
Nele Raya Traichel

Context Steering with

Di�erential-Drive Robots:

Reactive Navigation based on

Multi-Objective Decision-Making

Intelligent Cooperative Systems

Computational Intelligence

Context Steering with Di�erential-Drive Robots:

Reactive Navigation based on

Multi-Objective Decision-Making

Master Thesis

Nele Raya Traichel

June 28, 2022

Supervisor: Prof. Sanaz Mostaghim

Advisor: Sebastian Mai

Nele Raya Traichel: Context Steering with Di�erential-Drive Robots:
Reactive Navigation based on Multi-Objective Decision-Making
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2022.

Abstract

Although coordinated motion is a basic swarm behavior in Swarm Intelligence,
it still poses a major challenge in Swarm Robotics, mostly due to limitations
in perception, actuation (kinematics) and computation. Steering algorithms
are commonly used, making short-term choices on the next movement, con-
sidering only the local environment. However, prior work with a swarm of
Turtlebot3 Burger robots (Driving Swarm) has shown, the original steering
algorithm can lead to deadlocks. As an extension of the context steering ap-
proach, which again is an advancement of the classic steering algorithms, the
context steering using multi-objective optimization and decision-making has
proven to reduce the risk of deadlocks.
With the aim of eventually improving the behavior of the Driving Swarm, this
work adapts the multi-objective context steering approach to the di�erential-
drive kinematics and sensors of the Turtlebot3 Burger robot. The resulting
implementation is tested in a simulation with one robot that has to navigate
from its start position to a known goal position, in scenarios where classi-
cal steering fails due to a deadlock. The performance limits are examined
in two main simulation experiments, each with �ve di�erent multi-objective
decision-making methods in �ve scenarios of increasing complexity, using two
sets of parameters. It is demonstrated which features in the environment pro-
voke collisions or deadlocks, and where the strengths and weaknesses of the
decision-makers and various parameter settings lie. Moreover, advantages and
disadvantages of the algorithm are discussed, providing an orientation for a
later implementation with a swarm.

I

Contents

List of Figures V

List of Tables VII

List of Symbols 1

1 Introduction 1

2 Related Work 5

2.1 Navigation of Agents . 5

2.1.1 Autonomous Agent . 5

2.1.2 Steering Behaviors . 6

2.1.3 Context Steering . 7

2.1.4 Multi-Objective Context Steering 9

2.2 Navigation of the Driving Swarm 13

2.2.1 Turtlebot3 Burger Platform 13

2.2.2 Kinematic Model of a Di�erential-Drive Robot 13

2.2.3 Mobile Robot Navigation 16

2.3 Distinction of this Thesis from the Related Work 20

3 Methodology 23

3.1 Requirements . 23

3.1.1 Desired Behavior . 23

3.1.2 Characteristics of the Robot 24

3.2 Structure of the Algorithm . 26

3.2.1 Velocity Sampling . 27

3.2.2 Context Mapping . 29

3.2.3 Multi-Objective Decision-Making 35

III

Contents

3.3 Implementation . 37

3.3.1 Robot Operating System 2 37

3.3.2 Python Packages . 41

3.3.3 Hardware . 41

4 Experiments 43

4.1 Experiment Design . 43

4.1.1 Structure . 43

4.1.2 Scenarios . 44

4.1.3 Expected Paths . 44

4.2 Evaluation Metrics . 47

4.3 Parameter Settings . 48

4.3.1 Constants . 48

4.3.2 Variables . 50

4.4 Execution of the Experiments 54

4.4.1 Launch Process . 55

4.4.2 Data Acquisition and Processing 55

5 Evaluation of the Results 57

5.1 Rigid Distance-Based Danger Mapping 57

5.1.1 Overview on E�ectiveness 57

5.1.2 Successful Runs . 58

5.1.3 Failed Runs . 63

5.1.4 Altered Decision-Making Parameters 65

5.2 Adaptive Distance-Based Danger Mapping 71

5.2.1 Overview on E�ectiveness 72

5.2.2 Successful Runs . 72

5.2.3 Failed Runs . 79

5.2.4 Altered Decision-Making Parameters 81

5.3 Summary of Results . 86

6 Conclusion and Future Work 91

Bibliography 97

IV

List of Figures

2.1 Example of combining several steering behaviors. 7

2.2 The structure of a context map. 8

2.3 Creation of a context map in an exemplary situation. 9

2.4 Multi-objective context mapping with a �ee and a seek behavior. 12

2.5 Multi-objective decision-making on the movement direction. . . 12

2.6 The Turtlebot3 Burger robot platform and its dimensions. . . . 14

2.7 Internal and external motion of a di�erential-drive robot. 14

2.8 A di�erential-drive robot and its quantities. 15

2.9 An environment with a robot and the corresponding map. . . . 17

2.10 Restricted areas in the search space of the DWA. 19

2.11 Arc-shaped trajectories de�ned by the linear and angular velocity. 19

3.1 Di�erence between holonomic and di�erential-drive robots. . . . 25

3.2 Creation of the polygon. 26

3.3 Structure of the algorithm. 27

3.4 Sampling within the feasible velocity space. 28

3.5 Visualization of the quantities used for context mapping. 31

3.7 Relationship between decision space and objective space. 36

3.8 ROS graph depicting a minimal example of three nodes. 38

3.9 Coordinate frames. 40

4.1 Simulated environments used in the experiments. 45

4.2 Truncating trajectories for distance-based danger mapping. . . . 50

4.3 Graphs of distance-based danger mapping (objective function). . 52

V

List of Figures

4.4 With relative mapping, the robot becomes more risk-averse with

decreasing distance to an obstacle. 53

5.1 (I. a) Decision-makers' performance in the scenarios. 58

5.2 (I. a) Minimal distance to obstacles in the Wall scenario. 59

5.3 (I. a) Paths of the decision-makers in the Pillars scenario. 60

5.4 (I. a) Travel time and distance in the Wall scenario. 62

5.5 (I. a) Paths of the decision-makers in the Wall scenario. 63

5.6 (I. a) Paths of di�erent decision-makers in the Corner scenario. . 64

5.7 (I. a) The number of failed runs, ended in a collision. 64

5.8 (I. a) Paths of weighting and εd-constraint method in House2,

and House1. 65

5.9 (I. b) Performance of the decision-makers. 66

5.10 (I. b) Number of collisions in the scenarios. 68

5.11 (I. b) Paths of di�erent decision-makers in the Pillars scenario. . 69

5.12 (I. b) Paths of di�erent decision-makers in the House1 scenario. 69

5.13 (I. b) Paths of di�erent decision-makers in the House2 scenario. 71

5.14 (II. a) Performance of the decision-makers. 73

5.15 (II. a) Minimal distance to obstacles during the runs. 75

5.16 (II. a) Paths of the decision-makers in the Pillars scenario. . . . 76

5.17 (II. a) Travel time in the Pillars and Wall scenario 77

5.18 (II. a) Paths of the decision-maker in the Wall scenario. 78

5.19 (II. a) Paths of successful decision-makers in the House2 scenario. 79

5.20 (II. a) Number of collisions in the scenarios. 80

5.21 (II. a) Paths of successful and failed runs in the House1 scenario 81

5.22 (II. b) Performance of the decision-makers in each scenario. . . . 82

5.23 (II. b) Number of collisions in each scenario. 84

5.24 (II. b) Paths of the decision-makers in the House1 scenario. . . . 85

5.25 The most common collision points. 87

VI

List of Tables

4.1 Scenarios with the initial state of the robot and the goal position. 46

4.2 Parameters that are constant throughout all experiments. 49

4.3 Overview of varied parameters with their values used in the

experiment part I and II. 51

4.4 Topics selected for data recording. 56

5.1 Summary of performance of the decision-makers. 88

VII

1 Introduction

Navigating towards a goal while coordinating all movements and avoiding col-

lisions with obstacles or other robots is a basic swarm behavior (so-called

coordinated motion [43]) in Swarm Intelligence, but still a major challenge in

Swarm Robotics. Being restricted to local information gathering and on-board

processing requires an inexpensive algorithm. At the same time, it should be

�exible, robust and scalable and create an emergent swarm behavior, where

�exibility refers to the ability to perform well regardless of the environment.

Researchers creating intelligent agents in games face the same problem of mo-

tion control. Hence, this �eld of research provides a solid base of algorithms

for agents perceiving and searching in its local environment only. The steering

behaviors introduced by Reynolds [39, 40] based on attraction and repulsion

forces provide a portfolio of simple behaviors. Each of them returns a velocity

vector with the preferred direction and speed (magnitude). The vectors are

aggregated to determine the �nal movement direction. Through the aggrega-

tion of multiple simple behaviors, a complex behavior emerges. Prioritization

and/or weighting methods can be used to modify the agent's behavior in de-

sired ways.

Due to its simple but e�ective concept, the described steering algorithm was

implemented in prior works for the task of coordinated motion with a swarm of

Turtlebot3 platforms [32], a robot with non-holonomic di�erential-drive kine-

matics [41]. However, the results of the experiments conducted in reality and

in simulation have shown the limits of steering. Especially in environments

with a large obstacle, like a wall, the robot can get stuck behind it (stopping

or oscillating) with the goal being directly on the other side.

Context steering in games [18, 19] aims to improve the movements of agents to

avoid deadlocks and make them behave more natural. For this, the aggregation

process is split, and more information is incorporated into the decision-making

process. According to Fray [19], the reason why an option is excluded or pre-

ferred (the context) is just as important as the ultimate decision itself. That is

1

1 Introduction

why, a so-called context map is created. For each possible movement direction,

it indicates the willingness of moving towards that direction (interest map), or

avoiding it (danger map).

As an extension of context steering, Dockhorn et al. [13] highlight the multi-

objective nature of the aggregation and decision-making process. After all,

interesting and dangerous items can be located in the same direction, leading

to con�icting objectives, which makes the decision on a direction of movement

a multi-objective problem. This approach has proven to reduce the risk of

deadlocks and to overcome weaknesses of classical steering approaches in situ-

ations with small circular obstacles and walls using di�erent decision-making

methods.

Now, with regard to the Turtlebot3 Burger robots, the central research ques-

tion is whethermulti-objective context steering applied to di�erential-

drive robots might succeed in scenarios where classic steering ends

up in a deadlock. In search of an answer, this thesis introduces an implemen-

tation of context steering with multi-objective decision-making for this robot

platform, and evaluates its performance with �ve di�erent decision-making

methods in �ve simulated scenarios of increasing complexity. In these scenar-

ios, classic steering cannot ful�ll the given task, to navigate the robot from its

starting to a target position without hitting obstacles. The work focuses on

robotics, considering the robot-speci�c restrictions in terms of its perception

and actuation, as well as the fact that the system is non-deterministic. This

is why the algorithm is designed and tested with one robot only, providing a

baseline for a later implementation with a swarm.

Further research questions that arise along with the main question stated above

and will be addressed in this thesis are:

� Q1: Can the robot reach the target while navigating around small cir-

cular obstacles, a wide wall, and an L-shaped obstacle?

� Q2: Can the robot ful�ll the given navigation task in a realistic environ-

ment?

� Q3: With which decision-maker is the robot safest, fastest, and most

�exible?

� Q4: What is the e�ect of the decision-making parameters danger weight,

interest constraint, and danger constraint on the risk-aversion of the

robot?

2

The next chapter 2 describes work related to navigation with agents and nav-

igation in robotics. Moreover, it provides basic principles on multi-objective

decision-making and kinematics of di�erential-drive robots. In chapter 3, �rst

an overview of the algorithm structure is given, followed by a detailed expla-

nation of the individual components. The design of the conducted simulation

experiments, its setup, evaluation metrics and chosen parameters are described

in chapter 4. The experiment results are presented and evaluated in chapter

5. The last chapter 6 states conclusions that can be drawn from the �ndings

of the experiments with regard to the research questions, and challenges left

to be addressed in future work.

3

2 Related Work

Since the problem of navigation has many �elds of application, it is widely

researched. In the sections of this chapter, �rst an overview on navigation and

movement behaviors of intelligent agents in games is given (see section 2.1.1).

In the subsequent section 2.2, an insight into navigation with mobile and espe-

cially di�erential-drive robots is given. Section 2.3 compares the characteristic

features of the related work with the algorithm introduced in this thesis.

2.1 Navigation of Agents

The desire to create an intelligent game agent behaving naturally and unobtru-

sively with low computational e�ort led to an evolution of steering algorithms.

In the following sections the original steering behaviors (see section 2.1.2), its

advancement, context steering (see section 2.1.3), and the most recent publi-

cation using context steering with multi-objective optimization and decision-

making 2.1.4 are outlined, preceded by an introduction into autonomous agents

(see section 2.1.1).

2.1.1 Autonomous Agent

Developed in the research �eld of Arti�cial Intelligence (AI), an autonomous

or intelligent agent is a software program that uses sensors and e�ectors to

interact with its environment in pursuit of a goal, independent of a user's direct

instructions. Based on the perceived data from the environment, limited to

the capabilities of the sensors, the agent selects an action [45].

The scope and abilities of an agent vary with its application domain, ranging

from a simple stimulus-response-agent to complex agents using AI techniques

such as learning or inter-agent communication [9]. Reactive agents have no

memory, they consider only the current state of the environment or an event,

5

2 Related Work

and respond directly to the perceptions with a suitable action. In contrast,

proactive agents do not wait for an event in the environment, but plan ahead

by choosing a sequence of actions, anticipating future states and events [35].

Moreover, an intelligent agent can be embodied in a physical system, such as a

robot or autonomous vehicle. A robot, thus, can be depicted as a special type

of agent, equipped with hardware sensors and e�ectors allowing manipulation

in the real world [9, 28].

In terms of navigation and motion, an action corresponds to a movement. One

of the simplest agent concepts is the Braitenberg vehicle [10], whose motor

speed is directly controlled by the magnitude of the sensor values. Depending

on the connection of sensors and motors, it can show behaviors such as fear

and aggression [45].

2.1.2 Steering Behaviors

Inspired by the behaviors presented by Braitenberg [10], Reynolds et al. [40]

introduced a set of simple motion behaviors (so-called steering behaviors) for

autonomous agents in computer games. Assuming a simple vehicle model with

a mass, a position, an orientation, and a velocity, each movement can be de-

scribed by a velocity vector with its polar components: orientation (direction)

and magnitude (speed). The velocity can be altered by applying so-called

steering forces.

Each motion of an agent is divided into three level: Based on the current en-

vironmental state or an event, the agent sets a goal it desires to achieve with

its behavior (action selection level). Next, the agents subdivides its goal into

a sequence of simpler subgoals (steering level), each described by a steering

behavior, such as seek, �ee, arrival, obstacle avoidance, etc. Every steering be-

havior provides a steering force, expressing the direction and magnitude that

this behavior wishes the vehicle to move in order to ful�ll its de�ned subgoal.

Depending on the locomotion mode, the agent implements the de�ned motion

direction and speed (locomotion level).

Due to the vector representation, several steering behaviors can be combined

to create complex motion patterns. This is done by summing the vectors,

optionally scaling them by adding weighting factors (see Figure 2.1). To coun-

teract the risk of forces canceling each other out, Reynolds et al. [40] suggest

establishing a prioritization order of behaviors (e.g. �rst avoid obstacles, then

6

2.1 Navigation of Agents

Figure 2.1: Example of combining several steering behaviors proposed by

Reynolds et al. [40]. The summation of the behaviors' vectors re-

turns the combined desired velocity vector, which is then applied

to the agent with its current velocity and kinematic constraints.

follow the swarm), optionally enhanced by a probability for the use of the �rst

or second priority behavior.

2.1.3 Context Steering

Due to the shortcomings, such as deadlocks, when using steering behaviors

[40], Fray [19] introduces a concept considering the reasons of a steering be-

havior for preferring a certain movement direction � to enable a context-aware

aggregation process. Instead of a behavior returning its one desired velocity

vector, for several sensor directions ~vs, it assesses how much it wishes the agent

to 1) move there (interest) and 2) keep away from (danger). These scalar in-

terest and danger values are each stored in so-called context maps, an array

in which each �eld corresponds to a direction ~vs of the associated sensor si.

At each iteration step, every behavior provides two context maps: an interest

map and a danger map (see Figure 2.2).

The context value of a sensor direction z(~vs) depends on the distance ‖~vo‖ to

7

2 Related Work

Figure 2.2: The structure of a context map. With the sensors s1 to s6, the

agent senses its surroundings containing interesting and dangerous

objects. For each direction of the sensors, every behavior rates the

associated danger and interest.

the perceived object o, and on the angle ω between ~vs and ~vo (the direction to

this object):

z(~vs) = f(ω) · g(‖~vo‖) ∈ [0, 1],

with ω = cos−1 〈~vs, ~vo〉
‖~vs‖‖~vo‖

(2.1)

The sensors have a perception angle of [φmin, φmax] and a perception range

of [ξmin, ξmax]. Thus, the angle zs is only calculated, if o is located in this

area. The function f maps ω from [φmin, φmax] to [0,1]. Similarly, g maps the

distances ‖~vo‖ from [ξmin, ξmax] to [0, 1]. The mapping type of the functions f

and g are again task-speci�c, e.g. (inverse) linear, squared or square-root [13].

As a �rst step of the aggregation process, the gathered information from the

context maps are combined. Therefore, context maps with the same view

(interest, or danger) are combined by comparing the context values of each

direction across all interest or danger maps, and taking the maximum in each

case. As a result, only one danger and one interest map remain. This is due

to fact, that a closer object is more relevant at the current situation. In the

example shown in Figure 2.3, the agent �ees from walls and seeks a target.

Since the �ee behavior is only sensitive to dangerous and the seek behavior to

interesting objects, the combined context map contains the danger map from

the �ee behavior and the seek behavior's interest map.

The last step of the aggregation process, i.e. selecting a movement direction

and a speed, is task-speci�c. Fray [19] proposes the usage of masks, where

the directions with the lowest danger value are selected and all other options

with higher danger values are neglected. From this selection, the slot with the

highest interest value is chosen. This returns the highest rated safe direction

8

2.1 Navigation of Agents

Figure 2.3: Creation of a context map in an exemplary situation, with an agent

(green triangle) placed between two walls (black) and a target (yel-

low star). The agent has six steering directions (arrows) and a

perception range (green circle).

available. The speed is proportional to the degree of interest. In the example

introduced above (see Figure 2.3), the slot with the lowest danger value is s3.

As it is the only remaining direction after masking, it is also the chosen one

even though its interest value is zero.

To allow the agent to have a continuous movement space while maintaining

high algorithm performance (small number of context map slots), Fray [19]

proposes virtual sub-slots. These are created by interpolating the values in

the chosen slot and in the adjacent slots (see Figure 2.3).

2.1.4 Multi-Objective Context Steering

To provide the basic principles of multi-objective (MO) optimization and

decision-making, they are introduced below, followed by an outline of the MO

context steering approach.

Basics of Multi-Objective Optimization and Decision-Making

Most real-world problems have con�icting criteria, e.g. a customer wants to

buy a new e-bike which should be cheap, lightweight and have a high battery

capacity. The optimal solution would be best in all criteria at the same time.

However, the criteria are opposed, as in the example, an e-bike with a large

battery is heavy, and a lightweight bicycle is expensive. The options available

9

2 Related Work

for selection (so-called individuals) ful�ll only one criterion best and the others

signi�cantly worse, or they ful�ll all criteria moderately well.

The degree to which a possible solution ~x ful�lls a criterion i (an objective) can

be described as an objective function fi(~x). The aim of a multi-objective prob-

lem (MOP) is to �nd the individual ~x∗ in the search space S which optimizes

(minimizes) all con�icting objective functions simultaneously [36]:

argmin
~x∈S

~f(~x) (2.2)

The search space S is referred to as the decision space. As explained in the

example above, there is no single optimal solution ~x∗. Therefore, a method

called Pareto-dominance is used to identify all solutions that are better re-

gardless of user preferences. A solution x dominates another solution y (in a

minimization MOP), if [36]:

x ≺ y ⇔ fi(x) ≤ fi(y) ∧ ∃j : fj(x) < fj(y), ∀i ∈ {1, . . . ,m} (2.3)

The solutions that are not dominated by any other individual from the set of

solutions, are called non-dominated set. In the objective space O = {~f(~x) ∈
Rm | ~x ∈ S}, the non-dominated set is called Pareto front [36].

Subsequently, from the set of non-dominated individuals, one has to be se-

lected. Since all Pareto-optimal solutions are indi�erent to each other, the

user has to specify preferences [36]. This is done by using multi-objective

decision-making methods, either a priori, a posteriori or interactive ones. The

most common a priori method is to determine and optimize (minimize) the

weighted sum of the objectives [36]:

f ′(~x) =
m∑
i=1

wifi(x), with
m∑
i=1

wi = 1 (2.4)

The disadvantage of this method is that weight vectors ~w have to be de�ned

in advance (a priori) and solutions in concave parts of the Pareto front cannot

be found [36]. In contrast, the ε-constraint method can also �nd solutions in

the concave parts. For a two-dimensional MOP � as used in this thesis � one

objective function fi(~x) is optimized (minimized), while an upper bound ε is

de�ned for the other function [13]:

f ′(~x) = fi(~x), with fj(~x) ≤ εj, i 6= j (2.5)

10

2.1 Navigation of Agents

The hybrid method combines the weighted sum and constraint method. It

delimits the two-dimensional objective space according to the upper bound(s)

εj but optimizes the weighted sum of all objective functions [13]:

f ′(~x) =
m∑
i=1

wifi(x), with
m∑
i=1

wi = 1, fj(~x) ≤ εj (2.6)

When using a posteriori methods, such as evolutionary algorithms and Particle

Swarm Optimization (PSO), many alternative solutions are generated, and

the user can make a decision thereafter. As a composition of a priori and a

posteriori method, interactive methods are guided during the search process

by the user via partial preferences to gain a biased Pareto front, from which a

solution is selected as per the user's exact preferences [36].

Applying Multi-Objective Optimization in Context Steering

As an extension of context steering [19] (see section 2.1.3), instead of mask-

ing, Dockhorn et al. [13] establish a multi-objective decision-making process.

Because interesting and dangerous items can be located in the same direction,

leading to con�icting objectives, the decision on a direction of movement be-

comes a MOP (see section 2.1.4).

Creating the context maps and combining multiple danger maps or multiple

interest maps into one context map is identical to the original context steering

concept (see section 2.1.3). However, interest and danger are seen as objective

functions of the sensor directions fi = −zi(~vs) and fd = zd(~vs), which are to

be minimized (interest is naturally maximized, thus, the negated interest is

minimized):

argmin
~vs∈S

− zi(~vs), zd(~vs) (2.7)

As a �rst step of MOO, all individuals ~vs ∈ S are plotted in the objective space

to determine the non-dominated set (see section 2.1.4). In the example intro-

duced in section 2.1.4, the directions of the sensors s4, s5, and s6 are dominated

(see Figure 2.4); only s1, s2, and s3 remain for the decision-making. Depend-

ing on the method and its parameters (danger weight wd, interest weight wi,

danger constraint ε), di�erent directions are selected. Throughout the whole

navigation process, this a�ects the behavior of the agent.

11

2 Related Work

Figure 2.4: Multi-objective context mapping with a �ee and a seek behavior.

The agent �ees from walls (black) and seeks a target (yellow star)

within its perception range (green dashed circle). The values of

the combined context map are plotted in the objective space to

determine the Pareto-optimal individuals (blue) as per equation

2.3 and to neglect all dominated individuals (gray).

Figure 2.5: The agent chooses a di�erent direction depending on the decision-

making method. Applying the method using weighted sum as per

equation 2.4 with wd = 0.6, s2 is the selected direction (green).

With a constraint method as per equation 2.5 and ε = 0.3, s3 is

chosen (orange).

12

2.2 Navigation of the Driving Swarm

As proposed by Fray [19], Dockhorn et al. [13] additionally apply and recom-

mend the usage of Gaussian blurring as well as history blending before MOO,

and context interpolation (virtual sub-slots) after MOO. These so-called post-

processing methods improve the behavior because they make the agent jitter

less.

2.2 Navigation of the Driving Swarm

The Driving Swarm [32] is a collection of mobile di�erential-drive robots,

namely Turtlebot3 Burger platforms [41]. Hence, in section 2.2.1 the technical

features of the robot platform are presented. As it has a di�erential drive, sub-

sequently the respective kinematic model is stated (see section 2.2.2). Lastly,

section 2.2.3 elaborates the general requirements to navigate with a mobile

robot and provides an outline of the Dynamic Window Approach.

2.2.1 Turtlebot3 Burger Platform

Intended for the application �elds of teaching, research and prototyping, the

Turtlebot3 Burger is programmable since it is based on the Robot Operating

System (ROS). Its hard- and �rmware (OpenCR board) are open source as

well. With a height of about 20 cm (see Figure 2.6) and a weight of 1 kg,

it is signi�cantly smaller than its predecessors. Due to its 360 degrees laser-

based distance sensor (LDS-01) and two Dynamixel servo motors (XL430-

W250-T) the robot can autonomously navigate using Simultaneous localization

and mapping (see 2.2.3) [53].

2.2.2 Kinematic Model of a Di�erential-Drive Robot

A di�erential drive has two driven wheels on one axis, and one or two passive

supporting wheels, rotating freely. As the active wheels are driven separately

with vr (right) and vl (left), the resulting external movement of the robot

describes either a straight line (forward or backward), a circle (whole or a

segment of it, i.e. an arc), or a point (turn on the spot, see Figure 2.7). This

applies only under the restriction of not decoupling rotation and translation.

Therefore, the external movement is represented by the linear (translational)

velocity v = vr+vl
2

and the angular (rotational) velocity w = vr−vl
2d

. While

13

2 Related Work

(a) (b)

Figure 2.6: The Turtlebot3 Burger robot platform and its dimensions. [1, 6]

Figure 2.7: The internal (red) and external (blue) movements of a di�erential-

drive robot. [37]

14

2.2 Navigation of the Driving Swarm

(a) (b)

Figure 2.8: A di�erential-drive robot and its quantities in the position and

velocity space. [37]

moving, the robot rotates about a point located along the axis of the driven

wheels � the so-called Instantaneous Center of Curvature (ICC, see Figure

2.8b) [15].

To further describe the kinematics, let there be a world coordinate frame W

in which a robot moves. This robot has a local coordinate frame L at the

midpoint between the two driven wheels (see intersection point of the two blue

dashed lines in Figure 2.6). The robot's state qt at time t is therefore described

by its pose (see Figure 2.8a), which is a vector of the x and y coordinates of L

in W (the position p̂t of the robot in W), and the angle between the respective

x-axes of L and W (the orientation θ̂t of the robot in W):

q̂t =

x̂tŷt
θ̂t

 (2.8)

Trajectories are a time sequence of the robot's current and future state

a = {qt+tj | ∀j ∈ {1, 2, . . . ,Ψ}}. Since, in this work, the robot's egocentric

coordinate frame L is used, the current state of the robot is always at the

origin aligned with the x-axis qt = (xt, yt, θt)
T = (0, 0, 0)T . Thus, the trajec-

tories start at the origin of L and the ICC is placed at ICC = (0, r)T with

15

2 Related Work

r = v
ω
∀ω 6= 0. Moving with a velocity of v and ω, the robot's state in L after

τ is (forward kinematics) [15]:

qt+τ =

xt+τyt+τ
θt+τ

 =




cos(ωτ) − sin(ωτ) 0

sin(ωτ) cos(ωτ) 0

0 0 1




0

−r
0

+


0

r

ωτ

 , if ω 6= 0


vτ

0

0

 , else

(2.9)

With an angular velocity being negative or positive ω 6= 0, the robot describes

an arc (or turns on the spot). At each future state, the orientation is in the

domain θ ∈ [−π, π]. Without rotation ω = 0, the robot moves along the x-axis,

maintaining the orientation θt = θt+τ .

2.2.3 Mobile Robot Navigation

Navigation is the ability (of a robot) to move from the current location to

a de�ned target location in a known or unknown environment while avoiding

collisions with obstacles [42, 53]. Therefore, a navigation algorithm requires at

least the robot's current position and the goal location in the same coordinate

system, optionally also a map (map-based vs. mapless-based algorithms) [42].

Path planning, on the other hand, seeks to �nd the optimal route in a map for

the robot to navigate to the target (neglecting the temporal component) [42].

Depending on the algorithm, a navigation system involves sensors perceiving

the environment, the creation and interpretation of a map, (self-) localization

and path planning in this map [42, 53].

These elements of navigation are described below, followed by an explanation

of the functionality of the Dynamic Window Approach (DWA), a local planner

taking the kinematics and dynamics of a di�erential-drive robot into account.

Localization and Mapping

Simultaneous localization and mapping (SLAM) is a proven method to gen-

erate a map [48]. The robot moves through the environment, either au-

tonomously or controlled by a human, and creates a 2D or 3D representation

16

2.2 Navigation of the Driving Swarm

(a) (b)

Figure 2.9: An environment with a robot and the corresponding map. (a) The

robot perceives its surroundings with a laser scanner. (b) By means

of the scan points, a map is recorded using SLAM and within this

map the robot can localize itself using AMCL.

of the surroundings (walls and additional objects) perceived by the available

sensors (see Figure 2.9). At the same time, the robot estimates its own current

pose (position and orientation) in the map recorded until then. The basic pose

estimation is done with dead reckoning, measuring the rotation of the wheels

to calculate the displacement from a known starting position. To enhance ac-

curacy, additionally inertial information from the inertial measurement units

(IMU) can be incorporated [53]. Probabilistic localization methods such as the

Adaptive Monte Carlo Localization (AMCL) use distance sensors or cameras

with particle �lters to further increase the accuracy, by matching the recorded

map with the currently perceived environment [53].

Path Planning and Obstacle Avoidance

While global path planning considers the entire map, local approaches apply

only for the local area around the robot [53] (the de�nitions of navigation and

local path planning are not clearly delineated). Because path planners, such

as A* or simulated annealing, produce an optimized path but accept potential

uncertainties in the environment, it cannot react to unforeseen obstacles [46].

17

2 Related Work

For dynamic and unknown environments, local (reactive) navigation methods,

like the Bug algorithm or the Dynamic Window Approach (DWA, see next sec-

tion), are better suited, avoiding obstacles in the vicinity. However, they can

be ine�cient (not optimal), particularly in complex environments [38, 46, 54].

In robotics, global and local algorithms are often combined as hierarchical

planners [49]. Steering, as de�ned in section 2.1, belongs to the reactive navi-

gation algorithms, since it considers only the local environment and the agent

has no or very little memory.

The Dynamic Window Approach

The Dynamic Window Approach (DWA) introduced by Fox et al. [17] is a

local path planner for obstacle avoidance that considers the kinematics and

dynamics of a di�erential-drive robot (see section 2.2.2). The aim is to �nd a

feasible velocity command, controlling the robot's linear and angular velocity

(v,ω), that brings the robot quickly to the target while avoiding collisions with

obstacles in the vicinity. Hence, the search for (v,ω) is carried out directly in

the two-dimensional velocity space Vs, containing all possible velocities as per

the robot's hardware limitations (translational velocity limits vmin and vmax,

rotational velocity limits ωmin and ωmax) [17, 46, 53]:

Vs = {(v, ω)|vmin ≤ v ≤ vmax ∧ ωmin ≤ ω ≤ ωmax} (2.10)

The search space is restricted to those (admissible) velocities that allow the

robot to stop before colliding with an obstacle (as opposed to the collision

area, see Figure 2.10) [17, 46]:

Va = {(v, ω)|v ≤
√

2dist(v, ω)av ∧ ω ≤
√

2dist(v, ω)aω} (2.11)

Next, based on the robot's dynamics (maximal translational acceleration av,

maximal rotational acceleration aω, and the current dynamic state (especially

the actual velocity (vc, ωc)), the so-called dynamic window Vd of feasible ve-

locities (v′, ω′) in the next iteration step t+ τ is determined [17, 21, 46]:

Vd = {(v, ω)|v ∈ [vc − avτ, vc + avτ] ∧ ω′ ∈ [ωc − aωτ, ωc + aωτ]} (2.12)

The remaining search space Vr is the intersection of the restricted areas de-

scribed above Vr = Vs ∩ Vd ∩ Va. Within Vr, a number of velocities is selected

18

2.2 Navigation of the Driving Swarm

Figure 2.10: Restricted areas in the search space of the DWA. The velocity

space Vs, with the admissible velocities Va, the current velocity

Vc, the dynamic window Vd, and the resulting search space Vr [53].

Figure 2.11: Arc-shaped trajectories uniquely de�ned by the linear and angular

velocity (v,ω) [53]

19

2 Related Work

and their associated trajectories are simulated in the time span τ (see Fig-

ure 2.11) [17]. The trajectories are evaluated based on an objective function

G(v, ω) (represented as a weighted sum with the weights α, β, γ, and a scale

σ) originally involving the alignment of the robot with the target direction

heading(v, ω), the distance to the closest obstacle dist(v, ω), and the speed

velocity(v, ω), i.e. the translational velocity component [17]:

G(v, ω) = σ
(
α · heading(v, ω) + β · dist(v, ω) + γ · velocity(v, ω)

)
(2.13)

Depending on the implementation, more criteria can be incorporated, e.g.

when using DWA in a hierarchical planner, the distance from the global path

computed prior to the execution of DWA may be relevant [21, 53]. In the orig-

inal concept [17], G(v, ω) is maximized. However, there are implementations

with adapted criteria, minimizing the objective function since it is depicted

as a cost function [53]. The trajectory with the highest objective value/the

lowest total costs is chosen and its associated velocity pair (v, ω) is given as a

command to execute [17, 21].

2.3 Distinction of this Thesis from the Related

Work

The algorithm introduced in this thesis contains elements of both the MOO

context steering [13] (see section 2.1.4) and the DWA [17] (see section 2.2.3).

The kinematics and dynamics of the di�erential-drive Turtlebot3 Burger robot

are respected by using a concept similar to the dynamic window. Both operate

in a restricted space of translational and rotational velocity (v, ω), searching

for a velocity command, executable in the next iteration step, bringing the

robot quickly to the target while avoiding obstacles. However, the search

space (decision space) is restricted only to the velocities that can be realized

according to the dynamics; unsafe trajectories are not excluded here, as this is

part of the evaluation. Like in the DWA, for the evaluation, the trajectories of

the selected velocities (so-called samples) are simulated for a de�ned time span.

However, instead of one objective function, the concepts of context steering

using multi-objective optimization and decision-making [13] are applied. First,

the interest and danger maps are created, followed by the determination of the

non-dominated set and the application of a multi-objective decision-making

20

2.3 Distinction of this Thesis from the Related Work

method. In doing so, the slots of the context maps do not correspond to

sensor directions but to the velocity/trajectory samples.

The navigation algorithm presented here operates in the local environment.

Except for the goal position, only locally perceived data is available. Unlike

hierarchical planners, it does not receive any pre-optimized global plan.

21

3 Methodology

After the basic principles being de�ned and this thesis being integrated in ex-

isting related works, the necessary foundations are laid for the introduction of

the methodology. In section 3.1 the requirements and resulting design deci-

sions are explained. This is followed by a detailed explanation of the algorithm

(see section 3.2) and a description of the tools used for the implementation (see

section 3.3).

3.1 Requirements

Various requirements are placed on the algorithm that a�ect its design. On the

one hand, it should induce a desired behavior of the robot. On the other hand,

the application of the context steering approach to a robot with di�erential

drive requires certain adaptations. This will be elaborated in the following

sections.

3.1.1 Desired Behavior

The navigation algorithm should reliably maneuver the Turtlebot3 Burger

robot from its start position to the target position without hitting obstacles

in the static, planar environment (the world itself is �at but 3-dimensional,

however, it is perceived as 2-dimensional at the level of the laser scanner).

While navigating, the robot preferably moves in a fast and smooth manner

independent of the environment, i.e. the algorithm should be �exible to adapt

to di�erent surroundings.

In terms of steering behaviors (see section 2.1.2), this involves the seek and

the �ee behavior. The former aims to move the robot toward the goal, while

the latter aims to keep distance from obstacles [19, 40].

23

3 Methodology

3.1.2 Characteristics of the Robot

Due to the robot's available sensors and actuators, the decision domain and the

de�nition of the context values (the objective functions) are modi�ed compared

to the original context steering approach [19]. Even though the experiments are

conducted in simulation, there are certain real-time conditions to be ful�lled

when using a robot:

Real-Time Capability

In order for the robot to enable smooth driving behavior, decision-making must

be performed simultaneously with movement. Hence, the algorithm should

meet (soft) real-time conditions. A common frequency for the actuation com-

mand is 10Hz. One run of the algorithm should happen within this time

span. Since this cannot be guaranteed, the impact of short outages or delays

is mitigated by evaluating a predicted robot state that is further in the future

than the state at the time of the next decision-making (iteration). In other

words, the trajectories are simulated for a longer time span τd and τi than one

iteration step Ωm takes: τd, τi > Ωm (see section 3.3.1).

Actuation and Decision Domain

In context steering (see section 2.1.3), a (holonomic) agent decides on the

direction of motion, because it can directly execute this movement. From the

magnitude of interest for this direction, the speed is derived. The kinematics

of a di�erential-drive robot, however, do not allow instantaneous movements in

any direction within the given time step. It moves forward and rotates at the

same time (see section 2.2.2). Hence, each possible movement is an arc-shaped

trajectory a (except for the one pointing straight forward). A trajectory results

from moving with a certain translational and rotational velocity ~v = (v, ω)T

for a de�ned period of time τ . This means: the path, the arrival time, and

the �nal direction the robot is facing at the destination point (the goal) are

di�erent between holonomic agents and di�erential-drive robots. Applying the

same decision domain is unsuitable (see Figure 3.1).

This is why, at each time step t, the algorithm decides on the velocity ~v, that

the di�erential-drive robot executes until the next time step t + 1. This way,

after the decision is made, no further mapping of holonomic to non-holonomic

velocity is required.

24

3.1 Requirements

Figure 3.1: Di�erence between trajectories of holonomic (green) and

di�erential-drive (blue) robots.

Perception and Context Mapping

For an agent with a �ee and a seek behavior, the calculation of the context

values considers the distance and direction to surrounding objects in relation

to the agent's position and a set of potential movement directions (see section

2.1.3). The information that are retrieved from that are: 'When the agent

heads in this direction, to what extent does it lead to a goal and/or to an

obstacle? How close are they currently?' Therefore, the agent must know its

own position as well as the positions of the closest objects (in the perception

range).

This approach does not entirely apply to di�erential-drive robots. Since the

trajectories are circular, at each time step t the robot faces another direc-

tion (see Figure 3.1). The question arises, which of them should be chosen to

represent an entire trajectory. Furthermore, the exact positions of the environ-

mental obstacles are not known to the robot. It cannot perceive the obstacles

around it as individual entities. Instead, it perceives its environment through

a laser scanner, which creates a point cloud indicating the scanned surface of

surrounding objects (see section 2.2.3).

In order to use this information to create a context map for di�erential-drive

robots, a change of perspective is required: Instead of choosing a direction that

could represent the arc-shaped trajectory, the trajectory itself is understood as

a geometric �gure. From the scanner's point cloud, another geometric �gure

(the polygon Pt) is created (see Figure 3.2). This enables the calculation of

the distance to the closest obstacle and to the target. The question now being

25

3 Methodology

(a) (b)

Figure 3.2: The creation of the polygon Pt, modeling the local environment

perceived by the robot's laser scanner.

asked is: 'How close does the robot get to obstacles moving along this path?'

Yet, this does not consider the direction, which can be of major importance in

certain situations, e.g. the robot is near an obstacle located behind or beside

it, but all trajectories lead away from the obstacle. Therefore, as a mitigation

to this problem, only the rear part of each trajectory is considered for the

calculation of the distance to obstacles.

3.2 Structure of the Algorithm

The algorithm is structured into three main steps (see Figure 3.3). At each

time step t, the search space Vt (referred to as decision space in the scope of

MOO) is created by sampling velocities ~v = (v, ω)T , that are feasible according

to the robot's dynamics and its current velocity ~vc (see section 3.2.1).

Next, the context values (referred to as objective values in the scope of MOO)

are computed with the objective functions zd(~v) ∈ [0, 1] for mapping danger

and zi(~v) ∈ [0, 1] mapping interest, ∀~v ∈ Vt (see section 3.2.2). Since the seek

behavior is only sensitive to interest objects (the goal) and the �ee behavior

only to danger objects (walls and other surrounding objects), the context maps

are each implicitly combined by taking the seek behavior's interest map and the

�ee behavior's danger map. Moreover, the �ee behavior always considers the

closest obstacle and there is only one goal for the seek behavior to desire, which

is why from the beginning there is one context value for the danger/interest

map to store in each slot (as opposed to selecting the maximum to combine

multiple danger/interest maps, see section 2.1.3).

26

3.2 Structure of the Algorithm

Figure 3.3: General structure of the algorithm. The circles represent the pro-

cesses, the arrows the respective out- and input.

Based on these values, the non-dominated set Zt is determined, whereof one

individual ~v∗ is selected depending on the speci�ed decision-maker (see section

3.2.3). In the implementation presented in this thesis (see section 3.3.1), the

output ~v∗ is the new input ~vc for the next iteration; the initial velocity is

~v0 = (0, 0).

The following sections explain the di�erent steps in detail.

3.2.1 Velocity Sampling

During the velocity sampling, the feasible velocity space Vt is populated with

velocity samples ~v (referred to as individuals in the scope of MOO):

~v =

(
vk
ωl

)
, k ∈ {1, 2, . . . , nv} l ∈ {1, 2, . . . , nω} (3.1)

Each ~v executed for a time span τ results in a trajectory a, being shaped like

an arc or a line pointing straight ahead (see section 2.2.2). Put in illustrative

terms, the rotational component determines how much the arc is bent. The

higher the rotational velocity, the stronger the arc is bent (see Figure 3.5).

From the robot's point of view, positive values result in an arc bent to the left

and negative values in an arc bent right (or a left/right turn on the spot). An

angular velocity of zero results in a straight line. To allow a decision between

directions, at least three ω-values are reasonable (positive, negative and zero).

The translational velocity determines the length of the trajectory. The faster

the robot is going to move, the longer the trajectory. Positive values cause

forward motion, negative values cause backward motion, and at zero the robot

stays in place. It is reasonable to use more than one v-value for sampling

27

3 Methodology

(a) (b)

Figure 3.4: Sampling within the feasible velocity space Vt (orange).

in order to decide not only about the orientation but also about the forward

speed.

For the velocity sampling, �rst the feasible space of velocities Vt is determined,

containing all velocities reachable until the next time step:

Vt = {~v | ω ∈ [ωtmin
, ωtmax], v ∈ [vtmin

, vtmax]} (3.2)

In the velocity space (ẋ, ẏ), the rotational velocity ω and translational velocity

v are the polar coordinates. Without constraints, this causes Vt to be shaped

like a circle with its center in the origin. However, due to the robot's hardware,

there are limits to its speed and acceleration, which causes Vt to be truncated

(see Figure 3.4a). The minimum and maximum rotational velocity the robot

allows ω ∈ [ωmin, ωmax] result in two circle segments, axis-symmetrical to the y-

axis (the robot's orientation is along the x-axis). The minimum and maximum

translational velocity as per the robot's hardware v ∈ [vmin, vmax] causes the

circle segment to be truncated in the x-axis. If both limits are greater than

zero, this results in a ring segment. A speed limit bounds Vt statically, an

acceleration limit on the other hand dynamically. Therefore, the bounds of

the velocity space [ωtmin
, ωtmax] and [vtmin

, vtmax] have to be determined every

time the actual velocity of the robot ~vc = (vc, ωc)
T changes (the following

equations show only the rotational velocity bounds for the time span τs, but

the translational velocity bounds are calculated in the same way):[
ω′min
ω′max

]
=

[
ωc
ωc

]
+

[
−θ̈max · τs
θ̈max · τs

]
(3.3)

28

3.2 Structure of the Algorithm

ωtmin
=

{
ωmin , if ω′min ≤ ωmin

ω′min , else
(3.4)

ωtmax =

{
ωmax , if ω′max ≥ ωmax

ω′max , else
(3.5)

After Vt has been determined, the samples are selected from it. Consequently,

the number of samples always remains the same. This is to ensure multiple

options are always available so that subsequently an informed decision can be

made for one of these options. If the velocity space were to be trimmed after

sampling, it may happen that only one sample remains without ever having

explicitly decided on it.

The samples are evenly distributed over the feasible intervals for the de�ned

number of samples nω and nv (see Figure 3.4a). To ensure, straight movements

are also included, ω = 0 is added. Lastly, the selected velocities are combined,

resulting in an overall number of samples |Vt| = nω(nv + 1).

3.2.2 Context Mapping

The process of context mapping includes creating the interest and danger map,

plotting their values in the objective space Ot = {~z(~v) ∈ R2 | ~v ∈ Vt}, and
subsequently determining its Pareto front Zt = {~vi ∈ Vt| @~vj : ~vj 6= ~vi, ~vj �
~vi} (see Algorithm 1). The following explains in detail the steps involved in

creating the danger and interest map:

Modelling the Trajectories

To calculate the context values, the trajectories resulting from ~v = (v, ω)T are

evaluated. For this purpose, they need to be modeled.

As introduced in section 2.2.2, a trajectory is a time sequence of the robot's

state qt = (xt, yt, θt)
T , where xt and yt refer to the position pt, and θt denotes

the orientation of the robot at time t in the robot's local coordinate frame L.

Since L is an egocentric coordinate frame, placed in the midpoint between the

wheels and used as the base frame for all spatial calculations, the current state

is always qt = (0, 0, 0)T .

29

3 Methodology

Algorithm 1: ContextMapping

Data: Vt, Pt, gt, τd, τi, Ψ, µ, κ, ξmin, ξmax, λ

Result: Zt
1 forall velocity samples ~v ∈ Vt do
2 qt+τd ← FutureState(~v, τd);

3 a← TrajectoryCoordinates(qt+τd ,Ψ);

4 if a ∩ Pt 6= ∅ then
5 tj ← FirstIntersection(a, Pt) ; // tj ∈ [0,Ψ]

6 // normalize, and map distance to similarity metric

7 zd(~v)← 1− tj ÷Ψ ; // zd(~v) ∈ [0, 1]

8 // normalize to defined upper bound

9 zd(~v)← κ+ (1− κ) · zd(~v) ; // zd(~v) ∈ [κ, 1]

10 else

11 da ← ShortestDistance(a, Pt, µ) ; // da ∈ [ξmin, ξmax]

12 if Md is abs then

13 ξ ← ξmax
14 else

15 ξ ← max
da∀a

(da)

16 end

17 // normalize, and map distance to similarity metric

18 zd(~v)← 1−
(

exp(λ · da)− 1÷ exp(λ · ξ)− 1
)
; // zd(~v) ∈ [0, 1]

19 // normalize to artificial upper bound

20 zd(~v)← κ · zd(~v) ; // zd(~v) ∈ [0, κ]

21 end

22 qt+τi ← FutureState(~v, τi)

23 // cosine similarity of future robot and goal direction

24 c←
(
1 + 〈~at+τi , ~gt〉)÷ ‖~at+τi‖‖~gt‖

)
÷ 2 ; // c ∈ [0, 1]

25 d̃x ← ‖pt+τi − gt‖ ;
26 // normalize to minimum and maximum of set Dt and map

distance to similarity metric

27 Dt = {d̃x|∀~v}
28 dx ← 1−

(
d̃x −max(Dt)

)
÷
(

max(Dt)−min(Dt)
)
; // dx ∈ [0, 1]

29 zi(~v)← c · dx ; // zi ∈ [0, 1]

30 end

31 // Pareto front in objective space Ot

32 Ot = {~z(~v) ∈ R2 | ~v ∈ Vt}
33 Zt ← ParetoDominant(Ot) ; // Zt = {~vi ∈ Vt| @~vj : ~vj 6= ~vi, ~vj � ~vi}
34 return Zt;

30

3.2 Structure of the Algorithm

Figure 3.5: Visualization of the quantities used for context mapping.

To model a trajectory for a time span τ , the robot's future state qt+tj is deter-

mined for every sub-time step tj = j · τ
Ψ
∀j ∈ {1, 2, . . . ,Ψ} (also referred to as

trajectory points), as per the forward kinematics of a mobile di�erential-drive

robot (see section 2.2.2). The larger the number of trajectory points Ψ relative

to the time span τ , the more accurately the real trajectory is modeled. Every

trajectory starts at the origin. With ω 6= 0, the robot rotates with a radius

r = v
ω
about a virtual point, called ICC. With ω = 0, the robot moves straight

ahead, thus only the x-coordinate changes xt+τ = vτ . The length of each

trajectory depends on v and τ , and ω determines the curvature (see Figure

3.5).

Creating the Danger Map

The danger value is represented either as the time at which the velocity sample

results in a collision, or as the closest distance to the obstacles when moving

along the trajectory. For these calculations, a geometric representation of the

environment is required: From the laser scan data, a point cloud is created

in the robot's coordinate frame (see section 2.2.3) which serves as the basis

for generating a polygon Pt, representing the perceived environment (see Fig-

ure 3.2). At each time step, Pt represents the sensed environment within the

perception range [ξmin, ξmax]. In some situations, e.g. in environments with

several smaller obstacles, multiple polygons may be created. Due to the ego-

31

3 Methodology

(a) Robot position in House1 with

indicated trajectory range.

(b) Trajectories colored according to

their danger values.

centric view, the polygon closest to the origin is chosen because it is the one

most relevant to the robot.

The interior of the polygon depicts the area around the robot without colli-

sions, whereas every intersection of the robot with the exterior is considered a

collision (or at least a dangerous situation to be avoided). Since the Turtlebot3

Burger platform has an almost round footprint, it can be simpli�ed into a cir-

cle with a radius of rrobot (see section 2.2.1). This in turn allows considering

the robot as a point and arti�cially erode Pt by a value ρ ≥ rrobot (the idea is

based on the obstacle in�ation layer on top of the static map [31]).

As stated above, there are velocity samples eventually resulting in a collision,

i.e. trajectories intersecting with the polygon Pt, and ones not colliding within

the given time horizon. In order to be able to evaluate the danger in both

cases, each has its own danger map. To combine them later again into a single

danger map, they are mapped to a speci�c range of values (see Figure 3.6b).

Since trajectories having a future collision within τd are more dangerous, they

are mapped onto a range of [κ, 1]. The remaining non-intersecting trajectories

are mapped onto a range of [0, κ] with κ ≤ 1. In the following, both danger

maps are explained in detail.

Intersecting trajectories: Each intersection of a trajectory with the polygon

a ∩ Pt 6= ∅ denotes a predicted future collision at time t + tj. The smaller tj,

the sooner the collision will follow, and the greater the danger. For each

32

3.2 Structure of the Algorithm

sample, where there is at least one intersection, tj ≤ τd, j ∈ {1, 2, . . . ,Ψ} is
determined and normalized with Ψ to the interval [0, 1]. Only the point where

the trajectory �rst intersects with the polygon is relevant. The established

danger value is also referred to as time-based danger.

zd(~v) =

{
κ · (1− tj

Ψ
) , if a ∩ Pt 6= ∅

κ+ (1− κ) ·
(
1− exp(λ·da)−1

exp(λ·ξ)−1

)
, else

(3.6)

Non-intersecting trajectories: For the remaining trajectories not intersect-

ing with the polygon (within τd), the danger value is established distance-based.

A velocity sample is more dangerous the closer the robot gets to the obstacles

while traveling the corresponding trajectory. Thus, the shortest distance of

each arc to the exterior of the polygon is determined. In situations where ob-

stacles are closer to the side or back of the robot than to its front, the shortest

distance occurs at the origin. Since every trajectory starts at the origin, at

least some of them would receive the same danger value and distort the ob-

jective space Ot. In order to maintain an informed decision in such cases, the

�rst µ trajectory points (robot states) are discarded.

Since shorter distance corresponds to higher danger, the distance is mapped

onto danger values in the range of [0, 1], using a negative exponential function.

The factor λ 6= 0 de�nes the slope of the function graph. Negative values

produce a convex and positive values a concave shape of the graph.

To obtain zd(~v), all values are either normalized to the overall maximum value

ξmax (absolute normalization, absMd), or the maximum value of the current

set of distances damax = max
da∀a

(da) (relative normalization, rel Md). The com-

parison of both variants of normalization is a subject of the experiments (see

chapter 4).

Creating the Interest Map

Whereas the perception range for obstacles is limited, the detection range for

the seek object is unlimited. In other words, there is only one goal whose

position ĝ is �xed in the map. At each time step, it is transformed into

the robot's coordinateframe and made available to the robot as gt. Like the

related work (see section 2.1.4), the context value for the seek behavior takes

into account the orientation and distance of the robot with respect to the

goal: However, since the robot seeks to move towards the goal, for both the

33

3 Methodology

orientation and the distance the future state of the robot at the time t + τi
is crucial for the evaluation of this velocity sample in terms of the interest

objective:

zi(~v) = c · dx, with c =
1

2

(〈~at+τi , ~gt〉
‖~at+τi‖‖~gt‖

+ 1
)

and ~at+τi =

(
cos θt+τi
sin θt+τi

) (3.7)

The cosine similarity c describes the alignment of two vectors. It is adapted so

that it returns a value between 0, meaning the vectors point in exactly opposite

directions, and 1, meaning the vector have the exact same orientation. Here,

the future direction at the end of each trajectory ~at+τi is compared with the

direction ~gt currently pointing to the goal. The higher the similarity, the

greater the interest. The interest value is the product of the cosine similarity

and the normalized euclidean distance dx (between the position pt+τi of the

robot at the end of each trajectory and the goal position gt):

dx = 1− d̃x −max(Dt)

max(Dt)−min(Dt)
, with d̃x = ‖pt+τi − gt‖ (3.8)

The consideration of both c and dx serves primarily to diversify the context

values: All trajectories with the same ω value point in the exact same direction,

meaning they have identical c value. If the calculation of the interest value

were based solely on c, this would leave the objective space Ot unstructured.

The additional consideration of the distance d̃x, however, provides information

about how fast a velocity sample takes the robot to the goal, with shorter d̃x
corresponding to higher interest. The value is normalized by the minimum

and maximum value of the current set Dt to the range of [0, 1]. Additionally,

the distance metric is transformed into a similarity metric, so that higher dx
correspond to higher interest zi(~v).

Determining the Pareto-Front

With both context maps being created, the aim is to �nd the individual that

maximizes interest and minimizes danger � a multi-objective optimization

problem. Here, a minimization problem is formulated, thus zi(~v) has to be

negated:

argmin
~v∈Vt

− zi(~v), zd(~v) (3.9)

34

3.2 Structure of the Algorithm

Since the two objectives are con�icting, there is no obvious best choice. How-

ever, using the Pareto dominance (see chapter 2.1.4), the objective space Ot

can be restricted: options that are worse than or at most as good as others

in both objectives are excluded. Thus, only the non-dominated � good � so-

lutions remain (see Figure 3.7). This so-called Pareto font depicts the set of

individuals between which the decision maker subsequently has to choose.

3.2.3 Multi-Objective Decision-Making

In this last step of the algorithm, from the set of non-dominated individuals,

one has to be selected. To �nd a Pareto-optimal solution corresponding to a

suitable motion trajectory for the next time step, �ve multi-objective decision-

making methods are available:

� the weighting method calculating the weighted sum of each individual,

choosing the one with the minimum value:

argmin
~v∈Vt

− wizi(~v) + wdzd(~v) with wi = 1− wd, (3.10)

� the εd-constraint method applying an upper bound εd on danger, choosing

the individual with the minimum negative interest:

argmin
zd(~v)<εd, ~v∈Vt

− zi(~v), (3.11)

� the random method applying an upper bound εd on danger, using a

uniform probability distribution to randomly select an individual based

on the interest value:

~v ∈ Zt (randomly chosen) with zd(~v) < εd, ~v ∈ Vt, (3.12)

� the hybrid method applying an upper bound εd on danger and calculating

the weighted sum of the remaining individual, choosing the one with the

minimum value:

argmin
zd(~v)<εd, ~v∈Vt

− wizi(~v) + wdzd(~v) with wi = 1− wd, (3.13)

35

3 Methodology

Figure 3.7: Relationship between decision space and objective space. The

robot has left its starting position in the House2 scenario. The

goal direction is on the lower left side. The objective space (lower

right) plots individuals with their danger (upper left) and interest

(upper right) values; colored ones are non-dominated, the purple

triangle models the chosen one.

36

3.3 Implementation

� the εi-constraint method applying an upper bound εi on interest, choos-

ing the individual with the minimum danger:

argmin
zi(~v)<εi, ~v∈Vt

zd(~v). (3.14)

If the objective space is unstructured, there can be multiple individuals with

the same minimal value for interest, danger, or weighted sum. In this case,

since all of them seem to be equally good in terms of the objectives, one individ-

ual is randomly chosen from the set (with a uniform probability distribution).

In the other extreme case, none of the individuals is valid. In such situations,

the robot stops ~v∗ = (0, 0)T .

3.3 Implementation

The algorithm was implemented with the Robot Operating System 2 [12] using

Python 3 language [50]. This framework, additional libraries included, and the

software as well as hardware used, are explained in the following subsections.

3.3.1 Robot Operating System 2

As a set of open source software libraries, algorithms and tools, the Robot

Operating System (ROS) [2] provides the basis for developing tailored robot

applications [25�27]. It serves as a communication system, a framework of de-

veloper tools (e.g. visualization, data recording and replay), and an ecosystem

with drivers and libraries [29]. Here, the ROS2 distribution Foxy Fitzroy is

used, released in June 2020 [2].

The core of its distributed real-time architecture is a network of ROS2 [2] el-

ements. In this so-called ROS graph, nodes communicate via topics, services,

actions, or parameters with each other (see Figure 3.8). Topics are based

on a publisher-subscriber model, that keeps the subscriber supplied with con-

tinuous updates in the form of messages. In contrast, services implement a

request-and-response model, providing a response when explicitly requested

by a client. A common service is the parameter server, enabling parameters to

be stored and retrieved. Unlike ROS(1), in ROS2 [2] each node administers its

own parameters. Actions unify both topics and services by providing steady

feedback and allowing cancellation during execution [2].

37

3 Methodology

Figure 3.8: ROS graph depicting a minimal example of three nodes [2]. One

node publishes to a topic, the others subscribe to it. The same node

provides the server for a service which the node on the left uses as

a client through an interface of service request and response.

To enable the data exchange, a DDS middleware (Fast RTPS, Cyclone DDS,

or RTI Connext) is used with a ROS middleware interface (RMW) on top of

it [12]. Through the ROS2 Client Library (rcl) [2] and a wrapper either for

Python [50] (rclPy) or C++ [47] language (rclCPP), the user can access the

ROS2 features [29].

Nodes and Topics

Since each node is supposed to have a single, module purpose [2], the process

and logical structure explained in the previous section 3.2 are also re�ected

in the ROS graph (see Figure 3.3). There are three nodes: Based on the cur-

rent velocity of the robot, the 'velocity_sampling_node' publishes the set of

feasible velocities at Ωs = 10Hz so that the 'context_mapping_node' can

evaluate them. The 'context_mapping_node' updates at a rate of Ωm = 5Hz

and eventually publishes a sub-set of these samples, namely the non-dominated

ones including their context values. Every time the 'context_mapping_node'

publishes a new message to the topic 'non_dominated_individuals', the 'de-

38

3.3 Implementation

cision_making_node' is triggered to select one of the velocities based on

their objective values with the de�ned decision-making method. The 'de-

cision_making_node' publishes the velocity at Ωd = 10Hz to the topic

'cmd_vel', regardless of whether a new decision has been made. The rea-

son for this is the perspective that the software will be used on real robots.

They have a control unit stopping the robot if the speed commands are not

published regularly.

The update rates were chosen so that the nodes work as independently as

possible with the latest information. However, due to the subdivision of the

software into nodes, latency can occur so that the information on which a

decision is made no longer corresponds to reality. The current velocity ~vc
is assumed to correspond to the velocity command chosen and published in

the previous iteration ~v∗t−1. Hence, ~vc is read from the latest message on the

topic 'cmd_vel'. This may not always correspond to reality, especially after a

collision, however in such cases the experiment run is stopped.

Localization and Coordinate Frames

Within the ecosystem of ROS2 [2], Navigation2 (Nav2) [31] provides a complete

navigation system, con�gurable due to the modular structure. The required in-

puts to Navigation2 are the transformations of the di�erent coordinate frames

(tf2), a map, and sensor data. Its output are valid velocity commands for the

motors of the robot [30].

The algorithm presented here substitutes the major part of Nav2 [31], such

as global or local planning, as it serves as a navigation program itself. It uti-

lizes only cartographer [52] from the SLAM-Toolbox (to generate a static map

from the environment), the Map Server (to load and administer the map) and

AMCL [31] (to localize the robot on the map). The Turtlebot3 Burger [41]

broadcasts a tree of coordinate frames (see Figure 3.9a). For the implemen-

tation of the algorithm, as a base frame, the 'base_footprint' frame is used

(see section 4.2). In this frame, the robot's own position is at the origin at

all times, which corresponds to the midpoint between the wheels (see Figure

3.9b). This simpli�es the calculation of distances to surrounding objects, but

makes it necessary to transform the goal position from the 'map' frame.

39

3 Methodology

map

odom

base_footprint

base_link

...

(a) Published coordinate frames

and transformations without

the frames of the robots com-

ponents.

(b) Location of the coordinate

frame 'base_footprint' (red:

x-axis, green: y-axis, blue: z-

axis).

Figure 3.9: Coordinate frames.

Simulation

Another set of software libraries as part of the ROS2 [2] ecosystem is Gazebo. It

includes the Gazebo multi-robot simulator, an open source robotics simulator

incorporating high �delity physics, rendering, and sensor models [24]. The

implementation of this algorithm depends on Gazebo Classic version 11.2.0

[3].

Data Visualization

As a graphical interface to ROS2 [2], RViz2 [20] visualizes data from active

ROS topics, utilizing di�erent plugins [5]. Moreover, it allows interactions by

means of tools like '2D Pose Estimate' or '2D Nav Goal'. For this imple-

mentation RViz2 was used to show the static map, the robot model, relevant

coordinate frames, as well as self-de�ned markers, paths and arrow, for exam-

ple indicating the goal position or the trajectories. The usage was primarily

for examining transformations, positions, and orientations in the map to debug

the application.

40

3.3 Implementation

Like RViz2 [20], RQt [4] is a graphical user interface for ROS2 [2] tools available

as CLT. For example, RQt can be used to view and analyze message content

and metadata. Sending messages or making service calls are also possible.

3.3.2 Python Packages

Apart from the standard modules that are delivered with a Python [50] release,

certain functionalities in the algorithm require additional Python packages.

These include in particular NumPy, SciPy, and Shapely. NumPy enables nu-

merical calculations, which can improve performance immensely, especially by

vectorizing operations [11]. It is often used in combination with SciPy, which

provides algorithms for scienti�c computing [51]. To compute distances and

intersections of the trajectories and the polygon, the Shapely package is used.

It allows manipulating and analyzing planar geometric objects [44].

3.3.3 Hardware

All tests and experiments are performed with a notebook PC model MSI GS65

Stealth 8RE-079, running with an Intel processor Core i7-8750H (2,2 GHz).

41

4 Experiments

In this chapter, an overview on the conducted experiments is given. Therefore,

in section 4.1 the purpose and the chosen design of the experiments are stated.

This is followed by a presentation of the metrics used for the evaluation in

chapter 5. Section 4.3 speci�es the parameters and their e�ect in the system,

and reasons the chosen values. The last section of this chapter explains, how

the experiments were launched, and how the data was acquired and processed

to provide the results for subsequent evaluation.

4.1 Experiment Design

In the following, the structure of the experiments, conducted to evaluate the

introduced algorithm, is presented. Subsequently, the navigation task, the

chosen environments, and the scenario setups are explained (see section 4.1.2).

In addition, for each scenario, a path is described that has proven successful

in preliminary experiments to take the robot to the goal (see section 4.1.3).

This facilitates the comparison of actual and expected routes when evaluating

the results (see chapter 5).

4.1.1 Structure

To evaluate the implemented algorithm, presented in the previous chapter, two

main experiments were conducted:

1. a base experiment with a rigid distance-based danger map, and

2. a comparison experiment with an adaptive distance-based danger map

With a rigid map, the distance-based danger values are normalized to the max-

imum perception range ηmax (absolute normalization), whereas in the adaptive

approach they are normalized to the current maximum distance damax (relative

43

4 Experiments

normalization, see section 3.2.2). In both experiments, a simulated Turtlebot3

Burger platform performs a navigation task in di�erent environments. Pre-

liminary experiments have shown that the parameters are sensitive to the

environment. To learn more about their e�ect, another set of ε-constraint and

weight values is incorporated as an extension of each main experiment.

4.1.2 Scenarios

The central question of this work is, whether MO context steering applied to

di�erential-drive robots might succeed in scenarios where steering ends up in a

deadlock. Therefore, only environments in which the steering algorithm would

fail are considered, i.e. the start and goal position are separated by an obstacle

placed on the direct line connecting these two positions. In classical steering

[39, 40], the force that pulls the robot toward the target and the force that

pushes the robot back from the obstacle cancel each other out, which causes

the robot to either stop or wiggle back and forth.

The task in the experiment is to move from the start position to the goal po-

sition without colliding with obstacles in the environment, which are located

exactly between these two positions (the walls of the environment are natu-

rally obstacles as well). To enable a comparison between the di�erent decision

makers in terms of their performance, �ve scenarios of increasing complex-

ity are used (see Figure 4.1). Three of them appear similarly: a room with

obstacles in its center. The obstacles are either three pillars, a straight wall

or an L-shaped wall. The reason for the room's shape is that recognizable

shapes and asymmetry facilitate localization. The other two scenarios share

the same environment: an apartment that has several rooms, narrow passages

and other obstacles. Two di�erent con�gurations of starting and goal positions

o�er di�erent levels of di�culty. Due to the system being non-deterministic,

the experiments were conducted with every decision-maker in all scenarios for

11 runs each. A run is terminated when the robot reaches the goal area, collides

with the environment, or after t = 180 s (maximum).

4.1.3 Expected Paths

In each scenario, certain paths have emerged where the robot successfully

reaches the goal while keeping distance from obstacles without taking detours.

These qualitative observations were made in preliminary experiments. The

44

4.1 Experiment Design

(a) Pillars (b) Wall (c) Corner

(d) House1 (e) House2

Figure 4.1: Simulated environments used in the experiments. In each scenario,

the white circle shows the robot at its starting position, the white

star indicates the goal position (see Table 4.1).

45

4 Experiments

Table 4.1: Scenarios with the initial state of the robot q̂o (position and orien-

tation) and the goal position ĝ in the world coordinate frame.

Scenario q̂0 ĝ

pillars, wall, corner (-1.0, -1.0, 0.5) (1.0, 1.0)

house1 (-2.5, -3.0, 3.14) (-3.6, -3.3)

house2 (-3.6, -4.3, 3.14) (-1.0, 0.0)

description of these paths serve for better comparison to the actual paths,

described in chapter 5.

In the Pillars scenario (see Figure 4.1a), the robot is expected to describe a

large arc curved to the right, from the start to the goal location. With a more

risk-a�ne behavior, the path is straight at both ends, and bent only in the

middle part. In general, the robot is expected to pass between the center and

right outer pillar. In the Wall setting (see Figure 4.1b), the path should be

shaped similarly to the large arc in the Pillars scenario, but with a stronger

curvature to the left or right. To achieve this, the robot has to be a bit more

risk averse. Otherwise, the pattern is the same as for the Pillars scenario:

the robot travels straight toward the wall and then takes a wide turn around

the wall. The same applies to the Corner scenario (see Figure 4.1c), where a

strong left or right bend at the beginning would be ideal, and after passing the

L-shaped obstacle, an almost straight line. However, as the results will show,

the robot cannot escape the corner and moves directly towards the inner tip.

In the House1 scenario (see Figure 4.1d), for an ideal path, the robot would

turn right at its starting position and travel parallel to the left wall of room

A. However, the robot is expected to describe a spiral out of the corner, where

the starting position is located. The remaining excepted path looks like a large

inverted 'U' around the wall between rooms A, B and C. From the starting

position, as the robot is attracted by the target behind the wall, the robot

turns to its left towards the bottom wall of room A. To avoid turning towards

the corner (which will lead to a collision or deadlock), all trajectories directing

to the left and bottom wall have to be excluded. This leads to a spiral-shaped

path. To achieve this behavior, the robot has to be very risk-averse, because

otherwise it will be forced into the corner towards the target location.

The expected path in the House2 environment (see Figure 4.1e) describes a

horizontal 'U' around the wall between room C and D. In order to prevent

46

4.2 Evaluation Metrics

the robot from moving into the right upper corner of C (which points to the

target), the robot has to turn to its left facing the passage between room B

and C. Therefore, the robot has to be more risk-averse, however, to cross the

small passage next to the wall between room C and D, the robot must not be

too risk-averse. Being located in the passage between room B and C (oriented

towards room B), an almost straight path to the target is possible, with small

curves avoiding the wall between room A and B.

4.2 Evaluation Metrics

The performance of each decision-maker is evaluated based on how well it meets

the requirements of the desired behavior (see section 3.1.1). The e�ectiveness

tells, whether the decision-making methods can steer the robot from its start

position to the goal position without collisions. It is quanti�ed by the success

rate, i.e. number of runs where the goal was reached in relation to all runs.

The goal is considered to be reached when the robot position is within the

de�ned radius around the target (goal tolerance, see section 4.3. The decision-

maker is considered to be e�ective if the robot reaches the target at least in 9

out of the total 11 runs. On top of that, the �exibility indicates in how many

worlds the robot was e�ective.

In order to evaluate safety, the runs are di�erentiated according to whether

they failed or were successful. For the former, it is relevant how many of the

failed runs ended in a collision. For the latter, safety is measured by how many

of the successful runs recorded a dangerous distance to an obstacle (meaning

d ≤ 0.2m from the midpoint between the wheels to obstacles). To allow more

�ne-grained evaluation, in addition, the minimum distance over the entire run

is considered.

It must be noted that the observed distance is the one measured by the laser

scanner, which does not consider the robot dimensions. As the robot itself

has a maximum extent of 0.1m (see section 4.3.1), at a distance considered to

be dangerous there is approximately 0.01m left, depending on the orientation

to the wall. Furthermore, a collision is a distance-based estimation: when

reaching a distance d ≤ 0.1m (the robot radius), it is considered a collision.

The desired behavior is preferably fast, direct and smooth (see section 3.1.1).

Thus, combined under the term e�ciency, the successful runs are evaluated

based on:

47

4 Experiments

� the average traveled time (elapsed time until the goal was reached),

� the average traveled distance (cumulated euclidean distance between the

robot positions until the goal was reached), and

� the shape of the paths as well as the chosen speed (translational velocity)

during a run.

Analyzing all recorded paths � including the failed ones � can reveal additional

information about the behavior, e.g. if the robot actually completed the task

but just missed the target area.

Lastly, to make the algorithm transparent and comprehensible for veri�ca-

tion, the decision space and its corresponding objective space are observed,

highlighting all admissible individuals and the chosen one.

4.3 Parameter Settings

The parameters are chosen based on preliminary experiments, such that the

decision-makers achieve satisfying results in as many scenarios as possible with

the same parameter set (as opposed to choosing scenario-speci�c parameters).

For the base experiment, no extreme values were used, but rather values that

seem natural and allow the robot to be neither risk-a�ne nor risk-averse. In

the following, �rst, the parameters that are kept unchanged throughout the

experiments are introduced (see section 4.3.1). Then, the varied parameters

are speci�ed (see section 4.3.2).

4.3.1 Constants

For all nodes, the 'base_footprint' is considered the base coordinate frame to

which all geometric calculations refer.

In this paragraph, the parameters of the velocity_sampling_node are ex-

plained: The time interval of the update rate of the context_mapping_node

Ωm (see section 3.3.1) prede�nes the temporal limits in which the velocity can

be changed. Hence, the look-ahead time for sampling τs = Ωm = 0.2.

The number of samples was chosen so that, on the one hand, di�erent

directions are available for selection (depending on the number of ω, see

section 3.2.1). On the other hand, the algorithm should be able to choose

between di�erent speeds. For example, an expectable behavior would be slow

48

4.3 Parameter Settings

Table 4.2: Parameters that are constant throughout all experiments.

Parameter Value Unit

coordinate frame 'base_footprint' -

τs 0.2 s

nω 8 -

nv 3 -

vmin 0.07 m/s

vmax 0.2 m/s

v̈max 2.5 m/s2

ωmin -1.0 rad/s

ωmax 1.0 rad/s

ω̈max 3.2 rad/s2

ξmax 3.5 m

ρ 0.1 m

Ψ 20 -

µ 5 -

κ 0.8 -

dangerous distance 0.2 m

goal tolerance 0.15 m

robot radius 0.1 m

motion in narrow corridors and fast motion in empty areas.

In this work, only positive translational velocities are considered, which

means the robot cannot stop or move backwards. The values for minimum

and maximum velocity and acceleration were chosen within the techni-

cal physical limits of the Turtlebot3 Burger platform1 (see section 2.2.1),

as is the perception radius ξmax which corresponds to the technical laser range.

The polygon Pt is eroded by a value of ρ = 0.1, corresponding to the robot's

radius. More precisely, since only forward movements are allowed, the value

corresponds to the largest extent from the origin of the base frame (the mid-

point between the wheels) to the outer corner of each wheel (see section 3.3.1).

This is the minimum distance that the robot must keep in order to be able to

escape from the situation by turning. With this value, the robot sometimes

1https://emanual.robotis.com/docs/en/platform/turtlebot3/features/

49

4 Experiments

moves very close to obstacles. However, a safety bu�er is not added, as this

can lead to situations near walls that the robot cannot escape. The risk of dan-

gerous distances is accepted and reduced by making the robot more risk-averse

through adapting other parameters.

The value of µ de�nes how much (of the beginning) of the trajectory is ignored

when calculating the shortest distance to the polygon. It ensures a structured

objectives space, even when the closest obstacle is located behind or beside the

robot. Without a truncation, all trajectories would have the same danger value

because the current state of the robot (= the �rst point of all trajectories) is the

one closest to the polygon. Ignoring the �rst µ sub-time steps of the trajectory

diversi�es the starting point and leads to di�erent distances. However, it also

needs to be ensured that the robot is not moving blindly by ignoring too much

of the trajectory. Here, µ = 5; with Ψ = 20 and τd = 2.5 s this corresponds to

cutting the �rst 0.625 s of the trajectory. The remaining trajectory is kept to

its end.

As described in section 3.2.2, the range of the danger value is based on

Figure 4.2: Truncating the trajectories for the distance-based danger mapping.

The yellow part of the trajectory is kept for the calculation of the

shortest distance to the polygon Pt.

whether there is an intersection with the polygon. The longest trajectory ends

about 0.4m in front of the robot, which equals an intuitively estimated danger

of 80%. Therefore, the upper bound for trajectories without intersection and

at the same time lower bound for trajectories with intersection is κ = 0.8 .

4.3.2 Variables

Since most parameters are strongly interdependent, when selecting the values

for wd, εd, and εi the following must be considered:

50

4.3 Parameter Settings

� the environment,

� the separation of value ranges of the danger map κ,

� the length of the trajectories determined by τd and τi, and

� the mapping function of the context values, including the function itself,

its parameters and the normalization (absolute or relative).

Therefore, the values were determined in preliminary experiments (see Table

4.3). The time span τ determines the length of the trajectory. The larger its

value, the longer the trajectory. This is why, it contributes to how risk-averse

the robot behaves, especially in relation to κ. Preliminary experiments have

revealed di�erent values for τd and τi achieve better results. Additionally, for

absolute normalization the values have to be higher (the trajectories longer)

than using relative normalization.

Table 4.3: Overview of varied parameters with their values used in the exper-

iment part I and II. The weight for the interest objective results

from wi = 1− wd.

context mapping decision-making

τd τi Md λ εd εi wd

I. a Base Experiment 2.5 1.5 abs -2.0 0.4 -0.4 0.8

I. b Altered Parameters 2.5 1.5 abs -2.0 0.8 -0.02 0.92

II. a Comparison Experiment 2.0 1.0 rel 3.0 0.25 -0.4 0.55

II. b Altered Parameters 2.0 1.0 rel 3.0 0.05 -0.01 0.82

The normalization method Md is varied only for the distance-based danger

map, but always remains the same for the time-based danger map and the

interest map: relative to the minimum and maximum of the current set of

velocity samples. This is due to the fact that the absolute goal distance is not

relevant when creating the interest map. After all, the interest value would

increase, the further the robot is from the target. In the objective space, the

range of values would change signi�cantly over runtime. This would complicate

the selection of the constraint value as well as the weight.

In contrast, for the danger objective, absolute normalization is required to

ensure a minimum distance to obstacles. When normalizing to a �xed lower

and upper bound, each danger value corresponds to one distance value and

51

4 Experiments

Figure 4.3: Graphs of distance-based danger mapping (objective function).

The blue solid graph h1(x) describes the absolute normalization

used in experiment part I. The black dashed graph shows the rel-

ative normalization used in experiment part II at damax = 1.

vice versa � over the entire runtime. This unambiguous linkage facilitates

parameterization. Using relative normalization, the correspondence changes

with the distance of the robot to the obstacle(s).

When selecting the nonlinear mapping function, particularly the slope must

be taken into account, which is majorly in�uenced by λ 6= 0 (see section

3.2.2). Negative values lead to a convex shape, and positive values to a concave

shape of the graph. Where the function graph is �at, there is only a small

di�erence between the danger values, which is why the danger objective loses

importance in this range. In other words, if the danger values are too similar,

only the interest values are decisive. However, this relation can be exploited:

the interest value can be more decisive for longer distances and the danger

value for shorter distances - without explicitly using a dynamic weighting (see

Figure 4.3), as explained below.

52

4.3 Parameter Settings

Figure 4.4: With relative mapping relMd, the robot becomes more risk-averse

with decreasing distance to an obstacle. For relMd, with εd = 0.25

and damax = 3 (dashed graph), the minimum allowed distance to

the polygon is dτ = 2.8m. The permitted di�erence to damax is thus

0.2m. At damax = 1 (solid graph), the di�erence already reduces to

0.12m; and at damax = 0.2 (dotted graph), the value is even only

0.05m. Thus, as the distance to the obstacle decreases, fewer and

fewer trajectories are tolerated.

Parameterizing the Absolute Normalization of Distance-Based Danger

The robot should be more risk-averse near obstacles. Therefore, the func-

tion graph should become steeper with decreasing distance. Due to the �xed

normalization with the maximum perception range, the function remains the

same during the whole runtime. These are the reasons why a convex curve

is chosen. The lower negative values for λ, the steeper the graph, which is

desired. However, for low λ-values, the robot will approach an obstacle very

directly, and then suddenly change its course at a certain distance close to the

obstacle. Since this does not comply with the desired behavior, for abs Md,

λ = −2.0 is chosen as a compromise.

53

4 Experiments

Parameterizing the Relative Normalization of Distance-Based Danger

Still, the robot should be more risk-averse near obstacles. However, using

rel Md, the slope of the function graph changes with the distance between

robot and obstacle, because all distance values are normalized to damax =

max
da∀a

(da) (the value of the trajectory with the currently greatest distance to the

obstacle). This means, the intersection point with the x-axis is always damax ,

shifting as soon as the robot moves, changing the slope of the function graph.

Therefore, λ indicates which distances relative to damax are still tolerated. In

extreme cases, only the velocity with damax is allowed. With εd = κ the robot

only stops, when all trajectories intersect the polygon (if the robot is able to

move even then, a relative mapping must also be introduced for the time-based

danger map; considering the scope of this work, this was not implemented and

remains open for future work, see chapter 6).

The aim when selecting the λ value is to provide a εi value that corresponds as

accurately as possible to the expected behavior (e.g. 0.1 is very risk-avers, 0.6

is neither risk-avers nor risk-a�ne etc.). Since all distance values da are very

similar (∆da ≈ 0.3), the function graph should be steep close to damax to achieve

diversi�ed danger values for the current set of individuals. With a convex

function, the εi-value would have to be very small (< 0.1) to achieve a behavior

which is neither risk-avers nor risk-a�ne. Because this does not correspond to

the expected behavior, a concave function graph is chosen (λ > 0).

The closer the obstacle (i.e. the lower damax), the steeper the curve should

be: �rst, to take danger stronger into account and second, to allow only larger

distances among the current set, i.e. to reduce the tolerance mentioned above

when using a danger-constrained method (see Figure 4.4). Stronger changes

of the steepness can be achieved with a low value of λ. High λ result in a

permanently steep function graph. Hence, λ = 3.0 is chosen as a compromise.

4.4 Execution of the Experiments

The experimental process adheres to the architecture and procedure described

by Mai et al. [32]. Nevertheless, application speci�c con�gurations and supple-

ments were made in regard to launching the experiments as well as analyzing

the acquired data; both described in the following two sections.

54

4.4 Execution of the Experiments

4.4.1 Launch Process

Launching an application with ROS2 entails hierarchically organized launch

�les, starting and stopping the necessary software components. In addition,

con�guration �les are read out in the launch �les and passed on as parame-

ters to the nodes. When all nodes have been started, the experiment process

begins, which is divided into several stages (initialization, execution and shut-

down) and supervised by a superordinate command node. Via a global topic

'/command', this node transmits a call to action to the robots � (get) ready,

go, stop � based on the current stage. As soon as a robot has completed the

action, it signals this to the command node by publishing 'ready' or 'running'

respectively to its 'status' topic.

This procedure ensures that the robots always start and stop under the same

conditions, while the conditions themselves can be speci�ed based on the in-

dividual application. Moreover, the start and stop are marked in the recorded

data set, facilitating subsequent data analysis.

For the experiments conducted in this work, the robot is 'ready' as soon as

all subscriptions, publications, and parameters are set up, the transformation

from map to robot frame is available, and the update timer is initiated. The

experiments are terminated 90 seconds after command node sends the 'go'

signal.

4.4.2 Data Acquisition and Processing

All data were acquired using rosbag2 [7], a CLT from the ROS2 ecosystem

for recording data published on user-speci�c topics during the application's

execution. The messages are stored with the timestamp of their publication

in a serialized format in a database (here: SQLite [22]).

In order to obtain the metrics de�ned in section 4.2, Jupyter notebooks [16]

were used, utilizing rclpy [8], Pandas [33], NumPy [11], and own modules.

First, the data is retrieved from the database and deserialized. Next, for each

decision step (time step t) the messages of the observed topics (see Table 4.4)

are aggregated into one entry. However, each message has a special format,

where the required information is wrapped in a data structure. Hence, the

messages are interpreted based on a con�guration �le.

This procedure described above is performed for each experiment run. Subse-

quently, all tables are joined into one large Pandas data frame, providing the

55

4 Experiments

data basis for examining and plotting utilizing the Python packages Matplotlib

[23] and Seaborn [34].

Table 4.4: Topics selected for data recording. In a multi-robot scenario, com-

mon topics are used equally by all robots, while topics without a

preceding slash apply to each robot in its own namespace.

common topics

/clock

/tf

topics in robot namespace

initialpose

cmd_vel

context_steering/samples

context_steering/point_cloud

context_steering/vis/params

context_steering/vis/polygon

context_steering/vis/all_and_pareto_individuals

context_steering/vis/chosen_and_admissible_individuals

56

5 Evaluation of the Results

In this chapter, the results of the experiments are evaluated as per the de�ned

metrics (see section 4.2). According to the structure of the experiments (see

section 4.1.1), �rst the results of the base experiment using a rigid distance-

based danger map are analyzed as well as the e�ect of altered decision-making

parameters (see section 5.1). Second, in section 5.2 the results of the experi-

ment with an adaptive distance-based danger map and its parameter variation

are assessed. Lastly, a summary of the most relevant �ndings is provided in

section 5.3.

For better understanding, the observed behavior in the House1 and House2

scenarios is described by naming the rooms A, B, C, and D (see Figures 4.1d

and 4.1e). In addition, the caption of the �gures includes the associated part

of the experiment (see Table 4.3).

5.1 Rigid Distance-Based Danger Mapping

This section is structured as per the introduced metrics, comparing the robot's

actual behavior with the desired one (see section 3.1.1). First, an overview on

the number of successful runs is given (see section 5.1.1). These successful

runs are then analyzed in section 5.1.2 and evaluated for safety and e�ciency

(fast, direct, smooth paths). Afterwards, the failed runs are examined (see

section 5.1.3). As the parameters have a severe e�ect on the performance of

the robot, lastly, the results of the base experiment are compared to the ones

with altered decision-making parameters (see section 5.1.4).

5.1.1 Overview on E�ectiveness

In the base experiment, overall, the weighting method was the most successful

one, rated by the number of runs in which the robot reached the goal (success

57

5 Evaluation of the Results

Figure 5.1: (I. a) Decision-makers' performance in the scenarios, assessed by

the number of successful runs (left) and the number of successful

runs with a dangerous distance (right)

rate, see Figure 5.1): in every run the robot succeeds in the Pillars, Wall,

and House2 scenario. This makes the weighting method the most �exible one.

The other decision-makers perform signi�cantly worse. Only the εi-constraint

method in Pillars and the hybrid method in Wall have a success rate of 100 %

as well. In the other combinations of decision-making method and environment

with successful runs, the robot reaches the target in at least 5 and at most 10

out of 11 runs.

The fact all decision makers succeeded several times in the Pillars and Wall

world con�rms they constitute the simpler environments for this navigation

algorithm. In the Corner and House1 scenario, no method was able to steer

the robot to the target, and in the House2 con�guration, solely the weighting

method succeeds.

5.1.2 Successful Runs

In the following, the successful runs are evaluated according to the de�ned

criteria safety and e�ciency (see section 4.2). Safety takes the distance to

obstacles into account. A run with a distance of approximately 0.01m between

the robot's exterior and the wall (so-called dangerous situation) is considered

unsafe. E�ciency evaluates the traveled time and distance, as well as the shape

of the paths. Ideally, the traveled route is fast, direct (short), and smooth.

58

5.1 Rigid Distance-Based Danger Mapping

Figure 5.2: (I. a) Minimal distance to obstacles in the Wall scenario.

Safety

Only for the decision-making methods without a constraint on danger, dan-

gerous situations were recorded (see Figure 5.1). In the Pillars scenario, such

a situation never occurred. In all runs using the weighting method in the

House2 world, the robot came extremely close to the edge of the upper wall in

room D (median of 0.11m, see Figure 5.8c). Using the εi-constraint method

in the Wall scenario, in four runs the robot passes dangerously close to the

wall (median of 0.2m, see Figure 5.2 and 5.5b). With the danger-constrained

methods, the robot kept on average a minimum distance of 0.43m. In the

Wall scenario, it is about twice as much as the distance of the weighting and

εi-constraint method (see Figure 5.2).

E�ciency

Each decision maker observed individually, the path traveled is the same for

each run (see Figure 5.3 and 5.5) � except for the random method, what is

59

5 Evaluation of the Results

(a) weighting (b) εi-constraint (c) εd-constraint

(d) random (e) hybrid

Figure 5.3: (I. a) Paths of the decision-makers in the Pillars scenario.

naturally due to the random choice of a speed from the non-dominated set.

With the weighting method, the robot reaches the goal fastest in all scenarios

where a comparison is possible, i.e. Pillars and Wall world. It is followed by

the εi-constraint, hybrid and εd-constraint method in this order. With the

random method, it takes the longest time in all environments (exemplary, see

Figure 5.4).

Pillars Scenario: In the Pillars world, the weighting and εi-constraint

method lead the robot between the central and right pillar. With the other

methods, the robot goes around all the pillars on the right side of the room.

Thus, the weighting method is more time and route e�cient (see Figure 5.3a).

First, the robot moves towards the central pillar because it is interested in the

goal located directly on the opposite side of it. Next, the danger increases

due to the approaching pillar which is why it swerves to the right side, where

there is slightly more space. While maneuvering between the pillars, the dan-

ger decreases. Now the interest and danger objective are no longer in con�ict,

which is why the robot heads directly for the goal. The robot moves almost

continuously at the maximum translational velocity (median: 0.2m/s).

Compared to this path, the one created by the εi-constraint method, is similar.

However, this method is naturally risk-averse, since it selects in the admissible

60

5.1 Rigid Distance-Based Danger Mapping

set of velocities for the one with the least danger. Therefore, from the begin-

ning, it avoids the obstacles by moving forward to the right until it can pass

straight between the middle and the rightmost pillar. However, in doing so,

the robot does not move toward the target, but drives straight ahead until the

danger from the right-hand wall is too high, and both the danger is the least

and the interest is the greatest on the left. Thus, it turns left. The average

speed is similar to the others (median: 0.15m/s).

The decision-making methods constrained with a maximum danger value

choose a path around all three pillars. The beginning is very similar to the

weighting method, but the limitation of the danger value does not allow the

robot to drive along between the pillars. The robot decelerates, occasionally

even stops, and turns to the right, deciding to navigate around the right outer

pillar at maximum speed (using the εd-constraint method, the robot once takes

the left route around the pillars). Subsequently, it moves straight towards to

the goal. In doing so, the route is indirect and slow.

Wall Scenario: All methods except the εi-constraint method steer the robot

straight towards the wall (in the center of the room) until the danger prevails.

Then the robot turns left or right to avoid the obstacle (with the εd-constraint

method always left). It is noticeable, the robot passes the obstacle closer on

the right than on the left; and with the weighting method it passes closer than

with the danger-constrained methods.

The exception mentioned above, the εi-constraint method, is more time e�-

cient. The elapsed time until the goal is reached is almost the same as with the

weighting method (see Figure 5.4), and less than the remaining methods. How-

ever, it takes a longer route than the other three. It has fewer slopes, which

allows the robot to travel faster on average (median: 0.17m/s). Whereas

with the other decision-makers, the robot travels toward the wall at maximum

speed, but suddenly decelerates, and begins to travel slowly parallel to the

wall. It does not increase the velocity again until it reaches the end of the

wall, where the danger drops. This ultimately leads to a slower travel overall.

Another noticeable fact is that with the εd-constraint method, in both the

Wall and Pillars world, the distance traveled is the same in all runs, but the

time eventually spent by the robot varies greatly (see Figure 5.4). Examining

the selected velocities reveals the robot often stops as a fallback solution, but

continues shortly after. Similar can be seen with the random method, however

61

5 Evaluation of the Results

(a) Travel time

(b) Travelled distance

Figure 5.4: (I. a) Travel time (a) and distance (b) in the Wall scenario.

62

5.1 Rigid Distance-Based Danger Mapping

(a) weighting (b) εi-constraint (c) εd-constraint

(d) random (e) hybrid

Figure 5.5: (I. a) Paths of the decision-makers in the Wall scenario.

it has a wide-spread travel time and distance. This is con�rmed when looking

at the paths, which are very dissimilar in shape and in speed.

5.1.3 Failed Runs

The reason the robot failed to reach the goal is either a collision or a deadlock.

Corner scenario: Regardless of the decision-maker, the robot goes straight

toward the inner corner of the obstacle (see Figure 5.6). While colliding with

the obstacle using the weighting and εi-constraint method, the robot stops in

advance using the danger-constrained methods.

The special shape of the obstacle forces the robot steadily forward. This is

because the distance between the trajectories to the obstacle is at its maximum

straight ahead (see Figure 5.6c). Every turn to the left or right steers the

robot closer to a wall, which the �ee behavior tries to avoid. Moreover, the

goal is straight ahead as well. Even with a di�erent parameterization (for

example with wd = 1) the robot does not escape this situation, meaning the

context mapping for �ee behavior cannot depict the real danger for such a

local environment.

63

5 Evaluation of the Results

(a) weighting (b) εd-constraint (c) danger map

Figure 5.6: (I. a) Paths of di�erent decision-makers in the Corner scenario.

Figure 5.7: (I. a) The number of failed runs, ended in a collision.

Decision-Makers with collisions: In the environments where the robot did

not succeed using the weighting method (Corner, House1), the runs terminated

in a collision (see Figure 5.7). With the εi-constraint method it collides in most

scenarios; in every run in the Corner, House1, and House2 world, and three

times in the Wall environment. Those three runs di�er from the rest of the

paths in this environment (see Figure 5.5b): once it drives straight into the

wall, twice it steers to the right side of the wall but turns towards its center

before passing it.

Decision-Makers with deadlocks: The decision-makers with a limitation

on danger, namely the εd-constraint, random, and hybrid method, did not once

lead the robot to a collision. However, in the failed runs, the robot stops en-

64

5.1 Rigid Distance-Based Danger Mapping

(a) weighting (b) weighting (c) εd-constraint

Figure 5.8: (I. a) Paths of weighting and εd-constraint method (a) in House2,

and (b) to (c) in House1. Using methods without a constraint on

danger, the robot can collide or move in a dangerous distance to

obstacles. With a constraint, the robot can be stuck in a deadlock.

tirely at a certain distance in front of the obstacle, because all velocity samples

are more dangerous than allowed by the constraint. In general, stopping due

to high risk prevents the robot from colliding. However, often this keeps the

robot from being able to move at all.

In the scenarios House1 and House2, the robot cannot even leave the start

position (see Figure 5.8). In the failed runs in the Wall environment, the robot

moves directly towards the wall but suddenly stops due to the lack of admissi-

ble options (see Figure 5.5c). Similarly, in the Pillars world, the robot is stuck

in between the central and the right-outer pillar.

5.1.4 Altered Decision-Making Parameters

For the base experiment, the parameters were chosen such that, with the same

parameter set, the decision-makers ful�ll the given task �exibly in as many

scenarios as possible (see section 4.3). However, preliminary experiments have

shown that the parameters are scenario-dependent. To point out the signi�-

cance of optimal parameters and simultaneously gain a �rst insight into their

e�ects, the base experiment is repeated with altered decision-making param-

eters (wd, εi and εd). Since a full parameter variation is beyond the scope of

this work, examples are presented, in which a decision-maker can achieve the

goal in scenarios where it was not successful in the base experiment.

Overall, with the altered parameters, the decision-makers achieve a higher

success rate in more scenarios. At the same time, dangerous distances were

65

5 Evaluation of the Results

(a) Base experiment

(b) Base experiment with altered parameters

Figure 5.9: (I. b) Performance of the decision-makers, assessed by the number

of successful runs (left) and the number of successful runs with a

dangerous distance (right)

66

5.1 Rigid Distance-Based Danger Mapping

reached more often. Still, no decision-maker can navigate the robot around the

corner-shaped obstacle. The number of collisions using the weighting and the

εi-constraint method is comparably equal in both experiment parts. However,

collisions are now also recorded for the εd-constraint method.

High Danger Weight

Through the preliminary experiments, it became apparent that for House1

scenario, the robot in general has to be very risk-averse. In the base experi-

ment, the weighting method already succeeded in the Pillars, the Wall and the

House2 world. With an increased value of wd = 0.92, the robot now reliably

reaches the goal in the Pillars, the Wall, and the House1 scenario (see Figure

5.11a and 5.12a). However, it only succeeds once in the House2 world. The

robot is too risk-averse for this situation, as it avoids the left and upper wall

of room D, leading the robot further away from the goal. At a certain point,

it turns towards the desired goal direction, ultimately putting the robot in the

same situation as in the Corner scenario, where it collides with the inner part

of the triangle.

The more risk-averse behavior also a�ects the results in the Pillars and Wall en-

vironment. The robot no longer passes between the pillars, but travels around

all three pillars (see Figure 5.11a). Similarly, in the Wall scenario, it moves

around the wall with more distance.

Low Minimum Interest

With a high constraint on interest, the robot may reach the goal faster, but on

the other hand, it has only a limited range of directions at its disposal. To pass

a large obstacle, and ultimately reach the goal, a lower constraint on interest

can be bene�cial, leading to a slower but e�ective behavior. With lowering the

value to εi = −0.02, there is almost no interest required for a velocity sample

to be admissible. Since the robot always selects the one with the least danger

from the set of admissible individuals, the behavior is very risk-averse.

The robot now succeeds in every run in the Pillars and the Wall scenario

(see Figure 5.9b), with paths similarly to the ones using the weighting method

explained above. According to Figure 5.9b, it even succeeds twice in the House1

environment. However, when examining the paths (see Figure 5.12b) and the

goal distance over time, it becomes apparent that the localization information

67

5 Evaluation of the Results

(a) Base experiment

(b) Base experiment with altered parameters

Figure 5.10: (I. b) Number of collisions in the scenarios.

68

5.1 Rigid Distance-Based Danger Mapping

(a) weighting (b) εd-constraint (c) random

Figure 5.11: (I. b) Paths of di�erent decision-makers in the Pillars scenario.

(a) weighting (b) εi-constraint (c) random

Figure 5.12: (I. b) Paths of di�erent decision-makers in the House1 scenario.

is wrong in the �rst run. Hence, the robot actually succeeded only once in the

House1 world. However, in all runs, the robot manages to escape the corner

situation in room A, follow the wall, and enter room B. In four runs, it turns

towards the target, drive through the narrow passage on the bottom of room

B, and reach room C where the target is located. Though, the robot turns

only once towards the goal. In the other three cases, it turns away from it.

In the House2 world, the robot mostly turns away from the goal, staying in

the room of the starting position. In �ve runs, it takes the turn and passes

through the small passage. Since the next doorway is smaller than the space

on the right side, it turns towards the corner of the room pointing to the goal.

Here, the robot collides with the wall. This again shows: when the robot is

risk-averse, it will reach for the largest space available.

69

5 Evaluation of the Results

High Maximum Danger

Unlike the other methods, a more risk-averse behavior (lower εd) does not

cause the robot to reach the goal in the House1 or House2 scenario. When

examining the decision space in the base experiment, it is noticeable that in the

scenarios Pillars, Wall and Corner all options are available for a long time while

heading for the goal and at the same time approaching the obstacle. As soon

as the distance damax is reached, for which zd(~v) = εd, all individuals exceed

the constraint. Since there are no more allowed velocities at this distance to

a wall, the robot stops. The reason for this is that the distance da is very

similar for all trajectories (see section 4.3). Despite the mapping function

diversifying the values, to maintain mobility of the robot, a scenario-sensitive

εd value would be required, de�ned up to several decimal places. As this value

is manually chosen, this approach is not practical. Consequently, for this part

of the experiment to succeed in the House1 and House2 world, a more risk-

a�ne (higher εd) behavior is chosen.

In order to exclude all trajectories with a future collision, for this experiment

εd = κ = 0.8 is chosen. Lower values always lead to the situation explained

above.

With the εd-constraint method using this value, the robot now accomplishes

the given task in all runs in the Pillars and the Wall scenario. Twice it reaches

the goal in the House2 world (see Figure 5.9b). However, with an average

minimum distance of 0.1m (Wall, House2) and 0.11m (Pillars), the robot

moves dangerously close to the obstacles in the environment (see Figure 5.13a

and 5.11b).

Although in these three scenarios a collision did not occur in the simulation,

when the same experiment is performed with a real robot, a collision is highly

probable due to errors in perception and actuation. The collision rate in the

House1 world con�rms this: in four runs the robot collides with the wall.

The random method succeeds in all runs in the Pillars scenario (see Figure

5.9b), which is a major improvement compared to the performance in the base

experiment, where it succeeded in �ve runs (see Figure 5.1). With this higher

constraint value, it additionally succeeds twice in the House1 scenario. In the

Wall environment, however, it performs worse, reaching the goal only eight

times instead of ten.

In about a third of the runs, the robot gets dangerously close to the right

outer pillar (see Figure 5.11c). In both successful runs in the House1 scenario,

70

5.2 Adaptive Distance-Based Danger Mapping

(a) εd-constraint (b) random (c) hybrid

Figure 5.13: (I. b) Paths of di�erent decision-makers in the House2 scenario.

dangerous situations occur when leaving the corner and moving parallel to the

left wall of room A (see Figure 5.12c).

According to the success rate, the robot did not succeed in the House2 world.

Though, the paths in Figure 5.13b reveal, the robot did actually accomplish

the given task of maneuvering through the world to the goal, but it just missed

the de�ned goal area (tolerance of 0.15m). Anyway, in most cases, the robot

is already stuck in either room C or D.

With the altered parameters, the hybrid method performs similarly well as

the weighting method, which is much better compared to the base experiment.

It succeeds in all runs in the Pillars and the Wall scenario. Additionally, in

the House1 world, it succeeds nine times, but in the House2 world, four times

(which is the best result over all decision-makers for this scenario with altered

parameters).

During the two failed runs in the House1 scenario, the robot moves towards

the lower left corner of room A and, thus, maneuvers itself into a deadlock. In

the House2 scenario, it gets into a deadlock in the upper right corner of room

C or D (directed towards the goal position, see Figure 5.13c).

5.2 Adaptive Distance-Based Danger Mapping

Since the methods with a constraint on εd using absolute normalization can-

not adapt to di�erent spaces, a relative normalization is considered. On the

one hand, this variant is more complicated in terms of parameterization. The

minimum distance to be maintained from obstacles does not permanently cor-

71

5 Evaluation of the Results

respond to one de�ned value, but is determined dynamically: the closer the

robot is to the obstacle, the smaller the permissible minimum distance (see

section 4.3.2). On the other hand, this allows adaptive behavior in di�erent

environments, keeping the robot able to move. The values for wd, εi, and εd
were determined in preliminary experiments based on the same criteria as in

the base experiment, i.e. to be as universal as possible.

For better comparison, this section is structured in the same way as the pre-

vious one. First the e�ectiveness of the decision-making methods is assessed

(see section 5.2.1), then the safety and e�ciency of the successful runs (see

section 5.2.2), and the reasons for failures (see section 5.2.3). Lastly, the e�ect

of altered decision-making methods is evaluated (see section 5.2.4).

5.2.1 Overview on E�ectiveness

In total, the number of successful runs is higher than in the base experiment,

but also the number of dangerous situations increased. In the Pillars and the

Wall scenario, all decision-making methods can steer the robot to the goal in

every run (see Figure 5.14b). This is a large improvement compared to the

base experiment, especially for the methods with a danger constraint. Even

in the House2 world, the weighting, the εd-constraint, and the hybrid method

succeed in (almost) every run. In fact, the εd-constraint and hybrid method

have the highest success rate. Similarly to the weighting method in the base

experiment, both succeed in all runs in the Pillars, Wall, and House2 scenario.

Also with relative normalization, no decision maker can navigate the robot

to the goal in the corner scenario. In the House1 scenario, only the random

method succeeds once.

5.2.2 Successful Runs

As in the corresponding section of the base experiment (see section 5.1.2), the

successful runs are rated by the safety and e�ciency of the travelled route

(see section 4.2). While safety reviews the shortest distance between the robot

and obstacles, e�ciency assesses the traveled time and distance, as well as the

shape of the paths.

72

5.2 Adaptive Distance-Based Danger Mapping

(a) Base Experiment with absolute normalization.

(b) Comparison experiment with relative normalization

Figure 5.14: (II. a) Performance of the decision-makers, assessed by the num-

ber of successful runs (left) and the number of successful runs

with a dangerous distance (right)

73

5 Evaluation of the Results

Safety

Similarly to the weighting method in the base experiment, the εd-constraint

method always reaches a dangerous distance to the upper wall in room D of

the House2 scenario (see Figure 5.15b) The weighting and the hybrid method

maintain a distance more than twice as large. Also with relative normalization,

the weighting method navigates the robot in dangerous situations (see Figure

5.14b); in this experiment, though, in the Pillars and the Wall scenario. This

is mostly due to the comparably low danger weight wd = 0.55. By behaving

in a more risk-a�ne manner, the robot is able to accomplish the given task in

three scenarios, while generally maintaining less distance from the obstacles.

For the random method, one dangerous situation was recorded in each of the

Wall and House1 scenarios (see Figure 5.15a). In the Wall scenario, the median

distance of the random and hybrid method is about twice as much as the

distance of the other methods.

Since the hybrid method is a hybrid of weighting and constraint, it could be

expected that it too would put the robot in dangerous situations. However, it

always maintains a non-hazardous distance. Altogether, the hybrid and the εi-

constraint method are the only decision-makers without a dangerous distance.

Yet, the latter collides in all failed runs (see section 5.2.3). This makes the

hybrid method the safest one in this experiment.

E�ciency

In this comparison experiment, like in the base experiment, each decision-

maker repeatedly chooses almost the same path, except for the random

method. The weighting method has the lowest travel time in the Pillars sce-

nario, but the εd-constraint method in the Wall and the House2 world. Again,

with the random method, the robot takes the most time in the Pillars and

Wall environment.

Pillars scenario: Compared to the base experiment, the paths of each method

look similar for the weighting, εi-constraint and random method, but di�er-

ently for the εd-constraint and hybrid method (see Figure 5.16). More precisely,

instead of navigating around all three pillars, the robot now selects the path

between the central and the right outer pillar. Though, with the weighting

method, the robot once chooses to travel between the central and the left

outer pillar. This is of interest since this is the narrowest part of the whole

74

5.2 Adaptive Distance-Based Danger Mapping

(a) Wall

(b) House2

Figure 5.15: (II. a) Minimal distance to obstacles during the runs.

75

5 Evaluation of the Results

(a) weighting (b) εi-constraint (c) εd-constraint

(d) random (e) hybrid

Figure 5.16: (II. a) Paths of the decision-makers in the Pillars scenario.

environment. On the other hand, as stated above, the danger weight is com-

parably low, leading to a more risk-a�ne behavior.

As in the base experiment, the weighting method has by far the lowest travel

time (see Figure 5.17a), majorly because of the high average speed (median

of 0.2m/s) but also because of the direct route. Due to the more direct

routes of the danger-constrained methods, they achieve a much lower travel

time, e.g. the εd-constraint method saves up to almost 10 s, making it the

second-fastest method. It is followed by the hybrid and εi-constraint method.

The εd-constraint method also took a short route, but traveled on an average

speed of merely 0.16m/s, leading to a longer travel time. Even though the

εi-constraint method has the same average speed, it is slower than the hybrid

method. When examining the paths (see Figure 5.16b), it becomes apparent

that this is due to the additional turn close to the goal, making the route

longer than necessary.

Wall scenario: The general shape of the weighting method is similar to

the paths in the base experiment. However, due to the higher risk-a�nity,

the robot moves closer to the obstacles before swerving to the side (see Figure

5.18). In the base experiment, the paths of the danger-constrained and weight-

ing methods look similar. In this comparison experiment, though, the shape

76

5.2 Adaptive Distance-Based Danger Mapping

(a) Pillars

(b) Wall

Figure 5.17: (II. a) Travel time in the (a) Pillars and (b) Wall scenario.

77

5 Evaluation of the Results

(a) weighting (b) εi-constraint (c) εd-constraint

(d) random (e) hybrid

Figure 5.18: (II. a) Paths of the decision-maker in the Wall scenario.

of the danger-constrained decision-makers has changed. Instead of straightly

approaching the obstacle in the center, and then slowly closely driving around

it, the robot now moves in a large bow right from the start position. It is rather

comparable with the path created using the εi-constraint method. This may

not signi�cantly reduce the traveled distance, but keeping a safe distance to

the obstacle allows higher speed on average. In the end, for the εd-constraint

method, the average travel time is about 5 s less compared to the base experi-

ment. It is now the fastest decision-maker (see Figure 5.17b). Again, with the

εi-constraint method the robot travels at the same average velocity but due

to the indirect route, it takes even longer than the weighting and the hybrid

method.

House1 scenario: In almost every run, the robot turns to its left towards the

bottom wall of room A, where it stops due to the lack of admissible options.

During the one successful run (see Figure 5.21a), it moves in a smaller turning

loop, and thereby escapes the deadlock. As soon as the robot is oriented

parallel to the left wall of room A, it travels along this wall until reaching the

opening to room B. Then it turns in the direction of room C, adjusts its course

to pass the small opening and reaches the goal. With 0.12m/s on average the

robot is very slow.

78

5.2 Adaptive Distance-Based Danger Mapping

(a) weighting (b) εd-constraint (c) hybrid

Figure 5.19: (II. a) Paths of successful decision-makers in the House2 scenario.

House2 scenario: The paths of the εd-constraint, weighting and hybrid

method look very similar. Except, in one run using the weighting method,

the robot turns back to the start position and collides with the right upper

corner of room D. As already mentioned, the path of the former method dif-

fers only in the generally smaller distance from the walls. This makes the

route shorter, but also a somewhat more dangerous. Despite the paths look

identical in the base experiment using the weighting method, all methods in

this comparison experiment are slower due to the lower average speed. The

εd-constraint method has the lowest travel time again. However, this is mainly

due to the higher average speed, as the traveled distance is almost the same

for all the succeeded decision-makers. It is the greater average distance to

obstacles of the weighting and hybrid method that makes the di�erence here.

5.2.3 Failed Runs

The total number of collisions decreased by one compared to the base exper-

iment (see Figure 5.20). Like explained in the base experiment (see section

5.1.3), the methods without a constraint result in a collision when not being

successful. The ones with a constraint do not collide, but get stuck in a dead-

lock. Though, for the random method, there is one collision in the House1

environment recorded. With the weighting method, the robot collides once in

the House2 world. Using the εi-constraint method, it does not collide with the

obstacles in the Wall scenario anymore (compared to the base experiment).

But in the House2 world, the robot still collides promptly with the upper wall

of room D in the same way as in the base experiment. In the same world, using

79

5 Evaluation of the Results

(a) Base experiment with absolute normalization

(b) Comparison experiment with relative normalization

Figure 5.20: (II. a) Number of collisions in the scenarios.

80

5.2 Adaptive Distance-Based Danger Mapping

(a) random (b) hybrid (c) εd-constraint

Figure 5.21: (II. a) Paths of (a) a successful run and (b)-(c) failed runs in the

House1 scenario.

the random method, the robot �rst navigates away from the starting position

in room D and then either turns back to the upper right corner, moves down

to the bottom right corner, or reaches room C but collides with the right upper

corner (pointing in the goal direction).

No decision-maker is able to navigate the robot around the triangle in the

Corner scenario. This underlines once again that the algorithm itself cannot

model the solution space for such situations. Also, in the House1 scenario, no

decision-making method accomplishes the given task repeatedly (see Figure

5.21). Except for the one run using the random method, all decision-makers

steer the robot further into the left bottom corner of room A, ultimately col-

liding or stopping in time (but thus not being able to move anymore).

5.2.4 Altered Decision-Making Parameters

As in the Base Experiment, the performance of the robot in each scenario

is highly dependent on the parameter values. In order to demonstrate their

e�ect, other parameters were chosen, primarily with the aim of succeeding in

the House1 scenario.

With a higher danger weight, lower minimum interest, and lower maximum

danger than in the original comparison experiment, the robot does not suc-

ceed in the House2 scenario anymore but in House1 with each decision-making

method (see Figure 5.22b). It still accomplishes the given task with every

decision-maker in all runs in the Pillars and the Wall environment. Again, the

Corner scenario is without any successful run.

81

5 Evaluation of the Results

(a) Comparison experiment

(b) Comparison experiment with altered parameters

Figure 5.22: (II. b) Performance of the decision-makers in each scenario.

82

5.2 Adaptive Distance-Based Danger Mapping

The number of dangerous situations dropped to an overall number of one (hy-

brid method in House1). Like already in the other experiments, the robot

collides in every failed run using the weighting and the εi-constraint method.

With the danger-constrained methods, it does not collide once (see Figure

5.23b).

The paths in the Pillars and Wall scenario are a large curve around the ob-

stacles in the middle of the room. With every decision-maker in the House2

world, the robot moves to the lower right end of room D and collides with or

stops in one of the two corners there. Only with the εd-constraint method,

the robot moves either there as well or to room C, stopping in its upper right

corner.

High Danger Weight

The high danger weight of wd = 0.82 was chosen for the same reasons as in

the base experiment with altered parameters (see section 5.1.4). In the world

of House1, the robot succeeds in seven runs. However, in three out of these

runs, it �rst moves around the entire table in room A before entering room

B, and subsequently reaching the goal (see Figure 5.24a). In failed runs, the

robot collides with the left bottom corner of room A.

Low Minimum Interest

The low minimum interest of εi = −0.01 was chosen for the same reasons as in

the base experiment with altered parameters (see section 5.1.4). In four runs,

the robot succeeds in the House1 scenario. Once it accomplishes to move to

room C, but turns away from the goal and enters room D, where it eventually

collides. However, in most runs, the robot collides with the left upper corner

of room B.

Low Maximum Danger

Due to the adaptive danger value, the robot does no longer stop moving at a

�xed distance. Hence, for an environment with little space, such as the world

of House1, the maximum allowed danger εd can be reduced to gain a risk-averse

behavior.

With the low danger limit of εd = 0.05, the εd-constraint method steers the

83

5 Evaluation of the Results

(a)

(b)

Figure 5.23: (II. b) Number of collisions in each scenario.

84

5.2 Adaptive Distance-Based Danger Mapping

(a) Weighting (b) εi-constraint (c) εd-constraint

(d) random (e) hybrid

Figure 5.24: (II. b) Paths of the decision-makers in the House1 scenario.

85

5 Evaluation of the Results

robot in nine runs to the goal. In the other two runs, it moves to the left

bottom corner of room A and stops due to the lack of admissible options.

Using the random method, the robot reaches the goal seven times. However,

in three out of these runs, it takes the detour around the table described above.

The same applies to the execution with the hybrid method. In three runs, the

robot chooses the direct path, but in most cases the navigates around the table.

With the hybrid method, the robot reaches the goal in every run, making it

the most successful one in this part of the experiment.

5.3 Summary of Results

The introduced algorithm was executed with �ve di�erent decision-making

methods in �ve di�erent simulated scenarios; �rst, with absolute normalization

(I. a, base experiment) and second, with relative normalization (II. a, compar-

ison experiment) of the distance-based danger map. Additionally, both main

experiments were repeated with altered parameters (I. b and II. b), pointing

out the signi�cance of scenario-speci�c optimization. The task in all scenar-

ios is to steer the di�erential-drive robot from its start position to the goal

position without collisions1.

To enable a comparison between the decision-makers, the scenarios were cho-

sen with increasing di�culty in terms of risking a collision or a deadlock. In

most experiments, the robot reached the goal in every run in the Pillars and

the Wall environment (in the base experiment, in at least 5 of the total 11

runs). This con�rms that they are less di�cult environments for this navi-

gation algorithm. Hence, in the following, they are referred to as the basic

scenarios.

In the Pillars environment, the chosen path depends on the degree of risk-

aversion. Being highly risk-averse, the robot drives around all three pillars,

choosing the route with the least danger. With a bit more risk-a�nity, the

robot passes between the middle and the outer right pillar. Is the behavior

more risk-a�ne, even the path between the middle and the outer left pillar is

chosen. In the Wall scenario, the robot selects either the left or the right way

around the wall in the center. With a high risk-aversion, mostly the right side

is chosen, keeping a large distance from the walls. In the Corner scenario, all

1For complete data of the experiments, see https://archive.org/details/context-steering-

with-di�erential-drive-robots

86

5.3 Summary of Results

Figure 5.25: The most common collision points in House1 (yellow), in House2

(red), and in both only when using the random method (blue).

decision-makers fail, steering the robot straight into the corner. Subsequently,

it either collides or stops.

The House1 and House2 scenarios combine the main obstacles of the three

aforementioned environments: small circular, large I-shaped and L-shaped ob-

stacles. They only di�er in the con�guration of start and goal position. With

moderate values for wd, εi, and εd, the robot can succeed in the House2 sce-

nario with at least one decision-maker. In order to reach the goal in the House1

scenario, the behavior has to be very risk-averse. Then again, the robot can

no longer cope with the House2 scenario.

As expected, in failed runs, the decision-makers without a constraint on danger

led the robot into a collision. All decision-makers with a danger constraint steer

the robot towards the obstacle, until it is unable to move due to the lack of

admissible trajectories (deadlock). There is one exception: using the random

method, the robot accomplished the task but just missed the goal area. The

main reasons for a collision or deadlock are: the interest is too high outweighing

the danger in this situation, the robot is so risk-averse that it escapes into a

supposedly larger space while moving further away from the goal, or the robot

is facing a corner. In accordance with the results in the Pillars, Wall and

Corner worlds, in the House1 and House2 scenarios, the robot mostly collides

with or is stuck close to a corner, less often a wall (see Figure 5.25).

87

5 Evaluation of the Results

Table 5.1: Summary of performance of the decision-makers. The decision-

makers are rated as e�cient (+), ine�cient (�), or neutral (o)

for those scenarios and parameters settings (I. a-II. b), where the

decision-maker was e�ective (successful in at least 9 out of 11 runs).

Runs with dangerous situations are excluded.

Pillars Wall Corner House1 House2

weighting I. a + +

I. b � o

II. a + +

II. b o o

εi-constraint I. a o

I. b � �

II. a o +

II. b � �

εd-constraint I. a �

I. b

II. a + +

II. b o o +

random I. a �

I. b

II. a � �

II. b o/� �

hybrid I. a o +

I. b o +

II. a + + +

II. b o o o/�

88

5.3 Summary of Results

For the evaluation of the performance of the decision-makers, the e�ectiveness

is of primary interest. As a further assessment of the successful runs, safety

and e�ciency are taken into account. Additionally, the paths of the failed runs

are analyzed. An overview of the merged performance results of the decision-

makers is provided in Table 5.1, where the e�ciency of e�ective and at the

same time safe behavior is rated, which is why only successful runs without a

dangerous situation are counted. In the following, however, the performance

criteria and the results are presented individually.

In the base experiment, the weighting method was e�ective in three scenarios

(Pillars, Wall, House2). The hybrid method was e�ective in both basic sce-

narios. The remaining decision-makers were e�ective in only one of these two

scenarios. The same pattern emerges with altered parameters: the weighting

method is e�ective in the Pillars, Wall, and House1 worlds; just like the hy-

brid method (however, weighting always succeeds and hybrid only 9 times in

House1). The rest is e�ective in at most both of the basic scenarios. Overall,

the weighting method is e�ective in most scenarios, and thus is the most �ex-

ible decision-maker. Moreover, it is the most time-e�cient one. At the same

time, it is risky to use it, as all failed runs are due to a collision. Also, the

number of runs with a dangerous distance to obstacles is comparably high. A

safer alternative is the hybrid method, which is similarly �exible with a suit-

able parametrization, but stops the robot in dangerous situations.

These results are con�rmed by the comparison experiment. The εd-constraint

method is the fastest one. However, the hybrid method proves to be the most

�exible and safest one, especially with a behavior which is neither risk-averse

nor risk-a�ne (see Table 5.1). It navigates the robot to the goal in the basic

scenarios and the House2 (moderate parameters) or House1 world (risk-averse

parameters). Since the hybrid method has a constraint on danger but then

selects the individual with the minimum weighted sum, it depends on the con-

straint, if the paths look similar to the weighting ones. Thus, with a high εd
value, the travel time is marginally larger. With a high wd and low εd value, the

hybrid method is particularly risk-averse, which could be seen for example in

the last parameter variation in House1, when the robot mostly took the route

around the table. In such cases, the hybrid method is signi�cantly slower.

Relative to the base experiment, the overall results of the comparison experi-

ment are better in terms of the e�ectiveness, safety and e�ciency. This shows,

absolute normalization delimits the potential of the algorithm. A low εd value

restricts the robot's freedom of movement to such an extent that in some sce-

89

5 Evaluation of the Results

narios the robot does not even start moving. Only at a value greater than

or equal to κ (the limit value of the value ranges of distance- and time-based

danger) the robot can navigate reasonably freely. However, it then moves dan-

gerously close to the obstacles.

With relative normalization, due to the dynamic calculation of the danger val-

ues based on the current distance to the environment, the minimum allowed

distance is adaptive, maintaining the range of motion for most situations.

Moreover, without explicitly using a dynamic weighting, the interest value is

more decisive for longer distances and the danger value for shorter distances.

The great disadvantage of the relative normalization is its comparably unin-

tuitive parameterization.

90

6 Conclusion and Future Work

As a foundation to reduce the risk of deadlocks when implementing coordinated

motion with the Driving Swarm [32] in environments with large obstacles, this

work adapts the multi-objective (MO) context steering approach [13] to the

requirements of the di�erential-drive robot 'Turtlebot3 Burger' [41].

Due to the special kinematics, the decision space was modi�ed. Instead of

deciding on the direction of motion, the trajectory for the next time step is

decided. Moreover, novel objective functions for interest and danger were in-

troduced, adjusted to the robot's kinematics and perception. As it perceives its

environment via a laser scanner, the danger value of a trajectory is evaluated

based on the shortest distance between the trajectory and the surroundings.

For trajectories that are predicted to collide with an obstacle, the danger value

is assessed by the remaining time until the collision. The interest value consid-

ers the distance to the target and the alignment of the robot's future direction

at the end of a trajectory with the target direction.

The performance of this approach was evaluated through simulation ex-

periments, comparing �ve di�erent multi-objective decision-making methods

(MOO solvers) in �ve scenarios of increasing complexity using four di�erent

parameter con�gurations. Thereby, it was demonstrated that MO context

steering applied to di�erential-drive robots can be successful in environments

where classic steering [39, 40] fails. The following �ndings have been obtained:

Q1: For the navigation algorithm it is most simple to navigate around smaller

round obstacles than around large wide ones. With the best parameter con�g-

uration for each decision-maker, the robot achieves the goal in 100 percent of

the cases. L-shaped obstacles constitute the greatest di�culty, as the success

rate of 0 percent veri�es. As soon as the robot faces the inner part of the tip,

it drives straight towards it and collides or gets into a deadlock.

Q2: As a composition of the elements described above, the robot can navigate

in realistic environments with a success rate of up to 100 percent, depending

on the decision-maker and the parameter con�guration. The average across

91

6 Conclusion and Future Work

all decision-makers (with the best parameter con�guration for each) is 60 and

76 percent, for two di�erent start and goal positions. Most collisions and dead-

locks occur in one of the room corners, con�rming corners are most di�cult to

overcome.

From the fact that all decision-makers regardless of the parametrization fail

in the described corner situations, it can be concluded that the danger map

itself cannot always su�ciently represent the real danger. The context map-

ping methodology must maintain a structured objective space in all situations,

representing the objective of each behavior (e.g. seek, �ee). This means, the

available information of the environment need to be encoded such that each

option has an (almost) unique position in the objective space. Otherwise, the

robot cannot di�erentiate between the options and the decision is made un-

informed. One strategy to detect such situations is to execute the Seek and

Flee behavior one by one (e.g.wd = {0, 1}) and check if the robot behaves

as intended - if not, then the respective context mapping (objective function)

needs to be adjusted.

Nevertheless, there are always more complex cases conceivable, where this re-

active navigation algorithms reaches its limits and fails to lead the robot out.

In such cases, a speci�c sequence of actions is necessary, requiring a memory

about the performed actions.

Q3: The experiments were conducted using either the weighting, the εi-

constraint, the εd-constraint, the random, or the hybrid decision-making

method. Moreover, two normalization variants of the distance-based danger

map were contrasted: the absolute normalization to the maximum possible

distance (the perceptual limit) and the relative normalization to the current

maximum value of the distances between trajectories and environment.

As complementary experiments with altered parameter values have shown, the

scenario-speci�c performance strongly relies on the chosen parameter set (see

also Q5). Nevertheless, certain patterns can be discerned in the results: Using

the absolute normalization (rigid danger mapping), the weighting method is

the most time e�cient and �exible one. However, besides the εi-method, this is

also the most dangerous one, since it lets the robot collide instead of stopping

it when the danger is too high, as the danger-constrained methods do. The

safest yet comparably performant method is the hybrid method.

With the relative normalization (adaptive danger mapping), the overall per-

formance is considerably better. While the εd-constraint method is the fastest

one, the most �exible MOO methods are the weighting and the hybrid method.

92

Taking additionally safety into account, the hybrid method is the best option.

In every scenario, the random method has the longest travel time. With a

lower εd, it performed quite e�ectively. As this method chooses randomly

from the set of admissible solutions, it becomes less e�ective with a higher εd
(which increases the number of admissible trajectories). As a lower baseline, it

proves the other decision-making methods are making better decisions based

on the available information.

Q4: The risk-aversion of the robot depends on a large set of mostly inter-

dependent parameters. With a set of constant context-mapping parameter

values (described below), only altering the decision-making parameters danger

weight wd, interest constraint εi, and danger constraint εd a�ects the distance

the robot keeps to the surroundings. With a higher weight on danger, a lower

minimum interest, and a lower maximum danger, the robot behaves more risk-

averse, i.e. the chosen route is further away from obstacles, but also longer

and slower. However, in narrow environments, with a low maximum danger

and the use of rigid danger mapping, the robot did not move at all.

As stated above, the risk-aversion depends not only on the decision-making

parameters, but also on: the environment, the value ranges of the danger

map split by κ, the length of the trajectories determined by τd and τi, and

the mapping function of the context values (the function itself, its parame-

ters and the normalization variant). By implementing the navigation task as

a 2D multi-objective problem, the decision and objective space is completely

transparent, making the decision-making process easier to control (especially

compared to DWA). Thereby, it was detected that all decision-making meth-

ods are sensitive to the structure and value ranges of the danger and interest

values in the objective-space. On the one hand, the parameter values have

to be selected carefully, on the other hand, the sensitivity can be exploited

by using a non-linear mapping function. Because in both the absolute and

relative mapping, the slope of the function curve determines the risk-aversion.

Through this, a risk-averse behavior near obstacles and risk-taking behavior

at greater distances can be produced.

The results of this work have shown that the developed algorithm is more

successful than classical context steering, but deadlocks still occur, especially

in corner situations. Regarding this, more �ndings have been obtained during

the experiments, that are important for further research:

Contrary to initial assumptions, the inclusion of zero in the value range of

translational velocity did not cause the robot to escape from deadlocks by

93

6 Conclusion and Future Work

turning on the spot. As it does not bring the robot closer to the target, its

interest value is low, which is why this solution is dominated when determining

the Pareto front.

In the presented methodology, the distance-based danger is established on

the shortest distance of the trajectory to the environment (represented by

the polygon). This allows a check for collisions along the entire trajectory.

However, this is done by considering the whole environment, not only the

part of the local environment the trajectory is located. Additionally, it is not

controlled where (at which point in the trajectory) and in which direction the

shortest distance is. As a result, it is unknown whether the trajectory steers

the robot towards the obstacle or away from it. Di�erent situations can lead

to the same danger value, not representing the reality. The danger objective

is currently de�ned to keep distance from obstacles. Considering the general

direction of the trajectory, may let the robot move away from obstacles. As a

possible implementation, around each trajectory, a segment could be created

in which the minimum distance is calculated. Alternatively, in addition to the

method presented in this work, the distance to obstacles in the direction of the

trajectory's endpoint (the orientation of the robot's �nal state) could be taken

into account. Moreover, it could be considered at which point in the trajectory

the shortest distance was measured. Then the evaluation of the danger can be

made in the same way as with the time-based danger map.

Yet, overall, the algorithm introduced in this thesis already provides a good

basis for a better behavior of the Driving Swarm in environments with large

obstacles.

Future Work

The work has shown that the parameters are interdependent and can be opti-

mized scenario-speci�cally or -universally. However, a full parameter variation

could help to reveal exact dynamics in the parameter structure and show how

to produce even better behavior, especially with the hybrid method. Alter-

natively, the parameters can be optimized using metaheuristic methods like

evolutionary algorithms, as shown in [14].

In the experiments conducted in this work, the goal position was known to the

robot. A task in an open scenario with unknown goal position(s) (or objects

of interest, as in [13]) located within the local perception range would thus be

a good addition to further evaluate the algorithm and decision-makers.

94

To further improve the behavior, especially to reduce oscillating in situa-

tions that are di�cult to decide because of many equally good options, post-

processing methods like history blending [13] can be incorporated. It cre-

ates a direction bias, by considering the previously chosen direction. For a

di�erential-drive robot, it could be adapted by choosing a velocity close to the

previous one.

This work is meant to provide a baseline for later implementation with a

swarm. For example, �ocking (cohesion, alignment, separation) could to be

incorporated by adding a third dimension to the multi-objective problem.

With regard to the application on real robots, the following approaches are

available for improving the real-time capability and the robustness: Context

interpolation [13] adapted to the modi�ed decision space could enhance the

algorithm performance. To avoid that the robot accomplishes the task but

collides afterwards, it is recommended to also consider the behavior after reach-

ing the goal. In the further development of the algorithm, when running the

simulation, arti�cial errors can be added to sensors and actuators to evaluate

the robustness. However, in order to make a clear statement about the per-

formance of the algorithm in the real world, it has to be tested with the real

robots of the Driving Swarm [32].

95

Bibliography

[1] Turtlebot 3. URL https://robots.ieee.org/robots/turtlebot3/.

[2] Ros 2 documentation: Foxy, . URL https://docs.ros.org/en/foxy/

Releases.html.

[3] Gazebo, . URL https://gazebosim.org/about.

[4] Overview and usage of rqt, . URL https://docs.ros.org/en/foxy/

Concepts/About-RQt.html.

[5] Ros 2 - data display with rviz2. URL https://www.stereolabs.com/

docs/ros2/rviz2/.

[6] Robotis turtlebot3 burger. URL https://cdn-reichelt.de/bilder/

web/xxl_ws/X200/TURTLEBOT3_DIMENSION1.png.

[7] Recording and playing back data, 2018. URL https://docs.ros.org/

en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.

html.

[8] rclpy, 2019. URL https://docs.ros2.org/latest/api/rclpy/about.

html.

[9] T. Bösser. Autonomous agents. In International Encyclopedia of the

Social & Behavioral Sciences, pages 1002�1006. Elsevier, 2001. ISBN

9780080430768.

[10] Valentino Braitenberg. Vehicles: Experiments in synthetic psychology.

MIT press, 1986.

[11] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf

Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-

lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,

97

https://robots.ieee.org/robots/turtlebot3/
https://docs.ros.org/en/foxy/Releases.html
https://docs.ros.org/en/foxy/Releases.html
https://gazebosim.org/about
https://docs.ros.org/en/foxy/Concepts/About-RQt.html
https://docs.ros.org/en/foxy/Concepts/About-RQt.html
https://www.stereolabs.com/docs/ros2/rviz2/
https://www.stereolabs.com/docs/ros2/rviz2/
https://cdn-reichelt.de/bilder/web/xxl_ws/X200/TURTLEBOT3_DIMENSION1.png
https://cdn-reichelt.de/bilder/web/xxl_ws/X200/TURTLEBOT3_DIMENSION1.png
https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/foxy/Tutorials/Ros2bag/Recording-And-Playing-Back-Data.html
https://docs.ros2.org/latest/api/rclpy/about.html
https://docs.ros2.org/latest/api/rclpy/about.html

Bibliography

Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-

Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-

basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with

numpy. Nature, 585(7825):357�362, 2020.

[12] Vincenzo DiLuo�o, William R. Michalson, and Berk Sunar. Robot oper-

ating system 2. International Journal of Advanced Robotic Systems, 15

(3):172988141877001, 2018.

[13] Alexander Dockhorn, Sanaz Mostaghim, Martin Kirst, and Martin

Zettwitz. Multi-objective optimization and decision-making in context

steering. In 2021 IEEE Conference on Games (CoG), pages 1�8. IEEE,

2021. ISBN 978-1-6654-3886-5.

[14] Alexander Dockhorn, Martin Kirst, Sanaz Mostaghim, Martin Wieczorek,

and Heiner Zille. Evolutionary algorithm for parameter optimization of

context steering agents. IEEE Transactions on Games, (v):1, 2022.

[15] Gregory Dudek and Michael Jenkin. Computational principles of mobile

robotics. Cambridge university press, 2010.

[16] F. Loizides, B. Schmidt, Thomas Kluyver, Benjamin Ragan-Kelley, Fer-

nando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic,

Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,

Damián Avila, Sa�a Abdalla, and Carol Willing, editors. Jupyter Note-

books � a publishing format for reproducible computational work�ows,

2016.

[17] Dieter. Fox, Wolfram. Burgard, and Sebastian. Thrun. The dynamic win-

dow approach to collision avoidance. IEEE Robotics & Automation Mag-

azine, 4(1):23�33, 1997.

[18] Andrew Fray. Steering behaviours are doing it wrong,

2013. URL https://andrewfray.wordpress.com/2013/02/20/

steering-behaviours-are-doing-it-wrong/.

[19] Andrew Fray. Context steering: Behavior-driven steering at the macro

scale. In Game AI Pro 360, pages 147�158. CRC Press, 2019.

[20] David Gossow, Chad Rockey, Kei Okada, Julius Kammerl, Acorn Pooley,

and Rein Appeldoorn. Rviz, 2021. URL https://github.com/ros2/

rviz.

98

https://andrewfray.wordpress.com/2013/02/20/steering-behaviours-are-doing-it-wrong/
https://andrewfray.wordpress.com/2013/02/20/steering-behaviours-are-doing-it-wrong/
https://github.com/ros2/rviz
https://github.com/ros2/rviz

Bibliography

[21] Christian Henkel, Alexander Bubeck, and Weiliang Xu. Energy e�-

cient dynamic window approach for local path planning in mobile service

robotics. IFAC-PapersOnLine, 49(15):32�37, 2016.

[22] Richard D. Hipp. SQLite, 2020. URL https://www.sqlite.org/index.

html.

[23] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in

science & engineering, 9(3):90�95, 2007.

[24] N. Koenig and A. Howard. Design and use paradigms for gazebo,

an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), pages 2149�2154. IEEE, 28 Sept.-2 Oct., 2004. ISBN

0-7803-8463-6.

[25] Anis Koubâa, editor. Robot Operating System (ROS): The Complete Ref-

erence (Volume 1), volume 625 of Springer eBook Collection Engineering.

Springer, Cham, 1st ed. 2016 edition, 2016. ISBN 978-3-319-26054-9.

[26] Anis Koubâa, editor. Robot Operating System (ROS): The Complete Ref-

erence (Volume 2), volume 707 of Springer eBook Collection Engineering.

Springer, Cham, 2017. ISBN 978-3-319-54927-9.

[27] Anis Koubâa, editor. Robot Operating System (ROS): The Complete Ref-

erence (Volume 3), volume 778 of SpringerLink Bücher. Springer Inter-

national Publishing, Cham, 2019. ISBN 978-3-319-91590-6.

[28] Franz J. Kurfess. Arti�cial intelligence. In Encyclopedia of Physical Sci-

ence and Technology, pages 609�629. Elsevier, 2003. ISBN 9780122274107.

[29] Huseyin Kutluca. Robot operating system 2 (ros 2) architecture, 2020.

URL https://medium.com/software-architecture-foundations/

robot-operating-system-2-ros-2-architecture-731ef1867776.

[30] Steve Macenski and Ru�n White. Navigation 2, 2020. URL https:

//navigation.ros.org/index.html#.

[31] Steve Macenski, Francisco Martin, Ru�n White, and Jonatan Gines

Clavero. The marathon 2: A navigation system. In 2020 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages

2718�2725. IEEE, 24.10.2020 - 24.01.2021. ISBN 978-1-7281-6212-6.

99

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://medium.com/software-architecture-foundations/robot-operating-system-2-ros-2-architecture-731ef1867776
https://medium.com/software-architecture-foundations/robot-operating-system-2-ros-2-architecture-731ef1867776
https://navigation.ros.org/index.html#
https://navigation.ros.org/index.html#

Bibliography

[32] Sebastian Mai, Nele Traichel, and Sanaz Mostaghim. Driving swarm: A

swarm robotics framework for intelligent navigation in a self-organised

world. In Accepted at: 2022 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2022.

[33] Wes McKinney et al. Data structures for statistical computing in python.

In Proceedings of the 9th Python in Science Conference, volume 445, pages

51�56, 2010.

[34] Michael Waskom, Olga Botvinnik, Drew O'Kane, Paul Hobson, Saulius

Lukauskas, David C Gemperline, Tom Augspurger, Yaroslav Halchenko,

John B. Cole, Jordi Warmenhoven, Julian de Ruiter, Cameron Pye,

Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric

Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair Miles,

Yoav Ram, Tal Yarkoni, Mike Lee Williams, Constantine Evans, Clark

Fitzgerald, Brian, Chris Fonnesbeck, Antony Lee, and Adel Qalieh.

mwaskom/seaborn: v0.8.1 (september 2017), 2017. URL https://doi.

org/10.5281/zenodo.883859.

[35] Sanaz Mostaghim. Intelligente systeme: Kapitel 1: Agenten systeme,

2018.

[36] Sanaz Mostaghim. Swarm intelligence: Multi-objective problems (mops),

27.11.2019.

[37] Mohamed Oubbati. Einführung in die robotik: Di�erentialsantrieb,

2012. URL https://www.uni-ulm.de/fileadmin/website_uni_

ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/Folien/

Differentialantrieb.pdf.

[38] B. K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, and A. Ja-

gadeesh. A review: On path planning strategies for navigation of mobile

robot. Defence Technology, 15(4):582�606, 2019.

[39] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. In Maureen C. Stone, editor, Proceedings of the 14th annual con-

ference on Computer graphics and interactive techniques - SIGGRAPH

'87, pages 25�34. ACM Press, 1987. ISBN 0897912276.

[40] Craig W. Reynolds et al. Steering behaviors for autonomous characters.

In Game developers conference, volume 1999, pages 763�782, 1999.

100

https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/Folien/Differentialantrieb.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/Folien/Differentialantrieb.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.130/Mitarbeiter/oubbati/RobotikWS1113/Folien/Differentialantrieb.pdf

Bibliography

[41] Robotis. Turtlebot3. URL https://emanual.robotis.com/docs/en/

platform/turtlebot3/features/.

[42] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. A review

of mobile robots: Concepts, methods, theoretical framework, and ap-

plications. International Journal of Advanced Robotic Systems, 16(2):

172988141983959, 2019.

[43] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmen-

reich. Swarm robotic behaviors and current applications. Frontiers in

robotics and AI, 7:36, 2020.

[44] Sean Gillies et al. Shapely: manipulation and analysis of geometric ob-

jects, 2007.

[45] Daniel Shi�man. The nature of code: Simulating natural systems with

processing. Selbstverl., version 1.0, generated december 6, 2012 edition,

2012. ISBN 978-0985930806.

[46] Gerald Steinbauer. Mobile robots: Reactive navigation. URL

http://www.ist.tugraz.at/steinbauer_mediawiki/images/a/a2/

Mr_12_reactive_navigation.pdf.

[47] Bjarne Stroustrup. The C++ programming language. Pearson Education

India, 2000.

[48] Sebastian Thrun and John J. Leonard. Simultaneous localization and

mapping. In Bruno Siciliano and Oussama Khatib, editors, Springer

Handbook of Robotics, pages 871�889. Springer Berlin Heidelberg, 2008.

ISBN 978-3-540-30301-5.

[49] Cristina Urdiales, Antonio Bandera, Eduardo Pérez, Alberto Poncela, and

Francisco Sandoval. Hierarchical planning in a mobile robot for map learn-

ing and navigation. In Janusz Kacprzyk, Changjiu Zhou, Darío Maravall,

and Da Ruan, editors, Autonomous Robotic Systems, volume 116 of Stud-

ies in Fuzziness and Soft Computing, pages 165�188. Physica-Verlag HD,

2003. ISBN 978-3-7908-2523-7.

[50] Guido van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-

ateSpace, Scotts Valley, CA, 2009. ISBN 1441412697.

[51] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-

101

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
http://www.ist.tugraz.at/steinbauer_mediawiki/images/a/a2/Mr_12_reactive_navigation.pdf
http://www.ist.tugraz.at/steinbauer_mediawiki/images/a/a2/Mr_12_reactive_navigation.pdf

Bibliography

ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,

Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-

son, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, Polat, Vander-

Plas, Jake, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-

sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.

Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contrib-

utors. Scipy 1.0: Fundamental algorithms for scienti�c computing in

python. Nature Methods, 17:261�272, 2020.

[52] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-

time loop closure in 2d lidar slam. In 2016 IEEE International Conference

on Robotics and Automation (ICRA), pages 1271�1278, 2016.

[53] Pyo YoonSeok, HanCheol Cho, RyuWoon Jung, and TaeHoon Lim. ROS

Robot Programming: From the basic concept to practical programming and

robot application. Seoul, Republic of Korea, 2017. ISBN 979-11-962307-

1-5.

[54] Han-ye Zhang, Wei-ming Lin, and Ai-xia Chen. Path planning for the

mobile robot: A review. Symmetry, 10(10):450, 2018.

102

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only

the stated sources and tools.

Nele Raya Traichel Magdeburg, June 28, 2022

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Related Work
	Navigation of Agents
	Autonomous Agent
	Steering Behaviors
	Context Steering
	Multi-Objective Context Steering

	Navigation of the Driving Swarm
	Turtlebot3 Burger Platform
	Kinematic Model of a Differential-Drive Robot
	Mobile Robot Navigation

	Distinction of this Thesis from the Related Work

	Methodology
	Requirements
	Desired Behavior
	Characteristics of the Robot

	Structure of the Algorithm
	Velocity Sampling
	Context Mapping
	Multi-Objective Decision-Making

	Implementation
	Robot Operating System 2
	Python Packages
	Hardware

	Experiments
	Experiment Design
	Structure
	Scenarios
	Expected Paths

	Evaluation Metrics
	Parameter Settings
	Constants
	Variables

	Execution of the Experiments
	Launch Process
	Data Acquisition and Processing

	Evaluation of the Results
	Rigid Distance-Based Danger Mapping
	Overview on Effectiveness
	Successful Runs
	Failed Runs
	Altered Decision-Making Parameters

	Adaptive Distance-Based Danger Mapping
	Overview on Effectiveness
	Successful Runs
	Failed Runs
	Altered Decision-Making Parameters

	Summary of Results

	Conclusion and Future Work
	Bibliography

