach. For this work, only the ε-constraint is of importance, and

only this one will be explained because it is the method of the context steering

tool that is used for this work. Furthermore, M. Kirst's experiments show that

this approach leads to better performance when changing some context steering

parameters like sensor resolution, the angle threshold, or the constraint itself.

ε-constraint

In the ε-constraint method, one objective is chosen to be optimized, and all

other objectives act as a constraint for the optimization. For our context

10

2.1. Movement

steering scenario with two objectives, the ε-constraint problem looks like this:

minimize −fi(x)

subject to fd(x) ≤ εd,

x ∈ 1, 2, ..., r

(2.6)

Here, the interest objective is the one that will be optimized and the danger

objective acts as a constraint. Only solutions whose danger value is less than

the constraint εd are allowed to be chosen. If no solution satis�es the constraint,

the one with the smallest danger value is chosen.

2.1.5. State of the Art

Besides context steering, there are other approaches that keep the believable

behavior of an agent in mind. G. Berseth and M. Kapadia present a steering

concept that considers the agent's locomotion abilities [6]. This footstep-based

algorithm is sensitive to motion limitations so that turning or sliding feet are

not possible while they are in contact with the ground.

A. Gerdelan and C. O'Sullivan propose a system where an evolutionary algo-

rithm is used to tune the rules in the rule base of a fuzzy controller for steering

[15]. In fuzzy steering, distance and angles are classi�ed in human-like terms.

Instead of meters, a fuzzy set like near, medium, and far is used. For angles

in degrees, it would be narrow, mid, and wide. The rule base is a list that

matches every possible combination of fuzzy inputs (distance and angle) to

a valid fuzzy output (steering direction and speed). Their evaluations show

that this system is able to produce a better controller con�guration than the

hand-tuned reference set.

Traditional steering has some limitations that are visible if an individual agent

is inspected more closely. In simulations were a lot of agents move as a �ock this

behavior does not destroy the immersion since the �ock acts as the individual

under observation. While context steering concentrates on better performance

of individual agents, there are many algorithms that try to improve crowd

simulations.

PLEdestrian [16] from S.J. Guy et al. is an example of a crowd steering

algorithm that uses the principle of least e�ort (PLE) and a biomechanically

energy-e�cient trajectory to move agents in a multi-agent simulation.

11

2. Basics and Related Work

Other algorithms use the social force model for pedestrian dynamics devel-

oped by D. Helbing and P. Molnár [17]. This model describes the movement

of pedestrians and how they are in�uenced by their surroundings. They have

a certain goal they want to reach and thus have a force towards it. Then

there are other things, like walls or strangers, that create a repelling force and

interesting things, like friends or attractions, that create an attraction force so

that the pedestrian is pulled towards it.

An algorithm that uses this concept is developed by P. Saboia and S. Gold-

enstein [32]. Here the social force model is modi�ed by a mobile grid so that

pedestrians are able to avoid blocked or crowded areas.

In times where machine learning is of great interest, there are also data-driven

approaches for crowd simulation. A. Bera et al. present an algorithm that ex-

tracts trajectories from video material and learns the parameters for a pedes-

trian motion model [5].

12

2.2. Evolutionary Algorithm

2.2. Evolutionary Algorithm

Evolutionary algorithms are nature-inspired metaheuristics to solve numerical

and combinatorial optimization problems that are used when no other e�cient

solution algorithm is known. They provide only approximate solutions for

an optimization problem. Kruse et al. gave the following de�nition for an

optimization problem [22]:

De�nition 2.3 (Optimization problem). A Tuple (Ω, f,≺) describes an opti-

mization problem: with a search space Ω, a �tness function f : Ω→ R assigns

a quality value to each solution, and a relation operator ≺∈ {<,>}

At the start of this section, a short overview of evolutionary algorithms is

given, and afterward, all aspects are explained in more detail.

Evolutionary algorithms are population-based approaches to solve optimiza-

tion problems. This means that they create individuals that serve as a possible

solution to the given problem. An individual is made of genes in which its prop-

erties are encoded. How these genes look like and what each gene means is

described by the encoding. These solutions are tested on their ability to solve

the problem by a �tness function. A termination criterion decides if the algo-

rithm is �nished or another generation of individuals is tested. If the algorithm

does not end, and the next generation is required, this generation has to be

created. This is done by selecting individuals based on their acquired �tness

value and an operation called crossover in which individuals exchange genes to

create new individuals. Crossover is not the only option to change the genes

of an individual. Mutation can randomly change single or multiple genes of

an individual. After the new individuals are created, the next generation will

be formed. Mostly it is advisable to take the best or at least a speci�c ratio of

the best individuals into the next generation and some individuals that keep

the gene pool diverse. This cycle repeats until the termination criterion is

satis�ed.

2.2.1. Encoding

Like in nature, individuals in evolutionary algorithms are made out of genes.

These genes together form the chromosome of an individual. In contrast to

nature, there is only one chromosome necessary. The combination of genes in

a chromosome is also called the genotype. It contains the information which

13

2. Basics and Related Work

Initialization

Fitness

Evaluation

Termination Criteria

Selection for Reproduction

Crossover

Mutation

Environmental Selection

Optimal Solution

Fitness

Evaluation

yes

no

Figure 2.7.: Structure of an evolutionary algorithm.

genes, gene types, and value boundaries are used. Out of this information, a

real individual can be constructed that can be tested on its ability to solve

the given problem. The characteristics and properties of an individual can be

summarized in the term phenotype. As already mentioned, there are di�erent

types of genes, and thus, a variety of di�erent encoding types are possible.

The binary encoding uses bits to encode the information of an individual.

They are also called bitstrings since the genes are chained into a single string.

Bitstrings can be used in various ways that depend on the task to solve. The

knapsack problem is a task in which the representation can also be used as

a solution. This is done by encoding each object as a bit where 0 means

the object is not put into the knapsack and 1 that the object is put into the

knapsack. Another way to use binary vectors is to encode single numbers as

bitstrings and process these bits in the algorithm. To use these vectors again

as a solution, they need to be decoded back to a number. So a certain type of

mapping between representation and the search space is needed. For numbers,

this would be the standard binary decoding or gray code. Gray code has the

property that it reduces the hamming distance between consecutive numbers to

14

2.2. Evolutionary Algorithm

one. When using bitstrings to encode continuous search spaces, it is advisable

to use discretization and encode intervals by bit combinations.

There is also the possibility to encode the genes in a vector of real-valued

numbers. Either pure integer values or �oating-point numbers can be used.

For using integer values, there is also the option that these encode categorical

options. Thus, the genes are limited to the number of options available. In

contrast, �oating-point numbers o�er the possibility to directly work with them

instead of converting them into a discrete interval. In general, it is practical

to use an encoding that is inherently given by the task so that no additional

conversion is necessary. Of course, it is also possible to mix the di�erent gene

types in a chromosome and have a mixed encoding.

2.2.2. Fitness

The �tness of an individual is a value that indicates how good this solution is

at solving the task. The �tness function calculates it. In nature, the �tness

function would be the environment in which an individual has to live and

survive. If it is good at surviving, it has the possibility to create o�spring. In

evolutionary algorithms, the �tness function can be a mathematical function

that needs to be optimized or a simulation that needs to be solved. Besides

telling how good an individual is, the �tness and �tness functions have other

important characteristics and properties. The most important one is that

the �tness function should be a continuous function that has no jumps in

it. This is important because then small changes in the decision variables

will also cause small changes in the �tness value. If these changes improved

the �tness value, changes further into that direction could maybe lead to even

more signi�cant improvements. This property enables a solution to accumulate

small improvements by doing just small changes. This makes evolutionary

algorithms not purely random but more like a guided random walk.

2.2.3. Selection for Reproduction

The selection for reproduction is a �tness-dependent process. Individuals with

better �tness have a higher chance of surviving and reproducing. This concept

is also part of most of the selection mechanisms. Examples are roulette wheel

selection, stochastic universal sampling, and tournament selection [22].

15

2. Basics and Related Work

Roulette wheel selection is also called �tness-proportional selection since indi-

viduals with better �tness have a higher chance of being selected. For problems

where a maximal �tness is searched, the selection probability of individual i is

equal to its contribution to the accumulated �tness of the generation G.

psel(i) =
f(i)∑
j∈G f(j)

Stochastic universal sampling (STU) is a variation of roulette wheel selection

that was developed to reduce the selective pressure. Selective pressure de-

scribes the property of a selection method, how much it favors individuals

with better �tness. Here, instead of selecting one individual at a time, several

are selected. If there is an individual that dominates the selection process

because it has a �tness value that is hugely better than all other, it would be

chosen nearly all the time. With STU, other individuals have a higher chance

of being selected than by roulette wheel selection.

In tournament selection, individuals compete against each other in small tour-

naments. Here, a group of individuals is chosen at random from the generation,

and the best one is selected. The tournament size T decides how signi�cant

the selective pressure of this method is. The two limiting forms of this method

are a tournament size T of one or equal to the number of individuals in the

Generation N. With only one individual in a tournament, this resembles ran-

dom selection, and there is no selective pressure. With a tournament size of

N, only the best individual of the whole population will be selected, and thus,

a maximal selective pressure is applied. Mostly, a value between one and N is

chosen.

2.2.4. Crossover

Crossover is a process that is inspired by sexual reproduction. Here, the genes

of di�erent individuals are mixed to create a new individual. The �rst version

was inspired by the Mendelian inheritance, where children get a combination

of the parents' genes (see Figure 2.8). Examples for these crossover types are

the one-point crossover, the more general n-point crossover, uniform crossover,

or shu�e crossover [36]. For the di�erent encoding types, di�erent forms of

crossover emerged. For �oating-point genes, an arithmetic crossover can be

16

2.2. Evolutionary Algorithm

used, where the genes are averaged or processed in a di�erent form before

passing them to the children. Encodings that require permutations as individ-

uals use crossover forms that create new permutations out of the parent genes.

The number of parents is not just limited to two. Sometimes three or more

parents can be involved. Some crossover types also consider the individuals'

�tness values to create o�spring that are closer to the �ttest individual.

p1

p2

c1

c2

Figure 2.8.: Example for a one-point crossover where parents p1 and p2 ex-

change genes to create children c1 and c2.

A commonly used crossover type is the Simulated Binary Crossover (SBX)

[10] . SBX takes the genes from both parents as well as the gene boundaries

and a parameter η to create child genes that can be an interpolation as well

as an extrapolation of the parent's genes. The η value decides how similar

the child's genes are compared to the parent's genes. For a large η value the

children resemble their parents and for a low value they are more di�erent.

2.2.5. Mutation

Mutations are small changes in an individual's genes that occur randomly

based on a mutation probability pm. Depending on what gene type it is,

there are di�erent ways for possible changes. Binary genes can be mutated by

�ipping one bit to the inverse value. For integer genes, a random o�set can

be added to the value, or if the gene encodes categorical values, one of the

remaining values can be chosen at random. Also, for �oat genes, a random

o�set can be added to the current value. Here, the di�erence is that the

random o�set is determined by a probability density function. An example is

the Gauss distribution that is used in a multi-gene Gauss mutation[3].

In a multi-gene Gauss mutation, each individual can be mutated multiple

times, depending on pm. Here, pm is used as the mutation probability for

17

2. Basics and Related Work

an individual. In consequence, the mutation probability for a single gene

depends on pm and the number of genes an individual has. So that genes of

an individual with fewer genes have a higher probability of being mutated.

Therefore, a random value from the Gauss distribution is chosen and added to

the current gene value. How big this random value is, depends on the mean

value µ and the standard deviation σ of the Gauss distribution.

2.2.6. Environmental Selection

In evolutionary algorithms, the generation size N is �xed, so one has to choose

which individuals survive. There are two important aspects that one need to

keep in mind: �rst progressing to better �tness, second keeping the gene pool

diverse.

For reaching a better �tness value over time and generation, one can choose

a �xed number E of best individuals of the current generation and take them

to the next generation. This concept is called elitism. After choosing the best

individuals, the next generation needs to be �lled up to the generation size N .

Therefore several options are available. In the (µ, λ) - selection, there are µ

parent individuals that create λ o�spring. Here, the remaining individuals are

chosen only from the o�spring. Another way would be the (µ+ λ) - selection

where µ parents create λ o�spring and the remaining individuals are chosen

from both. In both variants, it is the case that if the selection pool (µ or µ+λ)

is greater than the remaining individuals that need to be selected (N−E), there
has to be a selection mechanism. This could be at random to keep a diverse

gene pool, individuals with the best �tness, or other selection mechanisms like

roulette wheel, STU, or tournament selection.

2.2.7. Termination Criterion

The steps of an evolutionary algorithm described in the previous sub-chapters

are part of a loop that enables the evolutionary algorithm to search for an

optimal solution. However, at some time, the algorithm needs to stop. The

termination criterion de�nes when the algorithm shall stop. One way could

be to let the algorithm run until a certain solution quality is reached. Never-

theless, it is not always clear at what �tness value the solution is good enough

to solve the real task. So another way is to let the algorithm run for a �xed

18

2.2. Evolutionary Algorithm

amount of time or number of generations. This way, the used time is known,

and if the solution quality is not good enough, the process can be continued.

2.2.8. State of the Art

There is a wide range of optimization techniques available that can lead to a

good parameter set. In this work, a basic evolutionary algorithm was chosen.

However, there are several other kinds of evolutionary algorithms and other

optimization methods that shall be mentioned.

Evolutionary Algorithms

M. A�enzeller and S. Wagner present in their works [1] and [2] a Self

Adaptive SEgregative Genetic Algorithm with Simulated Annealing aspects

(SASEGASA). Besides �nding an optimal solution, this algorithm is designed

to avoid premature convergence of a population so that local optima are bet-

ter avoided in the �nal solution. To achieve this goal, the initial population is

split into several sub-populations that evolve independently from each other

until each of them converged to a local optimum. For the convergence, a special

crossover mechanism is used. Only children that surpass the worse of their par-

ent individuals are chosen for the next generation. If a child is worse than both

parents, a new child needs to be created. If a maximum number of children

per generation is reached, this sub-population is considered as converged. If all

n sub-populations are converged, they are reunited into n-1 sub-populations.

This cycle repeats until all individuals are contained by only one population.

M. Potter and M. De Jong introduced a concept called cooperative coevolu-

tion (CC) [30]. The main idea of this concept is that a complex task can be

decomposed into several subcomponents. For an individual of an evolution-

ary algorithm, this means that its genes are separated from each other into

groups called species, and these groups evolve independently from each other.

Since, for most problems, these subcomponents have some interdependencies,

the species need to be recombined to a complete solution for the �tness eval-

uation. To get the �tness values of one species type, a solution is constructed

based on representatives of the other species. The representative solution is

completed by the individuals of the tested species, and thus a relative �tness

contribution for each individual can be calculated. This is also done for all

other species to estimate their individuals' �tness contributions.

19

2. Basics and Related Work

Z. Yang et al. use this concept in a work [38] where they want to use evolu-

tionary algorithms for a high-dimensional problem with up to 1000 dimensions.

Their developed framework is tested on several classical benchmark functions

and test functions provided by CEC2005 Special Session. These results were

compared to conventional EAs, Self-adaptive di�erential evolution with neigh-

borhood search (SaNSDE), and other cooperative coevolution algorithms like

FEPCC and DECC-O. The result is that the proposed framework outperforms

non-CC algorithms for high-dimensional problems and is better than the other

CC algorithms for most of the test cases.

Another way to use this concept is shown by Yong and Miikkulainen [39]. They

try to solve a multi-agent task by using cooperative coevolution. The task is a

predator-prey scenario in which a group of predators has to catch the prey by

cooperation. The actual controller for the predator is a neural network which

is evolved by a CC-EA. Here the focus lies not on the problem decomposition

but in evolving cooperative predators that can have di�erent characteristics.

So the subpopulations consist of predator individuals. These subpopulations

are evolved independently from each other. For the evaluation, a predator from

each subpopulation is taken, and it is tested if all together are able to catch

the prey. The CC approach is tested against a central controller that controls

all three predators together. The results show that controlling the predators

by individual networks leads faster to better results than controlling them by

a centralized controller. Furthermore, the need for communication and coop-

eration are evaluated. In the scenario without communication, the predators

do not know each other's positions. Surprisingly the non-communication sys-

tem learned a useful behavior faster. In the scenario without cooperation, the

predators are trained in a way that they chase the prey alone. The results

show that predators trained this way are not able to solve this task since they

chase the prey all from the same direction.

Besides use cases for cooperative coevolution, there are several papers that

concentrate on di�erent aspects. Mahdavi et al. evaluate how important the

initialization of the starting population is [25]. Therefore they present three

sampling strategies: center-based normal distribution, central golden region,

and hybrid random-center normal distribution. The performance is evaluated

on the CEC-2013 LSGO benchmark functions. The results show that proposed

sampling strategies for CC algorithms are superior to or at least comparable

to a random initialization.

20

2.2. Evolutionary Algorithm

Other Optimization Techniques

There are also other optimization techniques besides evolutionary algorithms.

Sequential Model-based Algorithm Con�guration (SMAC) [18] is a method

developed by F. Hutter et al. Here, a regression model of one or several problem

instances is created and based on this model new con�gurations/solutions are

created to re�ne the model even more. In this way, the model can be used to

predict how con�guration instances perform on the problem to �nd an optimal

solution.

Another population-based approach is iterated racing for automatic algorithms

con�guration (irace) [24]. This is a racing algorithm where several parameter

con�gurations are tested on a set of problem instances. After a certain amount

of instances have been evaluated, the con�gurations are regularly checked if

some of them perform worse than the others. If that is the case, these con�gu-

rations are removed from the race. The race continues until either a minimum

number of con�gurations remain or a maximum number of instances are tested.

For the next race, new con�gurations are sampled in a way that they are in the

vicinity of the surviving one from the last race. To be able to compare the new

con�gurations with the best con�gurations from the previous race, they are

tested on nearly the same amount of problem instances. These races continue

until a certain amount of budget (number of evaluations, time) is consumed.

Particle swarm optimization (PSO) is a method for the optimization of contin-

uous nonlinear functions developed by J. Kennedy and R. Eberhart [19]. Orig-

inally this method was inspired by social behavior and bird �ock simulations.

However, after changing these concepts to an optimizer, the particles/solutions

looked more like a moving swarm than a bird �ock. The particles move in the

search space based on their positions and velocities. To e�ciently explore the

search space, the velocity is adapted based on the particles' previous best po-

sition, and the global best position found so far that all particles share with

each other. The velocity update is the di�erence from the current position and

the best positions, multiplied by a random factor. To test this method, it was

used to train a neural network solving the exclusive-or problem. In another

test, it was used to train a network to classify the Fisher Iris Data Set. In

both experiments, PSO was as e�ective as the backpropagation method.

Some years after the development, PSO was a research topic of interest in

which many papers were published. Poli et al. give an overview of changes and

progress made in this topic [29]. A concept called inertia weight is presented

21

2. Basics and Related Work

that acts like friction for particles. It can be used to adjust the degree of

exploration through the whole experiment. A variation of the standard PSO

is the fully informed PSO, where the particles do not only know their own

best position but also from all of its neighbors. In the early stages of PSO,

the population topology was proximity-based, but also static and dynamic

topologies were examined. Di�erent PSO variants are presented like the binary

particle swarms where PSO is applied to binary problems, and the solutions

are represented as bitstrings. Some variations are able to work on dynamic

problems where the �tness function changes over time, and some variations

are made to handle noisy �tness functions. Other variations focus on diversity

control to avoid premature convergence in local optima.

Application Examples

Beside directly �nding a problem solution, evolutionary algorithms can also

be used to �nd hyperparameters. In their work [4], C. Banerjee et al. used

an evolutionary algorithm to �nd good parameter values for a neural network,

such as learning rate, batch size, number of epochs, and dropout regularization.

This approach was compared with other parameter estimators and gave better

results.

Another example of the use of evolutionary algorithms for parameter opti-

mization present A. Sehegal et al. in their work [34] where they want to �nd

parameters for reinforcement learning. Here, they use a genetic algorithm

(GA) to optimize parameters of the Deep Deterministic Policy Gradient algo-

rithm (DDPG) combined with Hindsight Experience Replay (HER) for a set of

robotic manipulation tasks like slide, push, pick and place, and door opening.

They showed that using a GA to �nd parameters lead to better performance

that is also found faster for the de�ned tasks.

Aziz Kaba and Emre Kiyak use an evolutionary algorithm to improve the per-

formance of a Kalman �lter for nonlinear quadrotor attitude dynamics. The

algorithm is used to estimate the measurement and noise covariance matrix.

This approach is compared with other optimization algorithms like optimal

Kalman �lter, covariance - matrix adaptation, evolution strategy, and simu-

lated annealing. The results show that this approach is usable, and a Monte

Carlo analysis veri�ed that it is better than the other algorithms.

Shape optimization is another of the many applications for evolutionary algo-

rithms. This can be the shape of radio frequencies (RF) like it is done by M.

22

2.2. Evolutionary Algorithm

Kranj£evi¢ et al. [21]. The shape needs to optimized in a way that the RF is

capable of accelerating charged particle beams.

Another way of shape optimization is presented by G. Persico [28]. Here,

a surrogate-based evolutionary algorithm is used to �nd optimal shapes for

blades of a turbine so that no shock waves occur.

P. García-Sánches et al. demonstrate that evolutionary algorithms can be used

to develop arti�cial intelligence for collectible card games [14]. They also show

that this approach is approach can compete with state-of-the-art techniques

such as Monte-Carlo Tree search.

An approach similar to the one presented in this thesis is shown by G. Berseth

et al. [7]. For crowd simulation, there are many steering algorithms so that

agents can move from point to point while avoiding static and dynamic ob-

stacles. The performance depends on internal parameters. Berseth et al. use

the Covariance Matrix adaptation Evolution Strategy technique (CMA-ES) to

�nd optimal parameters for a set of di�erent crowd steering algorithms. This

way, they can reduce turbulence at bottlenecks, produce emergent patterns,

and improve the computational e�ciency of the algorithms.

23

2. Basics and Related Work

2.3. Robustness

Evolutionary algorithms, like the ones described in the previous section, are

used to �nd optimal solutions. An optimal solution in terms of �tness is not

always the best solution for a given task. Some applications can not guarantee

that a solution will be used as speci�ed. For example, there may be noise in

the processes that disturb the decision variables of the solution so that it is a

slightly di�erent solution depending on the tolerances the process has. These

changes could result in a bad performance that is not acceptable for the process

so that for some tasks, only robust solutions are of interest.

K. Deb and H. Gupta described robustness as a property of a solution such

that small perturbations in its variables/decision space will hardly a�ect the

solution quality [11]. Branke suggested that, therefore, one should not only

look at the solution itself but also at its neighborhood [8]. So that solutions

on a high plateau will be preferred over solutions on a thin peak. A value that

also considers the neighborhood of a solution is called e�ective �tness (feff).

How much of the neighborhood is needed depends on the noise that will be

added to a solution to consider it robust. A calculation could look like this:

feff (x) =

∫
[−∞,∞]d

p(δ) · f(x+ δ)dδ (2.7)

Here, p(δ) is the probability density function for the disturbance δ and d the

number of dimensions of the �tness function. Since this operation is expensive

and will not be possible for problems of higher complexity, the e�ective �tness

has to be estimated. This estimate of feff (x) is called fmod(x) and there are

several ways to get it:

• Repeat the evaluation with random perturbation and use the mean value

out of these evaluations.

• Do a single disturbed evaluation. The returned value of a random dis-

turbed solution is considered equivalent to the mean of its neighborhood.

• Repeat the evaluation only for the best individual or a range of best

individuals. Again use the mean value as the e�ective �tness.

• For population-based approaches, already existing individuals can be

used as the neighborhood. Either the current population can be used,

24

2.3. Robustness

or the last x individuals can be stored. The estimate is calculated as

follows:

fmod(x) =

∑
y w(y) · f(y)∑

y w(y)
(2.8)

w(y) = max{0, 1− d · b} (2.9)

with w(y) being the weight of individual y, d being the distance between

x and y, and b a parameter that adjusts how big the vicinity of x is.

Types of Robustness

K. Deb and H. Gupta de�ned di�erent types of robustness for multi-objective

solutions. In this work, those types are used for a single objective task.

De�nition 2.4 (Robust Solution of Type I): A Solution x∗ is called a multi-

objective robust solution of type I, if it is the Pareto-optimal solution of the

following multi-objective minimization problem de�ned with respect to a δ-

neighborhood (Bδ)

Minimize (f eff1 (x), f eff2 (x), ..., f effM (x)),

subject to x ∈ S,
(2.10)

where f effj (x) is de�ned as follows:

f effj (x) =
1

|Bδ|

∫
y∈x+Bδ

fj(y)dy. (2.11)

Figure 2.9 shows a visual interpretation of this robustness type for a single

objective minimization task. The solid line is the original function that needs

to be optimized. The dashed line is the value of feff (x). From Equation 2.11,

one can see that this function accumulates the function values over a certain

neighborhood and divides these values by the neighborhood size. It is similar

to calculating the mean value of a discrete function, and thus it is a smoothed

version of f(x). In this function, B is the global optimal solution. Nevertheless,

with respect to the de�nition of type I robustness, A would be the optimal

solution, as illustrated.

25

2. Basics and Related Work

1

1.2

1.4

1.6

1.8

2

2.2
f(
x
)

0 0.2 0.4 0.6 0.8 1

x

A

B

f(x)

feff(x)

Figure 2.9.: Global vs. robust solution optimization

De�nition 2.5 (Robust Solution of Type II): For the minimization of a

multi-objective problem, a solution x∗ is called a robust solution of type II,

if it is the Pareto-optimal solution to the following problem:

Minimize (f1(x), f2(x), ..., fM(x)),

subject to ‖f
p(x)−f(x)‖
‖f(x)‖ ≤ η,

x ∈ S.
(2.12)

Figure 2.10 shows a visual explanation of type II robustness for a single ob-

jective task. Here, a solution is considered as a robust solution if a perturbed

function fp(x) is only to a certain degree η worse than the actual �tness func-

tion. fp(x) could be f eff like for type I or the worst �tness value inside a

given neighborhood. If the perturbed function values fp(x) are worse than

allowed by η, these solutions create an infeasible region which is considered as

not robust enough for the given application. So the goal of type II robustness

is to �nd the optimal solution out of all remaining feasible solutions.

26

2.3. Robustness

1

1.2

1.4

1.6

1.8

2

2.2
f(
x
)

0 0.2 0.4 0.6 0.8 1

x

A

fp=fe�

Infeasible

region

Figure 2.10.: Robustness of type II where an infeasible region marks all non-

robust solutions.

2.3.1. State of the Art

Robustness is researched in a large variety. As mentioned in section 2.3 K. Deb

and H. Gupta de�ned robustness for a multi-objective optimization in their

work [11]. Furthermore, they used their de�nition not only to �nd one robust

solution but a whole Pareto-optimal front.

J. Branke studied robustness for individuals in several of his works. He is

starting with a de�nition of robust solutions and how to estimate them in more

complex scenarios where the exact calculation is not possible[8]. Also, several

ways of creating robust solutions are compared in regard to their e�ciency [9].

Pérez et al. investigated the robustness of general video game playing agents in

[27]. Therefore they took 4 out of 60 games of the general video game arti�cial

intelligence (GVGAI) framework, two controllers from the framework, and four

winner controllers out of the competitions 2014 and 2015. Each controller was

tested 100 times in each of the �ve levels of the four games. So in total, each

agent played each game 500 times to get ranked. The performance and changes

in the ranking were evaluated under normal conditions, with a changed reward

27

2. Basics and Related Work

system, and noise in the agent's applied decision and/or the decision in the

forward model. The forward model is a simple simulation of the game so that

the agent can predict what action it should use. The goal was to evaluate how

the di�erent controllers react to the di�erent reward systems and noises and

if there is a controller that is relatively robust towards these changes.

Niels van Hoorn et al. used multi-objective evolution to create a robust player

imitating AI for racing scenarios in [37]. The developed controller was based

on a recurrent neural network. This network was evolved using the NSGA-II

algorithm. Three �tness measures were de�ned, of which two evaluate the

imitation of player commands, and the third measured how well the car per-

formed on a particular track. The controller was evolved on di�erent tracks

and tested on all 4 of them. What the authors consider as a robust agent was

not exactly described. Probably the generalization of the agent was meant. So

how well the agent performed on a track, it was not trained for.

2.4. Summary

This chapter covered the background information for movement, evolutionary

algorithms, and robustness. A basic categorization of di�erent movement as-

pects was presented. The development of context steering out of traditional

steering was shown, and the context steering principles were explained in de-

tail. In contrast to context steering, which focuses on individual agents, several

swarm simulation variants were presented.

For evolutionary algorithms, the structure and components were described in

detail. Several variants and their advantages were presented and also other

population-based approaches for optimization.

Robustness as an optimization criterion was introduced, and di�erent types

of robustness were shown. Moreover, some example applications out of the

current literature were shown.

In the next chapter, context steering, evolutionary algorithms, and robustness

shall be combined to create a system that is able to �nd robust and believable

context steering solutions.

28

3. Methods

The goal of this work is to evaluate if evolutionary algorithms can be used as

parameter optimizer for context steering agents. Thus, this chapter explains

the used context steering approach, including the most important parameters,

and how they in�uence the agent's movement pattern. Additionally, it is ex-

plained what algorithm is used for this task and how it is structured. However,

at �rst, an own robustness de�nition for context steering is made.

3.1. Robustness for Context Steering

A solution for context steering is the set of parameters ~x that de�ne how

each behavior itself works and how all behaviors are combined into a steering

direction. This parameter set is �xed, and for simulations in a computer, it

cannot be a�ected by noise except this is wanted. So robustness as insensitivity

to perturbations would be of no use for a context steering system that does

not allow noise. Thus, robustness for context steering is de�ned as follows:

De�nition 3.1 (Robust solution for context steering): A solution ~x ∗ is called

a robust solution in terms of context steering, if it is the optimal solution to

the following problem:

Minimize(Median(f(~x, e1), f(~x, e2), ..., f(~x, eM)))

subject to ej ∈ E, ~x ∈ S.

}
(3.1)

Where E is a set of di�erent but similar environments on which the solution

~x is tested. f(~x, e) is the �tness function for context steering that is explained

in detail in section 3.4.

Robustness for context steering means to �nd a parameter set that is �xed

for an agent but allows the agent to perform nearly equally well in a set of

di�erent scenarios that are similarly structured.

29

3. Methods

3.2. Context Steering

The Polarith AI for Movement plugin for unity was used as a baseline for

context steering. Only the parts that are important for this work will be

explained here. For a detailed explanation of the plugin, see the documentation

[35].

All the scenes in this work have the same structure. There is a 2D scenario that

serves as an environment for an agent to move around. Besides the agent, this

scenario consists of an interest object that the agent shall collect, one or more

danger objects that the agent shall avoid and one or more user-de�ned paths

to which the agent shall minimize its distance while moving around. To change

the movement characteristics of the agent, it has some con�gurable behaviors

attached. These behaviors detect a particular group of objects which are either

interest objects or danger objects. The information the behaviors generate out

of the detected objects is put into one of two context maps. One serves as the

interest objective and the other one as the danger objective. Finally, both

objectives are combined to �nd a �nal movement decision.

3.2.1. Behaviors and Parameters

For this thesis, the following behaviors were chosen: Seek, Flee, Avoid, Pursue,

and Evade. First, these behaviors are explained. For each behavior, it is

also described how objects generate objective values that are applied to a

context map. After that, the parameters that all behaviors have in common are

described, and also the parameters that are only used in a subset of behaviors

are explained.

Behaviors

Seek/Flee: Whereas seek generates context values towards the detected ob-

ject, �ee generates these values in the opposite direction. These behaviors are

illustrated in Figure 3.1.

Avoid: For the avoid behavior (see Figure 3.2), a plane is created with its

normal vector towards the detected object. The better a receptor is aligned

with the plane, and thus it is perpendicular to the detected object, the greater

the context value it generates.

Pursue/Evade: Pursue and evade are similar to seek and �ee. Pursue cre-

ates objective values towards the target object and evade away from it. The

30

3.2. Context Steering

Figure 3.1.: Illustration of the mapping of seek(left) and �ee(right), both

mapped to the interest objective.

Parameter Boundaries

Magnitude Multiplier [0,10]

Sensitivity O�set [-90,90]

Inner Radius [0,5]

Outer Radius [5,50]

Prediction Magnitude [0,10]

Value Mapping [0.33,3]

Radius Mapping [0.33,3]

Table 3.1.: Parameters of context steering behaviors and their boundaries

di�erence to seek and �ee is that not the actual position of the target object

is used but a predicted future position along its movement direction.

General parameters

Table 3.1 shows parameters that all behaviors have in common. Next to the

parameter name, the boundaries are displayed that are needed since bounded

simulated binary crossover is used.

Magnitude Multiplier: The behavior-speci�c objective value is multiplied

by this magnitude to amplify or weaken the e�ect of the behavior. This value

a�ects how much in�uence a behavior has compared to other behaviors. It

ranges from 0 to 10. At 0, the behavior can be seen as not active. The

upper bound was chosen in a way that the behaviors can be adjusted to be

31

3. Methods

Figure 3.2.: The avoid behavior for a 2D scenario (left) and the plane that is

constructed for context value generation (right).

very sensitive to its surrounding objects. Figure 3.3 illustrates the e�ects

of di�erent Magnitude Multiplier values for an inverse linear mapping. The

higher the magnitude, the faster the context value reaches its maximum. A

value of 0.5 will only give a maximum context value of 0.5, and thus, at a

Magnitude Multiplier of 0.0, the behavior has no e�ect. At a value of 1.0, the

maximal context value is reached at the inner radius. A value of 2.0 or 10.0

leads to a maximal context value at half or a tenth of the detection range.

Outer radius

1

Inner radius

value of 0.5

value of 1.0

value of 2.0

value of 10.0

0

Figure 3.3.: The resulting context values for di�erent magnitude multiplier val-

ues, plotted for an inverse linear mapping.

Sensitivity O�set: In subsection 2.1.3, it is described that the angle between

the vector towards an object and the receptor vector a�ects how large the

32

3.2. Context Steering

objective value for this receptor is. The threshold that decides the maximum

angle to have a minimal e�ect is by default at 90. The sensitivity o�set is

added to this threshold and thus changes how many receptors are a�ected by

a behavior.

Inner Radius: The inner radius is the distance, after which the detection of

objects starts.

Outer Radius: The outer radius is the maximal distance to which objects

are detected. Together with the inner radius, it de�nes the range in which

objects are detected and mapped into the context map.

Prediction Magnitude: The agent's point of perception is projected along

its current movement direction by a �xed o�set de�ned by this value.

Radius Mapping: The distance of an object that is detected by the agent

needs to be mapped to a value between 0 and 1 based on the inner and outer

radius. Therefore an Uniform Rational Quantization (URQ) mapping is used,

which is con�gured by this value. How the URQ-mapping works can be seen

in subsection 3.2.2.

Value Mapping: The objective values are not only mapped by the distance

between the inner and outer radius but also by the angle di�erence to the

receptor vector. For an inverse mapping that is used in this work, the objective

value is maximal in terms of value mapping if the angle di�erence is zero. The

objective value gets lesser, the closer the angle di�erence is to the threshold.

The actual mapping is again done by an URQ-mapping that is con�gured by

the value mapping value.

Behavior speci�c parameters

Seek/Flee: Seek and Flee have no additional parameters.

Avoid:

Parameter Boundaries

Plane Bend [0,90]

Plane Bend: Plane bend rotates the plane towards the detected object. At 90

degrees, the plane is rotated so much that receptors that point towards the

detected object are aligned with the plane and generate the greatest context

values.

33

3. Methods

Figure 3.4.: The e�ects of di�erent mapping types for value mapping. From

left to right: inverse linear, inverse quadratic, inverse square root.

Pursue/Evade:

Parameter Boundaries

Max Prediction Time [0,5]

Max Prediction Time: The position of the target object is predicted based on

its current position, velocity, and maximum prediction time (this value).

Other Parameter

Context:

The context module is the central part of the context steering plugin. Here,

all the context data from each behavior is gathered and combined to a �nal

decision. Next to these processing aspects, the context module also has a

parameter that is part of the encoding.

Parameter Boundaries

Objective Constraint [0,1]

This parameter is based on the ε-constraint explained in subsection 2.1.4. For

each objective that is not marked as the main objective, a parameter is created

that de�nes the constraint value for this objective till which a solution is still

valid. For the scenarios in this work, there are the two objectives interest and

danger. Interest is the main objective, so only a constraint value for danger

exists.

34

3.2. Context Steering

Parameter Interplay

While calculating the context values and �nding the optimal movement di-

rection, there are some sets of parameters that in�uence each other in a way

that is not directly obvious. This part aims to explain the interplay of these

parameter sets.

Magnitude Multiplier, Radius mapping, Inner Radius, Outer Ra-

dius: As already explained, the Inner and Outer Radius de�ne the detection

range in which an agent is able to sense its surroundings. The Magnitude

Multiplier decides how big the maximum context value is and how fast it can

be reached when objects get closer to the agent, as shown in Figure 3.3. More-

over, the Radius Mapping a�ects the shape of the mapping function that is

used to map all values between minimal and maximal context value.

Sensitivity O�set, Value Mapping: A similar interplay holds for these

values. Value Mapping de�nes how the context values are mapped towards

neighboring receptors. For an inverse mapping that is used, receptors that

point towards the detected object get a maximal context value, and the fur-

ther the receptor points away from the object, the lesser is its context value

until a given threshold is reached and the receptor is not a�ected anymore. The

Sensitivity O�set is exactly a�ecting this threshold, and thus it determines how

far the mapping goes and how many receptors are a�ected.

3.2.2. Adjustments

Besides the use of the Polarith plugin, some adjustments were made to make

it usable for the used evolutionary algorithm.

Mapping

The plugin itself provides prede�ned settings for the di�erent mapping types

(value and radius mapping). These are linear, squared, square root, and their

inverse forms. Those prede�ned settings have two issues why adjustments

were made. First, they need to be encoded as categorical genes, whereas all

other values are real-valued. So all evolutionary operators would have to deal

with mixed encoded individuals. Second and more important, the change

in behavior when switching between di�erent mapping types is too big to

ensure a continuous �tness landscape without any jumps in it. This would

lead to a bad optimization behavior since the evolutionary algorithm can no

35

3. Methods

longer accumulate small changes to increase the �tness of an individual. That

is why the prede�ned mapping types are replaced by the Uniform Rational

Quantization (URQ) mapping [33].

valuemapped =
urq · (value−min)

urq · (value−min)− (value−min) + (max−min)
(3.2)

This is a modi�ed version of the URQ-mapping that is able to map values in

an arbitrary range, whereas the original function mapped values in a range

from zero to a maximal value. What this function does is that it maps a value

in a range from min till max to a value between zero and one, where min

becomes zero and max becomes one. How the values in between are mapped

is de�ned by the urq value. A value of one is equal to a linear mapping. A

value greater one resembles a square root mapping, and a value between zero

and one has similarities with a squared mapping.

Instead of the prede�ned mapping types, the URQ-mapping can be used. To

be more precise, the inverse URQ-mapping was chosen since the inverse map-

ping types are more appropriate for these context steering tasks. Figure 3.5a

shows the mapping for a urq value of 1.0. This is equivalent to an inverse

linear mapping. Because the prede�ned mapping types serve as a baseline,

the URQ-mapping shall try to cover the same range of mapping possibilities.

In Figure 3.5b, a value of 0.33 was chosen so that the mapping resembles an

inverse squared mapping, and Figure 3.5c shows a mapping with a value of

3.0 which is similar to an inverse square root mapping. So that in total, the

URQ mapping covers a range from 0.33 to 3.0 and is an adequate replacement

for the prede�ned mapping types without causing big jumps in �tness when

changing this value slightly.

Controller

How the agent moves in a test scenario is not only crucial for the resulting

behavior and movement of the agent, it is also essential for a reliable and

repeatable evaluation of the algorithm. Unity o�ers several options on how to

move characters and objects in its scenes. The easiest way is to set the position

of an object directly. It is like to teleport the object to a di�erent position. If

the distance is small enough, it looks like the object moved on its own. Unity

o�ers other approaches that are more realistic ways to move agents around.

36

3.2. Context Steering

(a) URQ value of 1.0 compared with

an inverse linear mapping

(b) URQ value of 0.33 compared with

an inverse squared mapping

(c) URQ value of 3.0 compared with

an inverse square-root mapping

Figure 3.5.: URQ Mapping

By applying a velocity to an agent, Unity calculates the agent's position in the

next frame and moves the agent to this position. For an even more realistic

movement, a force can be applied so that acceleration and friction are also

simulated. Nevertheless, not only the kind of movement is important but also

the reliability of the evaluation. For games, it is common use to design a

controller in a way that its movement distance is based on the time needed

till the next frame so that the game feels the same on di�erent hardware

setups. Unity and the Polarith AI provide those controllers. While these

types of controllers are suitable for enjoyable gaming experiences, they are

bad in terms of repeatability and evaluation across several di�erent PCs. A

controller that is independent of the processing time ensures that runs that

37

3. Methods

are made on di�erent machines are still comparable because, on both systems,

the simulation does the same.

The controller for this work is simply applying new positions to agents and

objects. The calculation is time-independent, which means that between two

frames, only a �xed distance will be traveled. Also, the maximal turning rate is

limited to a �xed value to mimic a physics-based controller to a certain degree.

The distance between two frames is 0.1 Unity units towards the agent's forward

direction, and a maximum of 5 degrees turning angle was chosen.

38

3.3. Algorithm Choice and Design

3.3. Algorithm Choice and Design

Algorithm Choice

For this work, an algorithm needs to be chosen that is able to �nd optimal so-

lutions. Preferably global optima should be found, but also good local optima

are su�cient. An important property needs to be that the evaluation of single

individuals can run in parallel. More preferable would be to have an algorithm

that can handle multiple individuals in a single evaluation instance instead of

running one evaluation instance per individual.

Out of the approaches presented in subsection 2.2.8, the family of evolutionary

algorithms satis�es the most important aspect of running several individuals

in one evaluation instance. This is important because the simulation that

runs in Unity needs a lot of time so that every type of parallelization that

can save time will be chosen. SMAC and irace seem to be unable to handle

multiple con�gurations in one evaluation instance. From the presented types

of evolutionary algorithms, the basic form was chosen. Since this is a �rst test

to evaluate if parameter optimization for context steering is possible, the more

advanced versions of evolutionary algorithms are not chosen because they may

have additional properties that may distort this knowledge gain. Based on the

�aws of the basic version that will be detected, a more advanced version that

has special properties to counteract these �aws can be chosen in future work.

Out of the presented related work, SMAC and irace are both optimization

algorithms that do not belong to the family of evolutionary algorithms. So

a comparison of the chosen approach with those two would be evident. Un-

fortunately, both algorithms have some drawbacks, that is why they were not

chosen.

SMAC uses a surrogate model on which the di�erent con�gurations are tested

one after the other to iteratively improve the prediction model. Such a fast

surrogate model for evaluation does not exist, so that with the evaluation that

was used for this approach, SMAC would need a considerable amount of time

that is not given for this project.

A similar problem occurs for irace. According to the user guide [23], irace

is able to use parallelization. But this is only running several con�gurations

in parallel, whereas with an evolutionary algorithm, a whole generation can

be evaluated in parallel. As long as there is no possibility to evaluate several

con�gurations in one irace instance run, this approach would need too much

39

3. Methods

time. At the time of this writing, the author is not aware of such a feature of

irace.

For particle swarm optimization, a similar runtime as for evolutionary algo-

rithms is expected since several evaluations of solutions can happen in parallel

in one run. Nevertheless, there is a reason why evolutionary algorithms are

preferred over PSO. For PSO, a gradual �tness landscape without many jumps

is needed. In best cases, the �tness landscape is known a priori. This is due to

the working of PSO. The particles are attracted to the best-known solution.

When reaching the best position, they still have a movement momentum that

lets them overshoot. By using this mechanic they should �nd better solutions,

since they come from an area with worse �tness and, given the �tness function

is gradual, they should move towards an area with better �tness, unless the

best-known solution is an optimum. An evolutionary algorithm, in contrast,

searches in a stochastic way. Since for the context steering scenario of this

work, the �tness landscape is unknown, it is expected to get better results

using an evolutionary algorithm.

Encoding

The encoding is the �rst essential decision of an evolutionary algorithm since

some of the other operators are a�ected by this. For this work, the encoding

has to �t the needs and structure of a context steering agent that was described

in subsection 3.2.1. All parameters of the di�erent behaviors are �oating-point

values, so a purely real-valued encoding is chosen. The encoding of an individ-

ual is similar to the behavior structure of an agent. For each behavior, a set of

genes is created where each gene represents a parameter. Additionally to the

parameter value also its boundaries are part of the genes since other operators

need those boundaries. Important to know is that the order of behaviors of

an agent are also part of the encoding because the �rst parameter of the �rst

behavior creates the �rst gene in the chromosome. Switching two or more

behaviors would create a completely di�erent genotype, and thus, a di�erent

individual. For evaluation, the gene values are taken from the chromosome and

are applied to the behaviors. The �rst gene in the chromosome contributes its

value to the �rst parameter of the �rst behavior, and so on. That is why the

order of the behaviors de�nes a unique individual.

Algorithm Design

40

3.3. Algorithm Choice and Design

Figure 3.6.: Encoding of an individual for a context steering agent.

The implementation of the evolutionary algorithm that is used in this work is

shown in Figure 3.7. It starts with a random initialization of the population

that will be directly evaluated.

Tournament Selection is used to select the individual pairs that are used

for crossover. Tournament selection with a tournament size of two was chosen

to have a moderate selection pressure and thus to keep a diverse gene pool.

Simulated Binary Crossover was chosen as the crossover type since it is

state of the art. The bounded version was chosen, and the implementation for

that was taken from DEAP [12]. The pseudo-code taken from DEAP is shown

in Algorithm 1.

Multi-gene Gauss Mutation is the mutation that was used in this work [3].

Again, the bounded version was chosen for this work. To make this a bounded

approach, the random value is limited to a value so that the gene value is

at maximum set to the gene boundaries. The Gauss distribution has a mean

value µ of zero, and the standard deviation σ depends on the gene boundaries.

For the Gauss mutation, a non-truncated version was chosen because limiting

the mutation to an arbitrary small domain can lead to the problem that, in

some cases, the mutation steps are too small to escape a local optimum.

41

3. Methods

Algorithm 1 Simulated Binary Crossover for a gene pair

1: procedure SBX(gene1, gene2, eta, xl, xu)

2: x1 = min(gene1, gene2)

3: x2 = max(gene1, gene2)

4: rand = random.random()

5:

6: beta = 1.0 + (2.0 ∗ (x1− xl)/(x2− x1))

7: alpha = 2.0− beta−(eta+1)

8: if (rand <= 1.0/alpha) then

9: betaq = (rand ∗ alpha)(1.0/(eta+1))

10: else

11: betaq = (1.0/(2.0− rand ∗ alpha))(1.0/(eta+1))

12: end if

13:

14: c1 = 0.5 ∗ (x1 + x2− betaq ∗ (x2− x1))

15:

16: beta = 1.0 + (2.0 ∗ (xu− x2)/(x2− x1))

17: alpha = 2.0− beta−(eta+1)

18: if (rand <= 1.0/alpha) then

19: betaq = (rand ∗ alpha(1.0/(eta+1))

20: else

21: betaq = (1.0/(2.0− rand ∗ alpha))(1.0/(eta+1))

22: end if

23: c2 = 0.5 ∗ (x1 + x2 + betaq ∗ (x2− x1))

24:

25: c1 = min(max(c1, xl), xu)

26: c2 = min(max(c2, xl), xu)

27:

28: if random.random() <= 0.5 then

29: gene1 = c2

30: gene2 = c1

31: else

32: gene1 = c1

33: gene2 = c2

34: end if

35: return gene1, gene2
36: end procedure

42

3.4. Fitness Function

Figure 3.7.: Algorithm design: Structure of the chosen evolutionary algorithm.

The Environmental Selection is chosen to be a (µ + λ) - selection where

random selection is combined with elitism. It was chosen this way to have a

balance in taking the best individuals into the next generation by elitism and

keeping a more diverse gene pool by selecting individuals at random.

The Termination Criterion is a maximal number of generation. Since no

information about the expected solution quality is known, the simulation is

limited by the number of generations.

3.4. Fitness Function

Fitness and the �tness function is one of the fundamental parts of an evolution-

ary algorithm since this function is essential for the quality of found solutions.

Ideally, the �tness function is a representation of the task that needs to be

solved or at least an approximation. For example, if the task is to shape a car

in a way that it reduces air friction to a minimum, the �tness function should

be a simulation that can calculate the air friction for an arbitrary car shape.

In this work, the task is to �nd a parameter set that enables a context steer-

ing agent to navigate through a game scene while collecting interest objects,

43

3. Methods

avoiding danger objects, and to stick as close as possible to a user-de�ned path

that the agent can not perceive. So the �tness function is a simulation of the

game scene in which di�erent measurements are made to evaluate how good

the agent solved the task. How exactly these measurements look like is covered

in the rest of this section.

f(~x) = wT · fT (~x) + wD · fD(~x) + wP · fP (~x) (3.3)

The �tness function has a similar structure like the task de�nition. fT (~x) is

the �tness part responsible for collecting interesting objects or moving towards

a target point. fD(~x) measures how good the agent avoids dangerous objects.

fP (~x) penalizes agents that move away from the user-de�ned path. wT , wD,

wP are the weights of each �tness part. Each �tness part is designed in a way

that the whole evolutionary algorithm is a minimization problem. So for each

�tness part, the ideal value would be zero.

Fitness by target

The goal of this �tness part is to tell the agent that it has to collect as many

targets as possible, ideally all. T speci�es the set of all targets objects, and U

is a subset of T , namely all uncollected targets. When all targets are collected

(U = ∅), the agent gets a perfect �tness score of zero for this part.

fT (~x) =
∑
t∈U

1

2
(1 + pd(A, t)) (3.4)

with a distance based penalty pd

pd(A, t) =
d(A, t)

d(S, t)
(3.5)

Where t ∈ U is each target position in a set of targets that were not reached

by the end of the evaluation, d(A, t) is the minimal distance between agent A

and target t during that evaluation, and d(S, t) is the starting distance of the

agent towards t.

For each target that is not collected, there is a distance-based penalty. How big

the penalty is, depends on the starting distance towards that target and how

44

3.4. Fitness Function

close the agents got towards the target while moving around. The distance-

based penalty can have a maximal value of one since the agent achieved at

least the starting distance, even if the agent moves straight away from the

target afterward. If the agent gets closer to the target, the distance-based

penalty will be lower. Nevertheless, there is a �xed penalty for not reaching a

target. A �xed penalty will cause a jump in the �tness function, which could

be considered a bad design decision. Nevertheless, this jump will only occur

between getting very close to the target and reaching it. Since there can not be

any improvement after reaching the target, the jump will not cause any harm

to the optimization procedure. Also, there should be a considerable di�erence

between only getting close to a target or actually reaching it.

Fitness by danger

The danger part of the �tness function is designed to teach the agent not to

get too close to dangerous objects.

fD(~x) =
1

nd
·
∑
td∈TD

Threshold−minDist(td)
Threshold

(3.6)

Where Threshold is the radius an agent is allowed to move towards a danger

object before getting a penalty, TD is the set of events in which the agent

moved inside the threshold radius, nd is the number of danger objects in the

scene, and minDist(td) is the minimal distance between agent and danger

object while the agent moves inside the threshold radius.

The penalty for one event is normalized by the threshold value so it can be

at maximum one. Additionally, all events are normalized by the number of

danger objects so that a penalty of one is made if the agent crashes into each

danger object with the maximum penalty. Theoretically, a value greater one

could occur since another event is created if the agent re-enters a threshold

radius of a danger object it entered before. However, penalizing an agent,

even more, when it relentlessly crashes into the same danger object, again and

again, bene�ts the goal of teaching the agent to avoid danger objects.

Fitness by path

The last part of the �tness shall in�uence the algorithm to �nd parameters that

also a�ect how the agent behaves. By placing a path close to danger objects,

45

3. Methods

the agent acts braver if it �nds a way to follow the path and simultaneously

avoid the danger objects. A path far away from dangerous objects should

result in a more cowardly behavior under the assumption that the agent sticks

to the path, and the training is not dominated by one of the other �tness parts.

fP (~x) =

∑tend
tstart

d(At, P)∑tend
tstart

dmax
(3.7)

Where tstart is the starting time of the evaluation, tend is the end time of the

evaluation, d(At, P) is the smallest distance from the agent's position at time

t to the path, and dmax the maximum distance an agent shall have from the

path.

The distance to the path is accumulated over the entire evaluation and normal-

ized by a distance value that is considered as bad behavior for a speci�c scene.

However, the agent can move further away, which increases the penalty even

more. The closer an agent sticks to the path over the complete evaluation, the

better is the �tness value. Ideally, the agent follows the path directly and gets

a value of zero. Nevertheless, this scenario is not very likely since the paths

used in this work are linear paths, and the movement of the agent has some

limitations that will not allow the agent to make too big turns in one position.

Contradiction in Fitness

The described �tness parts are all designed in a way that the evolutionary

algorithm shall try to minimize each of them. For most scenarios, this will not

be possible since the individual �tness parts can work contrarily. For example,

if an interest object and a danger object have the same position, the agent

can either collect the interest object and also touch the danger object or avoid

the danger object and also not collect the target object, but minimizing both

objectives is not possible. The same goes for the path. If danger objects

are places on the path or target objects are not on the path, the agent can

either follow the path and touch danger objects or miss target objects or leave

the path to avoid danger objects and collect target objects. So it could be

said that the goal of the �tness function is not to minimize all of the �tness

parts individually but to �nd a tradeo� where the sum of all �tness parts is

minimal. How this tradeo� looks like can be in�uenced by the weightings of

the di�erent �tness parts. With a stronger path weighting, the agents should

46

3.4. Fitness Function

stick more strictly to the path and ignore the danger and target objects to a

certain degree. A stronger target weighting results in an agent that seeks for

target objects, even if it has to leave the path for reaching them or get close

to danger objects that are near the target. A stronger danger weighting will

lead to an agent that leaves the path or also avoids target objects if the danger

objects are on the path or too close to a target.

47

4. Benchmark Implementation

This chapter is about the implementation of the benchmark scenes for the

experiments. Furthermore, adjustable parameters are described, and the scene

variations for the robustness experiments are introduced.

4.1. General Settings

For the experiments, three di�erent scenes were created. Each scene consists

of an agent that is trained to solve a given task, an interest object, one or

more danger objects, and one or more paths. The agent's task is to collect the

interest object while avoiding the danger objects. Furthermore, it shall try to

minimize the overall distance to the path while moving around. Sometimes

following the path is contrary to avoiding dangerous objects because these are

placed directly on or close by the path. By avoiding dangerous objects, it is

meant to stay further away from these objects than a given threshold radius.

For all experiments, this threshold is 2.0 distance units in the scene. The

distance from the path that serves as normalization value is scene dependent

and is stated for each scene individually.

4.2. Scenes

Scene 1

The �rst scene is a simple seek scenario shown in Figure 4.1 to demonstrate

the qualities of context steering in a simple case. There, an agent, a danger

object, and an interest object are placed on a straight line. Also, the desired

path is illustrated. Since the scene is symmetrical, the path is mirrored so that

one path is above and one path is below the danger object. The normalization

distance for the path �tness is set to 5.0 distance units.

49

4. Benchmark Implementation

Figure 4.1.: A basic seek scenario for context steering.

Scene 2

Figure 4.2 shows the second scene. Here the simple seek scenario is extended

by additional danger objects. This scene was created to test if an agent can be

trained on several similar scenes to perform robustly on each of them. There-

fore, the danger objects are randomly placed around their starting position,

and some of them are deactivated at random. Out of these random samples,

�ve variations were chosen on which the algorithm will be tested.

Figure 4.2.: A more complex seek scenario with several danger objects that are

randomly place within a given radius.

Figure 4.3 shows the �rst variation of this scene. The remaining variations can

be found in Appendix A. Some of these variations are similar to the simple

seek scenario where the agent has to avoid the danger objects in a certain way

to follow the path automatically, other have danger objects directly placed on

the path, so the agent needs to leave the path or prefer the others path that

50

4.2. Scenes

Figure 4.3.: First variation of the second scene.

is not blocked by danger objects. Figure A.1b shows a scene with only one

danger object relatively far away from the center. This scene was chosen to

see if an agent can �nd a solution for a scene with arbitrary less contextual

information that still follows the path and if this solution performs equally

well in the other variations.

Scene 3

Figure 4.4 shows a more complex scene to test if a parameter con�guration can

be found when moving danger objects are involved. All except the top danger

object are oscillating horizontally around their starting position by a given

distance and speed. They have alternating movement directions. If the �rst

object starts moving to the left side, then the second moves to the right side.

This continues until the second last object. The last danger object remains

stationary. If by accident, an agent can avoid all oscillating danger objects

by just moving forward, the stationary danger shall penalize this behavior.

Here again, some variations were created regarding movement speed, traveling

distance, and spacing between the danger objects.

Figure 4.4 also shows the standard setting for this scene. The danger objects

move with a speed of 0.1 Unity units per frame over a distance of 10.0 units.

Vertically they have a distance of 5.0 units to each other. For the other varia-

tions (see Appendix A), only the changed parameters are mentioned. Variation

two has a 50 percent increased movement speed to see if faster moving objects

still can be avoided. The third variation has the 50 percent increased speed

and a wider moving distance of 20.0 units. In case the faster objects are a

problem, this scene will show if the increased speed is the problem or the high

51

4. Benchmark Implementation

Figure 4.4.: Moving danger scenario

frequency of the objects because now this should be lower. In the fourth vari-

ation in Figure A.2c, the vertical spacing between the objects is reduced to 3.0

units. This gives the agent less space to navigate, and it needs to react faster.

Furthermore, in Figure A.2d, all parameters are changed. At a spacing of 3.0

and a travel distance of 20.0, the objects move with 0.2 units per frame.

52

5. Experiments and Evaluation

The overall goal is to evaluate if an evolutionary algorithm can be used to

optimize the parameters of a context steering agent. Since this is a superior

goal, it will be part of all experiments.

5.1. Evaluation Non-Determinism

The simulation of an agent is not deterministic. There are slight di�erences

between two runs so that the same agent gets di�erent �tness values in di�erent

evaluation runs. This error seems to depend on the runtime of the simulation

because between training where several agents run in parallel and reevaluation

of a single agent the �tness di�erence can be much higher. Thus, for the

results of the experiments, all individuals are reevaluated individually, and

these �tness values are taken. To get an idea of the stochastic nature of an

evaluation, an example agent was reevaluated 31 times. In training, it got a

�tness score of 226.94. The mean value of the reevaluations is 233.70, with a

standard deviation of 3.32.

5.2. Evaluation of an Agent

For each evaluation run, the agent and other movable objects are put to their

starting positions. The agent has a �xed number of update steps to reach

the interest object. If the interest object is reached, the run is considered

as completed and directly ends. Otherwise, the evaluation ends when the

maximal number of update steps is reached. At the end of the evaluation, the

�tness score is calculated based on the movement of the agent during the run.

53

5. Experiments and Evaluation

5.3. Settings

In this section, all parameters for the used evolutionary operators and general

algorithm parameters are mentioned. The experiments in this work are all

done with these settings. For other settings than these, it is expected that also

the results will di�er.

The evolutionary algorithm consists of a population of 100 individuals and

runs for 100 generations. The mutation rate for the Gauss-mutation is 0.05 for

an individual. A standard deviation of 0.2 of the gene boundaries was chosen.

The crossover probability is 1.0, so each individual pair creates o�spring, and

the eta value of the simulated binary crossover is set to 20. The tournament

size of the tournament selection is two. Each evaluation run is repeated three

times to avoid assigning a good �tness value that occurred out of a stochastic

behavior and does not represent the agent. Out of these three runs, the median

value is chosen as the actual �tness. The best 10 percent of individuals of each

generation are stored as elite and are taken to the next generation. There

they can be used for recombination but are not mutated, so they stay as they

are. For the robust setting, �ve di�erent variations of a scene are created.

The agent is trained on each variation for three runs. For each variation, the

median is chosen as the �tness value of the variation. The total �tness value

of the individual is the median value out of the �ve variation �tness values.

5.4. Experiment 1

5.4.1. Description

This experiment evaluates in what manner a di�erent weighting of the �tness

function will a�ect the resulting behavior. For this, agent con�gurations with

hand-selected behaviors are chosen. Furthermore, the following weightings are

chosen:

• An equally weighted �tness function where all parts have a weight of

1000.0.

• Three further weightings in which one part has a weight of 3000.0 and

the two remaining keep the weight of 1000.0.

This results in 4 di�erent weightings for each of the scenes. The equal weighting

serves as a kind of baseline behavior. For the stronger path weighting, it is

54

5.4. Experiment 1

expected that the agent will ignore danger objects that are placed near the path

more than in other weightings. For a stronger danger weighting, the opposite is

expected, in particular, that the agent strictly avoids danger objects even if it

has to leave the path for a larger detour. Actually, the higher target weighting

is expected to have no big impact in behavior for these scenes, since the scenes

are designed that the agent is always able to reach the target if the parameter

con�guration is not completely wrong. So that the �tness for the target part

should be zero, and thus the weighting has no e�ect on the �nal performance,

compared to an equal weighting.

For the hand crafted agents following behavior con�gurations were chosen:

Scene 1:

• A seek behavior for detecting interest objects that are mapped to the

interest objective.

• A seek behavior for detecting danger objects that are mapped to the

danger objective.

Scene 2:

• A seek behavior for detecting interest objects that are mapped to the

interest objective.

• A seek behavior for detecting danger objects that are mapped to the

danger objective.

Scene 3:

• A seek behavior for detecting interest objects that are mapped to the

interest objective.

• A seek behavior for detecting danger objects that are mapped to the

danger objective.

• An avoid behavior for detecting danger objects that are mapped to the

interest objective.

• An evade behavior for detecting danger objects that are mapped to the

interest objective.

55

5. Experiments and Evaluation

5.4.2. Results

Scene 1

Table 5.1 shows the individual �tness parts for the di�erent weightings of

the median solution out of 31 runs of scene 1. In all weightings, the agents

are able to reach the target while avoiding the danger object. Because of

this, the agents only focus on optimizing the path �tness. That is why all

weightings result in similar �tness values. Figure 5.1 illustrates that all agents

have similar behavior and choose only slightly di�erent paths. Besides the

�tness values of the median solution and a visual check for similarity, also a

statistical test was made. The results of the Mann-Whitney U test in Table 5.2

show the p-value for a two-sided test for all possible weighting combinations.

The Mann-Whitney U test checks if the given samples are out of the same

distribution. A p-value of zero indicates di�erent distributions, while a p-

value of one indicates the same distribution. Most of the weighting pairs have

a value above 0.5. Together with similar �tness values, this means that for

scene 1, no weighting is superior to the others.

Figure 5.1.: Trails for agents trained on di�erent weightings: equal is white,

target is green, path is blue, danger is red.

56

5.4. Experiment 1

Objectives Weightings

wequal wtarget wpath wdanger
fT (~x) 0.0 0.0 0.0 0.0

fP (~x) 92.62 93.42 93.59 91.89

fD(~x) 0.0 0.0 0.0 0.0

total 92.62 93.42 93.59 91.89

weighted 92.62 93.42 280.78 91.89

Table 5.1.: Results for di�erent weightings of scene 1

p-value wtarget wpath wdanger
wequal 0.42 0.55 0.72

wtarget 0.89 0.75

wpath 0.89

Table 5.2.: Mann-Whitney U test for di�erent weightings of scene 1

Scene 2

In scene 2, similar results are observed. In Table 5.3 the �tness parts of the

median run are shown. Again, the targets are collected while avoiding all

danger objects, which means that only the path �tness is optimized at the

end of the training. Similar �tness values are achieved and an only slightly

di�erent path is taken, as shown in Figure 5.2. Also, the Mann-Whitney U

test shows that most of the weighting combinations have a high p-value. The

result is similar to scene one so that no weighting seems to be superior to the

other weightings.

Objectives Weightings

wequal wtarget wpath wdanger
fT (~x) 0.0 0.0 0.0 0.0

fP (~x) 98.25 97.62 96.75 95.95

fD(~x) 0.0 0.0 0.0 0.0

total 98.25 97.62 96.75 95.95

weighted 98.25 97.62 290.25 95.95

Table 5.3.: Results for di�erent weightings of scene 2

57

5. Experiments and Evaluation

Figure 5.2.: Trails for agents trained on di�erent weightings: equal is white,

target is green, path is blue, danger is red.

p-value wtarget wpath wdanger
wequal 0.93 0.70 0.33

wtarget 0.86 0.48

wpath 0.83

Table 5.4.: Mann-Whitney U test for di�erent weightings of scene 2

Scene 3

Scene 3 seems to create di�erent movement patterns for di�erent weightings.

In terms of �tness this can be seen in Table 5.5. Most obvious is that the

path weighting ignores more danger objects to be close to the path, and the

danger weighting avoids danger objects at all costs and sacri�ces an e�cient

path. The target weighting seems to avoid more danger objects at the cost

of the path compared to the equal weighting. Only the agent of the danger

weighting is able to completely avoid all danger objects, but this at the cost of

a very high path �tness. This is also visible in Figure 5.3. The reference path

is in the middle of the picture. The stronger path weighting is indicated by the

blue line, which sticks to the reference path except for the last and stationary

danger object. It seems that the moving danger objects are mostly ignored.

The equal and target weighting (white and green line) tried to �nd a tradeo�

between avoiding danger objects and being relatively close to the path. The

danger weighting, in contrast, is mainly focused on avoiding danger objects by

making a large turn around all danger objects at once, far away from the path

indicated as a red line.

58

5.4. Experiment 1

When testing if the �tness values were sampled from similar distributions, the

Mann-Whitney U test shows that, in most cases, there are no similarities. The

target weighting shows similarities with the path weighting and a small overlap

with the equal weighting, but in general, it seems that the weightings create

di�erent results in scene 3.

Figure 5.3.: Trails for agents trained on di�erent weightings: equal is white,

target is green, path is blue, danger is red.

Objectives Weightings

wequal wtarget wpath wdanger
fT (~x) 0.0 0.0 0.0 0.0

fP (~x) 174.40 285.82 31.99 412.64

fD(~x) 140.06 69.51 346.73 0.0

total 314.46 355.33 378.72 412.64

weighted 314.46 355.33 442.71 412.64

Table 5.5.: Results for di�erent weightings of scene 3

59

5. Experiments and Evaluation

p-value wtarget wpath wdanger
wequal 0.22 0.02 0.005

wtarget 0.48 0.07

wpath 0.15

Table 5.6.: Mann-Whitney U test for di�erent weightings of scene 3

5.4.3. Interpretation

The results of this experiment show that di�erent weightings of the �tness

function can a�ect the movement behavior of the trained agent only if the

scene is designed in a way that the individual �tness part work contrary to

each other.

5.5. Experiment 2

5.5.1. Description

The next experiment evaluates how much knowledge is needed to enable the

evolutionary algorithm to create successful context steering agents. In one

case, the algorithms shall optimize hand-selected behaviors that are su�cient

from an expert point of view. In the other case, the algorithm needs to deals

with the whole set of behaviors where one would suggest that some of them

work contrary to the given target behavior.

For the tests with all behaviors, the agents look the same in all three scenes.

The following behaviors are used: seek, �ee, avoid, pursue, and evade. A

behavior can map the found context values to each of the two objectives:

interest and danger. Furthermore, the objects that will be detected to create

context values can be classi�ed into two groups. Respectively to the objectives,

these are interest and danger objects. If each object type is mapped to each

objective, there are four variations for each behavior. That makes in total 20

di�erent behaviors.

In general, it is expected that for simple scenes, it is easier to estimate what

behaviors are used to ful�ll the task. So that for the simple scenes (1 and 2), the

handcrafted agents will perform equally well as the agents with all behaviors.

For the more complex scene 3, a more advanced movement behavior is desired,

60

5.5. Experiment 2

and this would need a broader combination of behaviors. It is not clear if the

behaviors for the handcrafted agent are su�cient, and thus it is expected that

the agent with all behaviors will perform better.

Out of the results from experiment 1, the weighting for scene 1 and 2 are set

to an equal weighting. Since there is no real di�erence between the weightings,

any other weighting would also be acceptable. For scene 3, the higher dan-

ger weighting is chosen since this was the only weighting in which the agent

avoided all danger objects. These weighting settings are also used for the third

experiment.

5.5.2. Results

Table 5.7 shows the �tness values of all scenes for the di�erent behavior com-

binations. Surprisingly the agent with all behaviors is better than the hand-

crafted agent in scene 1. In scene 2, it is worse, although the task seems to

be not that di�erent from scene 1. In Scene 3, the agent with all behaviors is

better, which was expected. The agent con�gurations with all behaviors are

also able to avoid all danger objects in all three scenes.

hand-selected behaviors all behaviors fTall(~x) fPall(~x) fDall(~x)

Scene 1 92.62 65.00 0 65.00 0

Scene 2 98.25 191.58 0 191.58 0

Scene 3 412.64 236.18 0 236.18 0

Table 5.7.: Comparison of agents with hand-selected vs. all behaviors

These results are statistically signi�cant as shown by the Mann-Whitney U

test (see Table 5.8).

hand-selected vs all behaviors p-value

Scene 1 4.0141e-07

Scene 2 0.0007

Scene 3 0.0555

Table 5.8.: Mann-Whitney U test for di�erent amount of behaviors

Most surprising for this experiment is that for scene 2, the hand-selected so-

lution is better, although, in scene 1, the con�guration with all behaviors

61

5. Experiments and Evaluation

achieved better results. It is surprising because both scenes are similarly struc-

tured, and thus, a similar solution quality was expected. The taken path and

the complete training distribution will be shown for a better understanding of

this di�erence.

Scene 1

Figure 5.4 shows the path of the median solution that was found for agent

con�gurations with all behaviors attached. Compared to the found path of

the �rst experiment (see Figure 5.1), it is obvious why a better �tness score

was achieved. The solution with all behaviors results in a better approximation

of the user-de�ned linear path and thus reduces the �tness score created by

the path component of the �tness function.

Figure 5.4.: Trail of an agent in Scene 1 that was trained with an equal weight-

ing and all behaviors.

The �tness distribution illustrated in Figure 5.5 indicates that it is not just

coincidence that the con�guration with all behaviors achieves better results

than the hand-selected con�guration. Here, the �tness values of each run

of both training methods are plotted in ascending order. In all runs, the

con�guration with all behaviors leads to a better solution than the hand-

selected con�guration.

Scene 2

In the second scene, it is the case that the con�guration with all behaviors

achieved worse results than the hand-selected con�guration. The plotted path

is illustrated in Figure 5.6. Compared with the path from the �rst experiment

(see Figure 5.2), one can see where the major �aw of the found solution is.

Directly at the start, the hand-selected solution turns counterclockwise, which

is closer to the path. In contrast, the agent with all behaviors turns clockwise

and increases the distance to the user-de�ned path.

62

5.5. Experiment 2

Figure 5.5.: Fitness distributions of 31 independent runs. Scene 1.

Figure 5.6.: Trail of an agent in Scene 2 that was trained with an equal weight-

ing and all behaviors.

A look into the �tness distribution in Figure 5.7 shows that this problem is just

a local optimal solution that was found until the end of the training. There

are other training instances that found better solutions, even better than the

best solution of the hand-selected con�guration.

In general, one can see that the �tness distribution for the con�guration with

all behaviors has a high variance. This leads to the assumption that this scene

has more local optima, and it is harder to train for a con�guration with many

behaviors.

Scene 3

63

5. Experiments and Evaluation

Figure 5.7.: Fitness distributions of 31 independent runs. Scene 2.

Figure 5.8 shows the found path for the con�guration with all behaviors. Com-

pared to the �rst experiment, the agent has found a more reactive behavior to

avoid the moving danger objects at a smaller distance. This way, the agent is

able to move more dynamically and closer to the user-de�ned path while still

avoid the danger objects completely. Since this is an image of a dynamic scene,

it may look like the agent violated the danger objective because some danger

objects lie on the path. Nevertheless, at the time of moving along this path,

the danger objects were at another position, and thus the agent's distance to

the danger objects was large enough.

In the �rst two scenes, the hand-selected con�guration had a more or less

stable outcome with nearly always the same �tness score, and the con�guration

with all behaviors had a higher variance in the found �tness values. Here,

both training methods have a high variance. This indicates that this scene is

harder to train in general. Moreover, the �tness distribution shows that the

con�guration with all behaviors achieves overall better results.

64

5.6. Experiment 3

Figure 5.8.: Trail of an agent in Scene 3 that was trained with a higher danger

weighting and all behaviors.

5.5.3. Interpretation

The results show that with more behaviors, a better con�guration can be found.

Sometimes this is done at the cost of more training time. In all scenarios, the

target and danger part of the �tness is minimized to zero, and only the path

part is left for optimization. To follow the path, an agent can only make turns

that result in a curve, but the user-de�ned path is linear with hard edges. So

it is impossible to follow the path perfectly. However, with more behaviors,

the agent is able to do it more precisely.

5.6. Experiment 3

5.6.1. Description

The third experiment evaluates how the robustness of an agent can be a�ected

by the way it is trained. Therefore �ve di�erent variations of scene 2 and 3 are

made and used for the agent's training. For each variation of a scene, an agent

65

5. Experiments and Evaluation

Figure 5.9.: Fitness distributions of 31 independent runs. Scene 3.

is trained solely on this variation. There is also an agent that is trained on

all variations of a scene simultaneously. According to the robustness de�nition

in section 3.1, this means that the agent is trained on each of the variations

and get a �tness value for each variation. Out of these �ve �tness values, the

median value is taken as the robust �tness of the agent. So for each scene, six

di�erently trained agents exist. To compare them with each other, each agent

is evaluated on each of the scene variations.

It is expected that the training for agents on a single scene variation should

result in a quite good performance for this variation. The agent that is trained

on all scene variations should at least have a good performance on three out

of the �ve variations since the median value is taken as the �tness.

5.6.2. Results

The results of the robustness analysis are shown in Table 5.9 and Table 5.10.

For both scenarios, the data shows the same results. The agents that are

trained on one scene variation (Agent1 − Agent5) also have the best perfor-

mance that was achieved in this variation(V 1−V 5), whereas the robust agent

(Agent0) has a mediocre performance in most of the variations. Averaged over

all scene variations, the robust agent achieves the best performance.

66

5.6. Experiment 3

Scene 2 V1 V2 V3 V4 V5 average

Agent 0 419.24 213.55 227.02 355.16 215.98 286.19

Agent 1 191.58 378.55 384.89 473.74 395.76 364.90

Agent 2 333.33 138.04 287.48 287.25 536.45 316.51

Agent 3 546.03 698.79 117.19 1494.47 618.01 694.89

Agent 4 343.66 238.16 1580.83 241.37 207.62 522.32

Agent 5 337.02 333.73 617.22 269.01 154.93 382.50

Table 5.9.: Fitness values of di�erently trained agents tested on all variations

of scene 2. Agent 0 was trained on all variations.

Scene 3 V1 V2 V3 V4 V5 average

Agent 0 626.39 314.92 266.91 393.74 310.58 382.50

Agent 1 236.18 362.94 920.61 335.88 489.44 469.01

Agent 2 978.92 227.49 1359.89 890.53 1603.54 1012.07

Agent 3 592.04 1015.18 74.11 715.71 598.50 599.10

Agent 4 2540.85 1424.84 305.08 214.78 806.06 1058.32

Agent 5 1231.19 618.35 560.91 553.90 121.58 617.18

Table 5.10.: Fitness values of di�erently trained agents tested on all variations

of scene 3. Agent 0 was trained on all variations.

5.6.3. Interpretation

This experiment shows that when agents are trained for a scene, they can

get quite good at solving this particular task. However, when some changes

were made in the scenes, this performance can drop dramatically. In contrast,

an agent that is trained on several scene variations robustly can yield better

results in changing environments. This shows that with the presented type of

robustness, a generalization e�ect can be achieved, at the cost of a performance

decrease across all scenes.

67

6. Conclusion and Future Work

6.1. Conclusion

In this work, context steering is successfully combined with evolutionary al-

gorithms to create a system that is able to �nd parameter con�gurations for

context steering agents. Therefore, an encoding that �ts the needs of context

steering was developed. To support this encoding, some modi�cations were

made to an existing context steering system. Some context steering parame-

ters had to be transformed into real-valued terms to �t the chosen encoding

of the evolutionary algorithm. Besides the encoding, a �tness function was

developed that incorporates the goals of context steering and also considers a

possibility for a user to in�uence the results. Furthermore, a controller design

was proposed to enable a reliable training of the agents that is independent of

the computation speed and thus can be used across several hardware setups.

To test the developed system, several benchmark scenarios were created to

test di�erent properties of context steering agents. A robustness criterion was

developed to test if the found parameter con�gurations can also be used in

a set of di�erent scenario variations. In several experiments, it has been dis-

covered that a di�erent weighting of the individual �tness parts can in�uence

the agent's behavior. Moreover, the system can deal with many behaviors and

utilize them to achieve better results than with a set of hand-selected behav-

iors. The robustness analysis shows that agents that are trained explicitly for

robustness perform worse on the individual scene variations than the agents

that were trained only on this variation. However, they have better perfor-

mance across all variations. In general, one could say that it is possible to use

evolutionary algorithms for parameter con�guration of context steering agents.

The presented work shows that for simple scenarios, interesting results can be

achieved, and speci�c requirements must be ful�lled to enable a user-guided

evolution.

69

6. Conclusion and Future Work

6.2. Future Work

Although these �rst results look very promising, there is still a lot of opti-

mization potential. For the encoding, not all context steering parameters were

chosen. For a �rst evaluation, only the most important and most promising

parameters were chosen. A missing parameter, for example, is the way how

behaviors are combined into a �nal context map. For this work, it was �xed

to take the maximal context value. Other options are that the values of all

behaviors are added, subtracted, multiplied, divided, or that the lowest value

is taken. To use these options for an evolutionary algorithm, a continuous

change between these options need to be found, similar to how it was done for

the URQ-mapping and the prede�ned mapping types.

To create authentic but di�erent agents in one training session, the weighted

sum approach for the �tness function could be replaced by a multi-criteria

optimization. In this way, each �tness part is optimized in a single run. Nev-

ertheless, this still works only if the scene is designed in a way that the �tness

parts work contrary to each other.

To guide the evolutionary algorithm towards a better understandable solution,

another �tness term can be introduced that considers a kind of energy function

in which some behavior parameters like magnitude, sensitivity o�set, or radius

would be penalized. This could lead to agent con�gurations with a reduced

magnitude for behaviors with low impact, or behavior parameters that have

no e�ect and get just some arbitrary values.

The robustness analysis already shows that this kind of training leads to agents

that have a reliable performance across several scenes. Since the median was

used, the training ignored �aws that were made in the two worst variations.

Di�erent robustness measurements could be tested to see if one of them leads

to better overall performance. This could be a (weighted) mean value of all

variations, the worst value, or a value that incorporates the standard deviation

across all variations.

Besides further optimizations in the algorithmic parts of this work, the test

scenarios can be optimized, too. The user-de�ned path was a linear one. Since

the agent can only turn in curves, hard edges should be avoided for the user-

de�ned path. A �rst suggestion for a better path representation is to use Bezier

curves.

70

6.2. Future Work

This work shows that this system is able to �nd solutions for static scenes

with only a single target object. Also, a dynamic scene with �xed movement

patterns was evaluated. For further experiments, other designs can be chosen

to investigate the capabilities of this system even more. One point of interest

would be to test if di�erent paths for the same scene can be learned. This

would require several training sessions for the same scene with di�erent but

reasonable paths. Since simple periodic movement patterns can be predicted,

another experiment can test if an agent can be found that can predict more

complex or arbitrary non-periodic movement patterns.

71

Appendices

73

A. Scenario Variations

75

A. Scenario Variations

(a) Scene2: Variation 2 (b) Scene2: Variation 3

(c) Scene2: Variation 4 (d) Scene2: Variation 5

Figure A.1.: Variation 2, 3, and 4 of the second scene.

76

(a) Scene3: Variation 1 and 2 (b) Scene3: Variation 3

(c) Scene3: Variation 4 (d) Scene3: Variation 5

Figure A.2.: All variations of the third scene.

77

Bibliography

[1] Michael A�enzeller. Segregative genetic algorithms (sega): A hybrid su-

perstructure upwards compatible to genetic algorithms for retarding pre-

mature convergence. Int. J. Comput. Syst. Signal, 2(1):16�30, 2001.

[2] Michael A�enzeller and Stefan Wagner. Sasegasa: A new generic parallel

evolutionary algorithm for achieving highest quality results. Journal of

Heuristics, 10(3):243�267, 2004.

[3] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Evolutionary

computation 1: Basic algorithms and operators. CRC press, 2018.

[4] Chandan Banerjee, Sayak Paul, and Moinak Ghoshal. An evolutionary al-

gorithm based parameter estimation using pima indians diabetes dataset.

International Journal on Recent and Innovation Trends in Computing and

Communication, 5(6):374�377, 2017.

[5] Aniket Bera, Sujeong Kim, and Dinesh Manocha. E�cient trajectory

extraction and parameter learning for data-driven crowd simulation. In

Proceedings of the 41st Graphics Interface Conference, pages 65�72, 2015.

[6] Glen Berseth, Mubbasir Kapadia, and Petros Faloutsos. Robust space-

time footsteps for agent-based steering. Computer Animation and Virtual

Worlds, 2015.

[7] Glen Berseth, Mubbasir Kapadia, Brandon Haworth, and Petros Falout-

sos. Steer�t: Automated parameter �tting for steering algorithms. 2014.

[8] Jürgen Branke. Creating robust solutions by means of evolutionary al-

gorithms. In International Conference on Parallel Problem Solving from

Nature, pages 119�128. Springer, 1998.

[9] Jürgen Branke. E�cient evolutionary algorithms for searching robust solu-

tions. In Evolutionary Design and Manufacture, pages 275�285. Springer,

2000.

79

Bibliography

[10] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated binary crossover

for continuous search space. Complex systems, 9(2):115�148, 1995.

[11] Kalyanmoy Deb and Himanshu Gupta. Searching for robust pareto-

optimal solutions in multi-objective optimization. In International Con-

ference on Evolutionary Multi-Criterion Optimization, pages 150�164.

Springer, 2005.

[12] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner,

Marc Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms

made easy. Journal of Machine Learning Research, 13:2171�2175, jul

2012.

[13] A. Fray. Context steering: behavior driven steering at the macro scale.

In Game AI Pro 2: Collected Wisdom of Game AI Professionals., pages

183�193. CRC Press, 2015.

[14] Pablo García-Sánchez, Alberto Tonda, Antonio J Fernández-Leiva, and

Carlos Cotta. Optimizing hearthstone agents using an evolutionary algo-

rithm. Knowledge-Based Systems, 188:105032, 2020.

[15] Anton Gerdelan and Carol O'Sullivan. A genetic-fuzzy system for opti-

mising agent steering. Computer Animation and Virtual Worlds, 21(3-

4):453�461, 2010.

[16] Stephen J Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming C

Lin, and Dinesh Manocha. Pledestrians: A least-e�ort approach to crowd

simulation. In Symposium on computer animation, pages 119�128, 2010.

[17] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynam-

ics. Physical review E, 51(5):4282, 1995.

[18] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential

model-based optimization for general algorithm con�guration (extended

version). Technical Report TR-2010�10, University of British Columbia,

Computer Science, Tech. Rep., 2010.

[19] James Kennedy and Russell Eberhart. Particle swarm optimization. In

Proceedings of ICNN'95-International Conference on Neural Networks,

volume 4, pages 1942�1948. IEEE, 1995.

80

Bibliography

[20] M. Kirst. Multicriteria-optimized context steering for autonomous move-

ment in games. Master's thesis, Otto-von-Guericke University Magdeburg,

2015.

[21] Marija Kranj£evi¢, Andreas Adelmann, Peter Arbenz, Alessandro Cit-

terio, and Lukas Stingelin. Multi-objective shape optimization of radio

frequency cavities using an evolutionary algorithm. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 920:106�114, 2019.

[22] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim,

and Matthias Steinbrecher. Computational intelligence: a methodological

introduction. Springer, 2016.

[23] Manuel López-Ibáñez, L Pérez Cáceres, Jérémie Dubois-Lacoste, Thomas

Stützle, and Mauro Birattari. The irace package: User guide. In Techni-

cal Report TR/IRIDIA/2016-004. IRIDIA, Université Libre de Bruxelles,

Belgium, 2016.

[24] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,

Mauro Birattari, and Thomas Stützle. The irace package: Iterated racing

for automatic algorithm con�guration. Operations Research Perspectives,

3:43�58, 2016.

[25] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. Center-

based initialization of cooperative co-evolutionary algorithm for large-

scale optimization. In 2016 IEEE Congress on Evolutionary Computation

(CEC), pages 3557�3565. IEEE, 2016.

[26] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12.

Springer Science & Business Media, 2012.

[27] Diego Pérez-Liébana, Spyridon Samothrakis, Julian Togelius, Tom Schaul,

and Simon M Lucas. Analyzing the robustness of general video game

playing agents. In 2016 IEEE Conference on Computational Intelligence

and Games (CIG), pages 1�8. IEEE, 2016.

[28] Giacomo Persico. Evolutionary optimization of centrifugal nozzles for

organic vapours. In Journal of Physics: Conference Series, volume 821,

page 012015. IOP Publishing, 2017.

81

Bibliography

[29] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm opti-

mization. Swarm intelligence, 1(1):33�57, 2007.

[30] Mitchell A Potter and Kenneth A De Jong. Cooperative coevolution: An

architecture for evolving coadapted subcomponents. Evolutionary com-

putation, 8(1):1�29, 2000.

[31] Craig W Reynolds. Steering behaviors for autonomous characters. In

Game developers conference, volume 1999, pages 763�782. Citeseer, 1999.

[32] Priscila Saboia and Siome Goldenstein. Crowd simulation: applying mo-

bile grids to the social force model. The Visual Computer, 28(10):1039�

1048, 2012.

[33] Christophe Schlick. Quantization techniques for visualization of high dy-

namic range pictures. In Photorealistic rendering techniques, pages 7�20.

Springer, 1995.

[34] Adarsh Sehgal, Hung La, Sushil Louis, and Hai Nguyen. Deep reinforce-

ment learning using genetic algorithm for parameter optimization. In

2019 Third IEEE International Conference on Robotic Computing (IRC),

pages 596�601. IEEE, 2019.

[35] Polarith UG. Polarith ai documentation. http://docs.polarith.com/

ai/, 2020. Accessed: 2020-02-28.

[36] AJ Umbarkar and PD Sheth. Crossover operators in genetic algorithms:

A review. ICTACT journal on soft computing, 6(1), 2015.

[37] Niels Van Hoorn, Julian Togelius, Daan Wierstra, and Jurgen Schmidhu-

ber. Robust player imitation using multiobjective evolution. In 2009 IEEE

Congress on Evolutionary Computation, pages 652�659. IEEE, 2009.

[38] Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimiza-

tion using cooperative coevolution. Information Sciences, 178(15):2985�

2999, 2008.

[39] Chern Han Yong and Risto Miikkulainen. Cooperative coevolution of

multi-agent systems. University of Texas at Austin, Austin, TX, 2001.

82

http://docs.polarith.com/ai/
http://docs.polarith.com/ai/

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only

the stated sources and tools.

Martin Wieczorek Magdeburg, June 16, 2020

	List of Figures
	List of Tables
	Introduction and Motivation
	Goals
	Structure

	Basics and Related Work
	Movement
	Overview
	History of Context Steering
	Context Steering
	Multi-objective Decision Making
	State of the Art

	Evolutionary Algorithm
	Encoding
	Fitness
	Selection for Reproduction
	Crossover
	Mutation
	Environmental Selection
	Termination Criterion
	State of the Art

	Robustness
	State of the Art

	Summary

	Methods
	Robustness for Context Steering
	Context Steering
	Behaviors and Parameters
	Adjustments

	Algorithm Choice and Design
	Fitness Function

	Benchmark Implementation
	General Settings
	Scenes

	Experiments and Evaluation
	Evaluation Non-Determinism
	Evaluation of an Agent
	Settings
	Experiment 1
	Description
	Results
	Interpretation

	Experiment 2
	Description
	Results
	Interpretation

	Experiment 3
	Description
	Results
	Interpretation

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Scenario Variations
	Bibliography

