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Abstract

In this thesis, a passive TDOA approach for ultra wide band localization is
extended to be used in multi hop scenarios to enable a more flexible positioning
system for large amounts of nodes. An error model is designed and used
with measured clock drifts of DWM1000 modules in simulation to evaluate
the capabilities of different proposed approaches. Experiments show that a
combination of the proposed solver variance metric and hop count metric is
able to significantly increase the amount of nodes localized in certain multi hop
scenarios while maintaining similar median localization errors of around one
meter as the compared single hop approach. It has furthermore been found
that with different settings, proposed approaches were able to locate all nodes
in an area four times the size of the area the original anchor nodes are placed
in with only slightly higher median errors of around 1.3 meters.
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1 Introduction

From mobile indoor robots to wireless sensor networks, more and more appli-
cations require localization. Often it is not possible to use GPS due to indoor
application, usage in GPS denied environments such as woods and places close
to buildings [40], or higher precision requirements.

One popular method to overcome this problem is to use ultra wide band
(UWB) communication to determine a position [41, 27, 40]. There are dif-
ferent methods to set up UWB modules as a positioning system. Using a
passive time difference of arrival (TDOA) setup enables a theoretically unlim-
ited amount of nodes to be localized.

In this thesis, such a passive TDOA localization approach is extended to be
used in multi hop scenarios, aiming to increase area coverage and flexibility
while maintaining a simple setup. The system’s performance is further ana-
lyzed in simulation.

1.1 Tasks and Requirements

One of the main questions to be answered in this thesis is whether it is possible
to extend the passive TDOA approach to be used in multi hop scenarios,
enabling nodes to share their calculated position estimate.

To evaluate such an approach, a simulation with an appropriate error model
is to be implemented. With the simulation, the performance of such a multi
hop approach can then be analyzed. Furthermore, it is to be found out, how
well this approach localizes nodes within a single hop reachable area. Can it
reduce the median localization error compared to a single hop approach ?

Typical GPS enabled phones reach an accuracy of about fife meters [44], with
high precision GPS receivers reaching accuracies of under two meters [16]. To
be able to achieve similar performance, a requirement for the system is that
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1 Introduction

the median localization error has to be below one meter. This also roughly
matches the performance of other currently researched approaches of localiza-
tion in wireless sensor networks [46] and of Wi-Fi and Bluetooth based indoor
localization systems [21, 43, 15, 47].

With this constraint, how much more nodes can be localized with a multi hop
approach compared with the single hop scheme in different scenarios and what
are the limits of how far the range can be extended with such?

The research questions can be summarized as follows:

Q1 Is it possible to extend the passive TDOA approach into a multi hop
scenario ?

Q2 Is applying multi hop strategies onto a single hop problem a possibility
to improve the localization performance of the nodes ?

Q3 With a median localization error of below one meter, how many nodes
can be localized with a multi hop approach ?

Q4 What are the limits of such a multi hop approach with the one-meter
constraint ?

1.2 Structure of the Thesis

The structure of the thesis can be summarized as follows: After the intro-
duction and the stated tasks and requirements, a brief overview of the
basics, the work relates to, is given. Next, different research related topics are
touched on in the state of the art chapter, followed by a detailed explanation
of the theoretical considerations and methods used in this work. After that,
the experiments and their results are presented. The thesis closes with a
conclusion and considerations for future work.
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2 Basics

In this chapter, a brief explanation of different localization principles, clock
drift and the general idea behind multi hop localization is given.

2.1 Two Way Ranging

Two way ranging (TWR) is an approach to obtain a time of flight and thereby
a distance between two ultra wide band capable nodes. Usually, double sided
two way ranging is performed to compensate for a clock drift between the two
modules. It consists of a sequence of messages sent between the nodes as in
figure 2.1.

Figure 2.1: Two Way Ranging [18]
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2 Basics

For each transmission, the previous registered local time stamps of sending and
receiving are written into the message. With this, the round trip times and
response times can be calculated. Subtracting the response time (rpt) from
the round trip time (rtt) results in two times the time of flight. With this, the
time of flight (TOF) of the two rounds can be calculated as follows:

TOF = [(rtt1− rpt1) + (rtt2− rpt2)]/4

The last transmission (D) is then used to transmit the resulting time of flight
from Node 2 to Node 1. With a known speed of the signal (speed of light in
the atmosphere for the application using ultra wide band signals), the time
of flight can then be used to determine a distance between the two nodes.
[18, 13, 9, 26]

2.2 Time Difference of Arrival

A time difference of arrival (TDOA) is the time between two receiving time-
stamps. This is used in an equally named localization principle, where multiple
synchronized base stations receive a message from a sender.

Depending on the position of the sender relative to the base stations, the
different stations receive the same signal at different timestamps. The further
away a receiver is from the sender, the later the signal is received compared to
a second receiver close to the sender, resulting in a higher time difference of
arrival between the two receivers.

The differences of the receiving timestamps on the different base stations can
then be used to calculate the position of the sender. [36, 18]

2.3 Gradient Descent Solver

There are many approaches to compute a position given different distances
from tag to anchor nodes or different time differences of arrival between such
base stations. While it is possible to solve these problems analytically, this
often is not feasible due to errors in the input data.

More common approaches look at this problem as an optimization problem,
solving it numerically by minimizing the error between the distances or time
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2.4 Clock Drift

differences of arrival generated by an estimated position and the actual input
data. This can be done by computing the gradient over this error, iteratively
"stepping" towards positions estimates minimizing this error, as visualized in
figure 2.2. In the end, the position with the lowest error equals the best match
of the input data to a position.

Figure 2.2: Gradient Descent Visualization [28]

A typical problem of such a gradient descent solver is, that depending on
the error landscape and the step width in which the solver moves along the
gradient, the solver might converge towards local optima or shows a diverging
behavior. [33, 28, 17]

2.4 Clock Drift

Clock drift occurs between two or more independent clocks which run at dif-
ferent speeds. When the clocks are started simultaneously, they will "drift
apart" and slowly desynchronize over time. The clock drift between two clocks
is usually given in parts per million (ppm) with clock drifts of typical crystal
oscillators used in normal wristwatches about 25 ppm [7].

If the exact drift of a clock C to a reference clock RC is known and does not
change over time, it can be theoretically compensated by dividing the resulting
time of that clock C by the drift of C plus one (tRC = tC/(1 + driftC)). In
reality however, the drift of a commonly used quartz driven clock depends on
external factors such as temperature, resulting in different drift over time [37].

5



2 Basics

2.5 Multi Hop Localization

In classical radio based localization, base stations are used as reference to
locate nodes in range. When these nodes then act as reference nodes or base
stations to locate other nodes based on their calculated position, one speaks
of multi hop localization. This can be used to locate nodes which are out of
range of the initial base stations, or to assist in the localization of nodes which
are in range. With each node in the localization chain between the original
base stations and the node to be localized, the hop count is increased. A major
disadvantage of this approach is the position error of each node being added
up with each hop. [29]
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3 State of the Art

One of the most common localization methods we encounter in our daily lives
is GPS. It is broadly used in navigation systems for cars and built in to most
smartphones these days. While the precision of typical GPS receivers is only
about five meters [44, 8], one of the biggest advantages is its coverage around
the world. While it is possible to increase the precision of GPS using an addi-
tional ground station, these D-GPS systems are very costly, have a high setup
time of about 20 to 30 minutes and can only cover a certain area [4, 30]. Fur-
thermore, blocking and reflecting of GPS signals can drastically decrease the
localization performance of GPS, which makes it difficult to locate receivers
in environments such as forests or places very close to buildings [40] and com-
pletely unfeasible inside buildings.

Various methods are used to obtain positions in such GPS denied environ-
ments. Camera based systems present one approach to localize objects in such
areas. One of the most common methods for camera based indoor localization
is using markers on the targets, which are then detected by permanently in-
stalled cameras in the room [20, 11, 35, 2]. A simple single camera localization
system can be constructed using a webcam mounted on the ceiling detecting
aruco markers on the tracking targets [25, 20]. Localization precision of under
one centimeter when using a marker side length of 96 mm were achieved in [20]
with such an approach covering an area of roughly two by two meters. The
covered area is limited by the size of the markers and resolution of the camera
used, often resulting in small localization areas. Commercially available multi
camera systems such as the Vicon system, which uses infrared cameras and
reflective markers, are able to locate the position of multiple targets with an
accuracy of below one mm. [11, 35] The downside of these systems is their high
price and their complicated, usually permanent setup. An overview and further
comparison of different camera based localization systems, their performance
and cost is given in [34].
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Autonomous driving service and industry robots are usually equipped with
laser scanners [12, 3]. These enable robots to locate themselves in a known
environment, by tracking features of walls and obstacles. With odometry in-
formation of wheels and other sensors such as an inertial measurement unit, it
is possible to perform simultaneously localization and mapping (slam). There,
a map of the environment the robot is placed in is incrementally constructed,
while the robot simultaneously determines its position within this map [24].
This approach enables the robot to locate itself in an unknown indoor envi-
ronment and “provide[s] the means to make a robot truly autonomous” [24].
Accuracies of laser scanners are typically in centimeter range [5, 1]. Assum-
ing a perfect slam algorithm, localization performance can be expected to be
similar. Industry grade laser scanners however usually cost well above 1000
euros with cheaper hobby grade sensors starting at around 200 euros [14].
Additionally, enough computational power is needed for the execution of slam
algorithms to obtain a position estimate with a reasonable update rate, making
this approach a less viable option for larger amounts of robots to be tracked.

An other option to enable localization inside buildings are wireless transmission
based systems. There, Wi-Fi and Bluetooth based solutions rely on commonly
available technologies and enable a 2d localization accuracy of around one
meter [47, 10, 15]. These localization approaches are often based on a received
signal strength indicator (rssi) to estimate distances from setup base stations
to the modules to be located [19, 23, 15]. With these distances, triangulation
can then be performed to determine a position in 2d space. It is also possible
to use the time of arrival and angle of arrival of signals to determine a position
in a Wi-Fi based localization system [47]. Similar techniques can be used
to determine positions with ultra wide band (UWB) communication. UWB
based systems achieve a much higher localization precision of around 50 cm and
below in 3d space [27, 42] while still being affordable with UWB communication
capable hardware such as the DWM1000 modules being priced at less than 20
euros [6].

Kempke et al. [27] implemented a single sided two way ranging based indoor
localization system using ultra wide band communication. They were able to
track the path of a Parrot AR Drone with 39 cm median error using their
proposed approach. Two way ranging usually requires at least two to four
messages sent, to determine a distance between two UWB nodes. The system
proposed by Kempke et al. [27] uses three antennas on the tag. With three
antennas for each anchor and three different RF channels used, the proposed

8



system acquires 27 range estimates to each anchor node. Kempke et al. [27]
were able to reduce the amount of sent packets to conduct these 27 range
estimates to 31 with their custom ranging protocol.

Steup et al. [40] proposed a similar system using double sided two way ranging
to localize an UWB tag. Their proposed system showed a median precision
of around 0.2 meters with eight planar setup anchor nodes when compared
to a high precision optical Vicon localization system. The computation of
the position in the conducted outdoor experiment with the fully integrated
system was entirely done on a microcontroller in the UWB nodes enabling a
decentralized operation. With the ranging implementation used by Steup et
al. [40], five packets are transmitted for one range estimate between two nodes.
While this is significantly lower compared to [27], the scalability of this system
is limited because with each added anchor or tag, the amount of sent messages
drastically increases.

To tackle this problem, Tiemann et al. [41] proposed a TDOA based approach.
There, a tag broadcasts a single message to be received by multiple synchro-
nized anchor nodes. The different times of the message arriving at the anchor
nodes, are then used to calculate the time differences of arrival and with these
a position estimate. This is done on a server wired to all anchor nodes. In
the approach proposed by Tiemann et al. [41], the synchronization is done by
an additional synchronization node broadcasting repeating messages. While
this system theoretically only requires one message sent by each tag for each
localization, additional messages from the server to the localization targets are
required so e.g. a mobile robot, mentioned by Tiemann et al. [41] as a possible
application, can use the determined position for indoor navigation.

Wang et al. [45] proposed a TDOA based UWB localization approach, where
the anchor nodes emit a scheduled signal. This enables the tags to locate
themselves completely passively, theoretically enabling as unlimited amount of
tags to be located without increasing the messages sent. The synchronization of
the anchor nodes is done within the already transmitted signals of the schedule.
Wang et al. [45] evaluated their system with four reference nodes and one
tag and showed that it is capable of 3d indoor localization. With the passive
localization of tags, no extra synchronization nodes required and the capability
of computing the positions decentralized on the tags, this proposed approach
has the potential to be extended into a multi hop capable localization system
and is therefore further on used in this thesis.
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4 Method

The following chapter explains the passive multi hop localization approach
and its multi hop extension of this work. First, the general idea of the passive
TDOA localization scheme is explained. This if followed by a more detailed
explanation of the error model used in the further course of this thesis.
Furthermore, the simulation procedure is elucidated. In the end, algorithms
necessary for multi hop localization are presented.

4.1 Passive TDOA

In classical TDOA localization, the object to be tracked (tag) emits a signal
received by the synchronized base stations (anchors) at different times. These
are then used to calculate the different time differences of arrival necessary to
calculate a position estimate. [36]

In the approach based on Wang et al. [45] the anchors emit a signal and the
tag(s) only listens. This enables the position estimate to be calculated directly
on the tags, completely passive. However, nodes need a certain amount of time
to receive a message, and thereby cannot receive multiple messages at the same
time or within a certain time frame. To avoid this, Wang et al. [45] proposed
a schedule in which the anchor nodes emit their signal. With the length of
the time slot known (or the time when the message has been sent), the tag
can then use the times stamps it received the messages at, to calculate time
differences of arrival and with them its position estimate. The big advantage
of this approach is, that the amount of messages sent only depends on the
amount of anchor nodes set up and is independent of the number of tags
localizing themselves. This approach is further referenced as passive TDOA.

To enable passive TDOA in a multi hop scenario, a third node type next to the
original anchor nodes and tags is introduced. While anchors (also referred
to as original anchors) are the manually placed nodes with a known position
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emitting localization signals, tag-anchors are tags that also emit a localization
signal. As tags, tag-anchors also locate themselves using other anchors. To
share their position and participate in the sending schedule, they need to be
in sync with the other anchors. This results in a Synchronization Tree starting
at one predefined master anchor node. Furthermore, every tag and tag-anchor
node has a set of nodes it uses to calculate its position, creating a Position
Dependency Graph.

Figure 4.1a shows an example setup of nodes at their positions. The Geometric
Position Graph (GGP ) encodes the position and neighborhood. There are three
original anchor nodes A0, A1 and A2, two tag-anchors AT0 and AT1, and
one tag T in this example. The lines between the nodes visualize possible
connections, limited due to a given transmission range. In this example, the
tag T is not able to receive signals emitted by the anchors A0 and A1.

The Position Dependency Graph (GPD) in figure 4.1b shows for each node
which nodes they use as a reference to get their position. The position of the
anchors is known, and therefore they form the "base" of this graph. This graph
only shows one possible allocation of anchor nodes to nodes. For example,
AT0 could additionally use AT1 to determine its position. However, in order
to determine a two dimensional position, a node needs at least three reference
nodes. Tag T can only receive one anchor node (A2) and therefore makes use
of the two tag-anchors AT0 and AT1 to determine its position.

Furthermore, a Synchronization Tree (GS) of the sending nodes is shown in
figure 4.1c. Anchor node A0 is the synchronization master for this example.
Since all sending nodes can listen to the synchronization messages of this node,
the tree is rather flat. Again, this is only one solution for a Synchronization
Tree in this scenario. Even though it would increase the synchronization hops,
tag-anchor AT1 could also use AT0 as synchronization reference. However,
expanding the network may result in tag-anchors not being able to directly
receive signals from the synchronization master and instead having to use other
nodes to synchronize themselves. Tags do not appear in this graph because
they do not need to be in sync with the other anchor nodes. They only use
the localization messages to compensate their clock drift.

In this work, the Synchronization Tree is always built so that each node uses
the node with the lowest synchronization hop count available. If multiple of
such nodes exist, the node with the lowest ID is always chosen. Furthermore,
the original anchor node with ID 0 is always the synchronization master.
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Geometric Position Graph GGP

A0

A1

A2

AT0

AT1

T

(a)

Position Dependency Graph GPD

A0 A1 A2

AT0 AT1

T

(b)

Synchronization Tree GS

A0

A1 A2 AT0 AT1

(c)

Figure 4.1: Example visualizing a Position Dependency Graph (GPD) and a
Synchronization Tree (GS) of the set of given nodes and their po-
sitions in the Geometric Position Graph (GGP )

4.2 Error Model

In this chapter, a time model of the individual nodes is established. With this
time model and the previously described multi hop procedure, an error model
is then built with respect to correlation of time and calculated position as well
as aspects of time synchronization.

The time of each anchor and tag-anchor node is modeled as follows:

θ(t)i = t+ ei (4.1)

ei = e0i + edrifti (4.2)

Each node is modeled to have an independent clock which has an offset and a
drift. The time of a clock i (θ(t)i) at a given reference time t consist of that
reference time t and an error ei (equation 4.1). The error ei is split up into two
parts, a static offset error e0i and an error due to clock drift edrifti . The clock

13



4 Method

drift error for a specific time is the time passed since the last synchronization
of the clock ∆tsynci (in the reference time domain) times the drift of node i di
in parts per million (equation 4.3).

edrifti = ∆tsynci · di (4.3)

The model assumes that the clock drift is constant since the last time of syn-
chronization. When a clock drift compensation between the reference clock
and the module clock i is done, di equals the remaining drift after that com-
pensation. Ideally, such a compensation would reduce the clock drift to zero,
eliminating the clock drift and thereby the error induced by the drift. How-
ever, in reality clock drift compensation mechanisms cannot achieve this. This
is mainly because the clock drift is not constant and often depends on external
factors, as for instance the temperature of quartz oscillators. The remaining
(much smaller) drift is then part of the error and therefore used for the error
calculation.

The static error e0i is introduced by the wireless synchronization of the nodes.
With the speed the signal travels between two nodes, and the exact distance
known, the time offset of one node to another can be compensated by sending
a message from one module to the other containing a local time stamp. This
synchronization is assumed to be exact if the positions of the two nodes is
known. This is the case for the synchronization between two original anchor
nodes. Therefore, the static error e0 is set to zero in such a case. For tag-anchor
nodes however, this does not hold, since they use their calculated position as
reference. If the calculated positions differ from the actual position for one
or two synchronizing nodes, this affects the distance used to account for the
time the signal travels in the synchronization. This then leads to a time offset
of the synchronized node to the node used for synchronization resulting in a
static offset error e0. For the case of time synchronization between two nodes
with at least one being a tag-anchor node, the error e0 can be calculated as
follows:

e0i =
eposi,j

vsignal
(4.4)

eposi,j is the difference in the assumed distance from node i to j to the actual
distance between the two synchronizing nodes. With the speed of the signal
(vsignal), the time offset can then be calculated as in equation 4.4. In the case
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of the ultra wide band communication vsignal can be assumed to be equal to
the speed of light in the atmosphere.

eposi,j =
−−−−→
|P ∗i P ∗j | −

−−−→
|PiPj| (4.5)

Equation 4.5 shows how eposi,j is calculated. The distance between the node
with the position Pi and its synchronization reference node with the position
Pj equals the length of the vector

−−→
PiPj. The length of the vector between the

estimated positions (
−−−→
P ∗i P

∗
j ) is the distance used for the simple single message

synchronization. In case of an anchor node, the calculated position P ∗ equals
the actual position of the node, assuming perfect placement and measurements
during setup. The difference of these two distances then equals the distance
error eposi,j , forming the foundation of the static offset error (equation 4.5). If the
calculated positions of the two synchronizing nodes are equally offset, or one
position estimate is offset in such away that it does not affect the calculated
distance between the two nodes, it is possible that this has no effect on the
synchronization resulting in epos = 0 even though the calculated positions have
errors.

In a multi hop scenario the synchronization dependencies are given by the pre-
viously introduced Synchronization Tree GS. Beginning by a synchronization
master node, the static error e0 and drift based error is inherited over each
hop.

The time error of an anchor or tag-anchor node i is the sum of the errors of
the nodes along the path to the root synchronization node r (equation 4.6).

emh
i =

∑
j∈pathi,r

(ej) (4.6)

It is assumed that all sending nodes around the node i send in a repeating
schedule one after another with time slot length of tsl seconds (section 4.1).
A sending node in the neighborhood of node i is a node in the Geometric
Position Graph with an edge to node i. Given that one of the sending nodes
is the synchronization node for node i, the time between the synchronization
messages tsynci equals the length of the schedule time slots times the amount of
sending nodes in the neighborhood len(S(i)), as in equation 4.7. tsynci therefore
is the maximum time since the last synchronization. This is used for ∆tsynci
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to calculate the edrift part (equation 4.3) of the error accumulated in equation
4.6. Since the schedule is not further specified and hence the times for the
synchronization of the nodes along the path to the root node are not known,
the worst case is always used by setting ∆tsynci = tsync and it is ensured that
the errors are not assumed to be too low.

tsynci = tsl · len(S(i)) (4.7)

When a node i determines its position, it selects sending nodes in its neigh-
borhood which are notated as SSA(i). Figure 4.2 shows a Synchronization
Tree where the red nodes (8, 9, 10, 11) are the selected reference nodes by a
tag i. For localizing tag i, the anchor nodes need to be synchronized to each
other. However, it is not necessary to calculate the emh for the selected anchor
(tag-anchor) nodes until root node 0 of the Synchronization Tree, because they
all already share node 3 as a root node. The error introduced from the syn-
chronization from node 0 to node 3 affects all selected anchor nodes equally
and hence has no influence on the synchronization between the selected anchor
nodes. When the error emh

j is calculated for all nodes j in a set of selected
anchor nodes SSA(i) by node i (j ∈ SSA(i)), the common root node of these
selected nodes is used as root node r in equation 4.6. The resulting error value
is further referred to as emh

j (SSA(i)), j ∈ SSA(i).

Synchronization Tree GS

0

1 2 3 4

5 6 7 8

9 10 11

Figure 4.2: Example Synchronization Tree. Nodes selected as reference by tag
i are marked in red. Node 3 is the root node used for the error
calculation of the selected reference nodes

In addition to the errors of the selected anchor or tag-anchor nodes, an error
based on the clock drift of the tag is modeled. Similar to the error calculation of
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the anchor nodes, the nodes around the tag are assumed to send in a repeating
schedule one after another, again with a time slot length of tsl. The schedule is
assumed to have the selected nodes send first (in an undefined order), followed
by all the other nodes in range.

Figure 4.3 shows an example schedule for four anchor nodes A1 to A4 selected
by tag T (SSA(T ) = [A1, A2, A3, A4]). The schedule begins with node A1
sending. With tsl known (e.g. through listening to the sending time stamps
of the anchor nodes), the tag T can then compute the time differences of
arrivals (TDOA) of the four nodes (red arrows in figure 4.3). The resulting
time differences of arrival are relative to the first received signal, hence the
resulting time difference of arrival for the first node (A1 in case of the example
in figure 4.3) always equals zero.

However, this example assumes that the clock of the tag T has no drift com-
pared to the synchronized selected anchor nodes. With T having such a clock
drift, tsl used for the calculation in the time domain of T, does not equal tsl
in the time domain of the reference nodes anymore. The error based on this
depends on the length of the schedule time slots (tsl), the clock drift of the
tag dtag and it scales with the position of the nodes in the schedule. This is
modeled in equation 4.8 where ps(j) is the position of reference node j in the
schedule and di the clock drift of node i. When a clock drift compensation
is done, di equals the remaining clock drift. Because no complete schedule
is established for the simulation, the assignment of selected anchor nodes to
a position in the schedule is done at random for each set of selected anchor
nodes SSA(i). The resulting error etagi,j needs to be considered for each selected
anchor node j in respect to all selected anchor nodes in SSA(i) for tag i.

etagi,j (SSA(i)) = (ps(j)− 1) ∗ tsl ∗ di (4.8)

To calculate the time differences of arrival with the two previous introduced
types of errors emh

j (SSA(i)) and etagi,j (SSA(i)), the errors are added to the time of
flight from the selected reference nodes to the tag first (equation 4.9). Equation
4.11 shows how the time differences of arrival are then yielded. This is done
by subtracting the time of flight (TOF) of the first node in the schedule (j=1)
from all the times of flight. This results in the TDOA being relative to this
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Schedule

A1

A2

A3

A4

T

tsl

tsl

Figure 4.3: Example schedule with four anchor nodes A1 to A4 and one tag T
with the resulting time differences of arrival marked as red arrows

first node. Hence, the TDOA of the first reference node (j=1) equals zero (as
in the example in figure 4.3).

TOF err
j,i (SSA(i)) = TOFj,i + etagi,j (SSA(i)) + emh

j (SSA(i)) (4.9)

TOFj,i =
|
−−→
PjPi|
vsignal

(4.10)

TDOAerr
j,i (SSA(i)) = TOF err

j,i (SSA(i))− TOF err
1,i (SSA(i)) (4.11)

The time differences of arrival TDOAerr
j,i (SSA(i)) of all reference nodes j in the

set of selected reference nodes SSA(i) of tag i can then be used to calculate a
position estimate of node i. These time differences include two types of error,
one based on the Synchronization Tree, another based on the clock drift of the
receiving tag.

Signals sent with ultra wide band communication are subjected to multi path
errors. Reflections of the signal result in different longer paths of the signal
from the sender to the receiver. When the message on the direct path is
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received, other reflected signals representing that same message which would
be received later are ignored. However, if the direct path is blocked, or the
signal gets lost, signals over another path may be received. This results in a
different time of arrival of the message at the receiving node, interfering with
the localization scheme. To model this, a multi path error emp

j,i is applied to
the time of flight in equation 4.11 as in equation 4.12.

TDOAerr
j,i (SSA(i)) = TOF err

j,i (SSA(i))·emp
j,i − TOF err

1,i (SSA(i))·emp
1,i (4.12)

If the signal on the direct path from node j to i arrives, the multi path error
emp
j,i is set to 1. In case of the DWM1000 module, the user manual claims a
97% of transmissions to succeed with a total air utilization of <18% [32]. This
probability is used to decide, whether the direct path signal arrives (Algorithm
1, line 6). If this direct transmission fails, there is a chance of a multi path
signal to arrive with a length of 1.2 times the direct path (emp

j,i = 1.2). When
this fails, two more paths with emp

j,i = 1.4 and emp
j,i = 1.6 each have a chance

(Algorithm 1, line 8-13). The probability for each of the three multi paths is set
to 5%, resulting in a combined probability of approximately 14% probability of
getting one of these multi path errors if the direct path signal does not arrive.

Algorithm 1 multi path error
1: emp

j,i

2: Rne← random(0, 1)

3: Rmp1← random(0, 1)

4: Rmp2← random(0, 1)

5: Rmp3← random(0, 1)

6: if Rne ≤ 0.97 then
7: emp

j,i ← 1

8: else if Rmp1 ≤ 0.05 then
9: emp

j,i ← 1.2

10: else if Rmp2 ≤ 0.05 then
11: emp

j,i ← 1.4

12: else if Rmp3 ≤ 0.05 then
13: emp

j,i ← 1.6

14: else
15: emp

j,i ← None

16: end if
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If none of the three multi paths were chosen, emp
j,i is set to None, declaring

a lost transmission. There are three options how a lost transmission can be
handled. First, the node can use the last calculated time difference of arrival of
the node with the lost transmission. However, this does not work if the set of
allocated nodes SSA(i) has changed. The second would be that the receiving
node can calculate its position without the lost signal, only using all other
signals received. This can only be done if at least three other messages were
received when calculating a two dimensional position. The third option is to
wait for the next transmission and not calculate the position in this period
if one signal is lost. With an expected value of approximately 2.5% for a
lost message, the frequency in which no position can be calculated using the
last option is reasonable. Because of this and the simplicity of this solution,
the third option is further used. Overall, this rather simple model with the
three defined multipliers enables the inclusion of the multi path error without
modeling an environment and the physics of signals.

With the time differences of arrival calculated as described above, a position
is then calculated using a simple iterative gradient descent solver as the base
approach in [33]. In the implementation of this work, the parameter step size
defines how much of the calculated gradient is applied to the previous guess
each iteration. The solver has further more been modified to reset its current
guess to a randomly sampled position, if the guess leaves the area the nodes
are distributed over by more than 10 meters in any direction to avoid runaway.

4.3 Simulation Procedure

A simulation is set up to in two dimensional space. It consists of two phases:
a calculation phase and an allocation phase.

In the allocation phase, first all nodes can decide whether they want to
share their position, by becoming a tag-anchor or stop sharing their position
and to change back to being a tag. Then they decide which of the available
anchors in range they want to use to determine their position in the following
calculation phase. The original anchors are not subjected by the allocation
phase and always emit a signal. In the end of the allocation phase, the Position
Dependency Graph GPD and the Synchronization Tree GS are updated.

During the calculation phase, nodes use the signals from the selected anchors
to determine their position estimate. To do so, the errors are calculated as
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explained above, using the actual Position Dependency Graph GPD and the
Synchronization Tree GS. For each node and each calculation step, the errors
of the anchor nodes are recursively calculated until their common root node in
GS and the last calculated positions of the selected anchor nodes are used to
determine the position of the corresponding tag or tag-anchor. The order in
which the positions of the nodes are calculated is random but consistent over
the simulation, depending on the randomly assigned IDs of the nodes. The
calculation phase performs one position update per node. However, the whole
phase is repeated certain times, set by the simulation parameter “updates per
allocation”. Once all repetitions of the calculation phase are finished, the next
allocation phase is started and the whole process is repeated until a certain
amount of calculation updates (iterations) have been performed.

The implementation of the simulation and with it the error model and all
the following algorithms was done using Python with typical libraries such as
Numpy, Pandas and Scipy. For the evaluation, Matplotlib and Seaborn were
additionally used to generate graphs and other visualizations.

4.4 Algorithms

In this chapter, different metrics to estimate the position quality of a node are
proposed. Furthermore, different selection algorithms for choosing surrounding
anchor nodes to determine a node’s position, making use of the metrics, are
shown. Second, different anchor decision algorithms are proposed which decide
whether a node shares its position or not.

4.4.1 Metrics

To estimate the performance of a calculated position of a node, different metrics
are presented in this chapter.

Hop Count

The hop count of a node i (#hop(i)) indicates over how many hops the position
has been calculated. It is the maximum hop count out of every node used as
reference for calculating the position of the node i plus one (equation 4.13).
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Vreference(i) is the set of reference nodes used. The hop count of an original
anchor node is zero.

#hop(i) = max({#hop(x)|x ∈ Vreference(i)}) + 1 (4.13)

Over each hop, position and time synchronization errors are accumulated. It
can thereby be assumed, that a node with a lower hop count has a better
position estimate than a node with a higher hop count.

The implementation is not resistant to cycles. However, if there is such a case,
that for example node A uses node B as reference to calculate its position and
vice versa, the hop count of the involved nodes will increase with each update,
penalizing the nodes.

Variance Solver

The position of a node is updated regularly. This metric calculates the vari-
ance of Qn(i), the set of the last n calculated positions of node i, coordinate
wise (equation 4.14). The resulting score then equals the length of the vector
containing the different variances.

ssolver(i) = |
(
σ2(Qn

x(i))

σ2(Qn
y (i))

)
| (4.14)

If the calculated positions barely differ over time, the solver has converged to
a certain position. Even though the position it has converged to might be a
local optimum and not close to the real position, it is assumed that the solver
mostly converges to the actual position of the node. However, if the calculated
positions drastically change over time, resulting in a high value of ssolver, the
position estimate of the node is likely to be off. This can be caused by the
solver not being converged yet, but also by high and inconsistent errors of
the time differences used to calculate the position. When considering moving
nodes, assuming a perfect tracking, slowly moving nodes would be preferred
over fast moving nodes with this metric.

Variance Angle

The following metric rates the distribution of the selected reference nodes
around the node. The score is lower if the anchor nodes used to calculate the
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position of node i are distributed more evenly around node i. This is achieved
by calculating the clockwise angles Mangles(i) of the reference nodes to each
other around the calculated position of the node. The score of node i sangle(i)
then equals the variance of these angles (equation 4.15). Figure 4.4 shows an
example with three anchor nodes A, B and C used by the tag T. α, β and γ are
the angles between the reference nodes and form the set Mangles(T ). Figure
4.4-L illustrates a scenario where the anchor nodes are well distributed around
the tag T resulting in equally sized angles and therefore in a low score sangle.
The scenario shown in figure 4.4-H however, represents a case where the angles
between the nodes vary a lot resulting in a high score sangle.

L: low sangle

A T

B

C

α

β

γ

H: high sangle
A

T

B

C

α β

γ

Figure 4.4: Illustration of the angles of three anchor nodes A, B and C to each
other around the tag T in two different scenarios

sangle(i) = σ2(Mangles(i)) (4.15)

The impact of an error in the measured time distances of arrival between anchor
nodes and tag on the calculated position is lower when the reference nodes
are distributed equally around the tag compared to them being clustered in a
small "viewing angle" of the tag (e.g. figure 4.4-H). Since the score is calculated
based on the current position estimate of the tag rather than its actual position,
the score might only produce meaningful results if the calculated position of
the tag is close to its actual position. However, if the calculated position of
the tag is way off, it can be argued that this likely results in a higher score
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sangle. It is assumed that overall, nodes rated with a lower score sangle will
have a better position estimate than nodes with a higher score.

4.4.2 Anchor Selection

To calculate a position, a tag needs to choose which signals of the sending
nodes in range it uses to calculate its position. It can either use only the
signals emitted by the original anchors, or it can use all the available signals.
Only choosing the setup anchor nodes ensures that only nodes with a perfect
position estimate and low TDOA-errors are selected. However, doing so results
in nodes not being able to localize themselves if they cannot receive at least
tree anchor node signals because they are out of range.

Always using all sending nodes in range to calculate a position on the other
hand may result in a bad position estimate by using tag-anchor nodes as ref-
erence with a high position or high synchronization error. The performance
of this approach highly depends on the nodes in range which are emitting a
localization signal.

Another way of deciding which anchors to use is ranking them by a metric
and selecting the k best performing available nodes in that metric as reference
nodes. The performance of this approach highly depends on the metric used. If
the metric is able to correctly estimate the position and synchronization error
of a node, only the nodes with the lowest errors are selected. The three metrics
proposed above are used, resulting in tree different versions of the algorithm:

• take k lowest hop count,

• take k lowest variance solver,

• take k lowest variance angle

If nodes have the same score and cannot all be selected without exceeding the
limit of k nodes, nodes of the same score are selected randomly. While this is
unlikely to happen for the variance solver and the variance angle metric, the
hop count has discrete values (number of hops #hop) which makes it probable
that two or more nodes in range have the same value.

None of the proposed selection methods requires additional messages sent.
This ensures that tags can still determine their position passively, only by
listening. Necessary information, as the score of a node, can be transmitted
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within the already sent localization messages of the emitting anchor (or tag-
anchor) nodes.

4.4.3 Anchor Decision

To enable multi hop, tags need to share their position and become a tag-anchor.
An intuitive way to decide if a node shares its position or not is to simply let all
nodes share their position as soon as they have calculated one for themselves.
While this enables the selection algorithms presented above to choose from all
nodes, the amount of sent messages leads to a higher localization error. This
is due to the increased schedule length resulting in fewer synchronizations and
a higher impact of the remaining clock drift (section 4.2). However, restricting
the emission of localization messages to anchors only would result in a single
hop scenario, not letting the algorithms described above choose any but the
original anchor nodes. Ideally, only nodes with a high position accuracy and
a low synchronization error share their position. But since the actual errors
cannot be determined by the nodes, the variance solver and the variance
angle metric presented above are used to estimate the performance of the
nodes. Two thresholds (tlow, thigh) are then used to determine when a node i
starts sharing (metric(i) < tlow) and when a node stops sharing (metric(i) >
thigh) its position. The hop count metric is not used because it is too discrete.
Furthermore, it would result in many nodes sending in the area already covered
by the original anchor nodes.
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In the following chapter, different experiments are conducted and evaluated,
to answer the previously stated research questions. First, the clock drift of
DWM1000 UWB modules is determined. After some basic parameter settings
are then examined in various single hop simulations, different multi hop ap-
proaches are analyzed.

5.1 Determining Clock Drift

The simulation of the passive TDOA localization is based on custom modules
(as in [40]) containing a DWM1000 module for the ultra wide band communi-
cation, and an STM32 microcontroller to handle I/O and enable local position
calculation. One big factor of the position accuracy in localization systems us-
ing DWM1000 modules is the clock drift of the modules [39, 22]. To generate
meaningful results in simulation, the following experiment has been conducted
to determine the clock drift of the actual modules.

Therefore, two modules have been set up in a distance of around one meter
facing each other with the antenna side of the module. The modules were
placed inside a box to ensure thermal stability, since crystal oscillators as
installed in the modules are sensitive to change in temperature.

To determine the clock drift between two modules, one module periodically
sends a message received by the second module. Figure 5.1 illustrates the mes-
sages sent between the two modules A and B in a sequence diagram. There,
module A periodically sends messages at the timestamps tAn for the nth mes-
sage in its time domain tA. Module B receives the nth messages at tBn in its
own time domain. Assuming that the speed in which the clocks of the two
modules A and B run is the same and that the traveling time of the signal is
always the same, the following equation can be concluded (equation 5.1).

tA,n+1 − tA,n = tBn+1 − tBn (5.1)
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Module A Module B

[...]

[...]

tA0
tB0

tA1
tB1

tA2
tB2

tAn
tBn

Figure 5.1: Sequence diagram of messages sent between two modules illustrat-
ing the setup used to determine the clock drift

Equation 5.1 states that the time between two messages sent equals the time
between the same two messages received in the different time domains. Rear-
ranging this leads to equation 5.2.

(tA,n+1 − tA,n)− (tBn+1 − tBn) = 0 (5.2)

However, if the clocks of two modules do not run in the same speed, the
difference of the time between the two messages sent on the one module and
the time between the two messages received on the other (in the local times
of the modules) equals the clock drift between the two modules as in equation
5.3.

(tA,n+1 − tA,n)− (tBn+1 − tBn) = d (5.3)

During the experiment, three pairs of modules have been tested. For each pair,
one module was set up to send a message five times a second, containing the
local time of sending. The other module receives this messages and forwards
the sending and receiving timestamps tAn and tBn to a computer via serial
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interface (UART) where they are stored. The pairs of modules each ran about
30 minutes before the logging was started to ensure warmed up modules.

Figure 5.2 shows the calculated clock drifts of the three pairs of modules based
on the recorded times over one hour. The resulting clock drifts are rather
constant over the logging period, with clock drifts between two and 5.5 ppm.
Decawave claims a factory calibration of the DWM1000 modules to less than
2ppm clock drift [31]. The clock drift measured during this experiment is be-
tween two modules, which puts the results roughly in line with the information
provided in the data sheet of the DWM1000 [31].

Figure 5.2: Illustration of determined absolute clock drifts in ppm of three
pairs of modules tested (displayed as green, blue and orange line)
after warm up

Using these clock drifts as input for the error model in section 4.2 would result
in very high errors, rendering position calculation with the passive TDOA
approach impossible. A clock drift of five ppm over one millisecond would
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result in an error of five nanoseconds. The UWB signal traveling with the
speed of light would travel about 1.5 m in that time. This can be solved by
applying a drift compensation using the already sent messages of the anchor
nodes.

Figure 5.3 enables a closer look at the drifts of the modules pairs (left) and
their distribution (right). All the distributions are in a range of about 0.15
ppm, with a variance between 0.021 and 0.029 ppm. The second and third
pairs show multiple repeating spikes. This might be caused due to multi path
effects, noise in the medium (e.g. Wi-Fi) or the temperature compensation of
the module.

To approximate a clock drift compensation, it is assumed that such a compen-
sation would be able to determine the mean clock drift over the logged period
of one hour. With that, the deviation of that mean value in the distribution
can be used as drift d in the proposed error model.

Figure 5.3: Clock drifts of the three tested module pairs and their distribution
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5.2 Error Model Evaluation

With the following experiment, two different ways of generating clock drift
values for the error model in a single hop scenario are compared. It is checked
whether the used distribution of clock drifts can be approximated with a nor-
mal distribution.

The first approach for the generation of clock drift is based on the recorded
values as introduced in section 5.1. In the simulation, nodes are randomly
assigned to one of the three distributions. They then use the actual recorded
values minus the mean of that distribution as drift d as input for the error
model. This approach is further referenced as module clock drift genera-
tion (module cdg).

The second approach approximates the distributions as normal distributions.
The mean of these distributions is set to zero and the variance is randomly
sampled between the min (0.0215 ppm) and max (0.0293 ppm) variance of
the recorded distributions for each simulated node. Using a normal distribu-
tion enables a more general and more easily reproducible model. It is further
referenced as normal clock drift generation (normal cdg) In both ap-
proaches, a time slot length of five milliseconds is used for the error generation
(tsl = 5ms).

To compare these two approaches, the following scenario has been simulated:
Eight anchor nodes and 100 tags have been sampled on a two dimensional
field with a size of 10x10m. The amount of anchor nodes chosen represents a
number of nodes which is realistic to manually set up, as in Steup et al. [40]
The transmission range has been set to 10 meters.

Tags were set up to only listen to anchor nodes and never to emit a signal by
themselves, thereby describing a single hop scenario. The iterative solver was
configured to use 0.25 as step size.

Both approaches to generate the drift d for the error model (section 4.2) have
been run 31 times over 500 iterations each. In one iteration, each node performs
one localization update by computing one solver step. The randomly generated
node positions and initial solver guesses were kept the same for all the runs
to eliminate other influences on the result but the different drift generation
approaches.

Both approaches converge at about 200 iterations, with an average localization
error of around 15 cm. After that, a slight increase in localization performance
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until iteration 500 has been observed. Figure 5.4 visualizes the distribution
of the average localization error at iteration 250 and 500 over the 31 runs per
clock drift generation approach. The average position error of the nodes is dis-
tributed from about 11 cm to 18 cm for the 31 runs. Using the Mann–Whitney
U test to compare the two methods at iteration 250 and 500, there is no sig-
nificant difference between the two. (iteration 250: p=0.7675, iteration 500
p=0.9327)

Further on, the normal distribution approach is used as no significant difference
to the module based drift generation could be found.

Figure 5.4: Average localization errors of 31 runs at iteration 250 and 500 using
two different clock drift generation approaches

5.3 Step Size Determination

One critical parameter in this work is the step size of the gradient solver.
The step size determines, how much the position estimate is "moved" along
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the calculated gradient. In the following experiment, the influence of this
parameter on the yielded solutions is analyzed.

Again, a simulation environment with eight randomly placed anchor nodes
and 100 tags in a 10 by 10 meter environment with a transmission range of
10 meters has been used. Seven different step sizes have been tested in 31
runs, each over 500 iterations, with the nodes configured to perform single
hop localization. All runs were performed over the same randomly generated
node configuration with the same randomly generated solver starting positions
to ensure a fair comparison. The normal distribution based drift generation
approach has been used for the error model with five ms as schedule time slot
size (section 4.2).

Figure 5.5: Average localization error over 500 iterations using different step
sizes
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Figure 5.5 shows the different convergence of the step sizes. The step sizes
have been chosen to have a higher resolution at the lower and upper end of the
scale. It can be seen that the larger the step size, the faster the convergence.
Using a step size of 0.01, the runs do not converge over the 500 iterations
the experiments were run, while all other runs converge within the simulated
iterations. Between the step size of 0.75, 0.9 and 1.0 no convergence benefit is
directly visible anymore. Furthermore, the figure 5.5 shows that the step size
of 0.25 has a lower overall average position error once converged compared to
higher step sizes.

Figure 5.6 visualizes the average position error of the 31 runs per step size at
iteration 250. Since most of the runs have converged at this iteration and with
respect to computational cost, results at this iteration are looked at in more
detail. The runs performed with a steps size of 0.01 and 0.1 show a very high
average error because they have not converged at this point. Furthermore, it
is visible, that out of the converged runs, the higher step sizes produced higher
average position errors. The runs with step size 0.25 significantly outperform
all other runs. Using the Mann–Whitney U test, significance levels of lower
than 10−9 were computed.

During the evaluation of the experiment, it has been noticed that the variance
of the position errors of the 100 tags in the different runs increased with higher
step sizes. At iteration 250, the mean variance of the position errors in the runs
with a step size of 0.25 was approximately 0.5 cm, while the mean variance
exceeds 1.5 cm for the tested step sizes greater than 0.5. This might be caused
due to higher influences of short term errors in the time differences of arrival,
resulting in a bigger "response" in the position updates when using higher step
sizes.

Overall it can be seen that smaller step sizes result in a slower convergence
but tend to outperform higher step sizes once converged. Further on, the step
size of 0.25 is used in this work since it outperforms other solutions while
converging in a reasonable amount of iterations.
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Figure 5.6: Average localization error of 31 runs for different step sizes tested
at iteration 250

5.4 Metric Evaluation Variance Solver

The variance solver metric proposed in section 4.4.1 is based on the assumption,
that a high variance over the last n calculated positions of a node i indicates a
high position error and that a low variance, a low position error. To verify this
assumption, a simulation with a randomly generated configuration of 100 tags
and eight anchor nodes, within an area of 10 by 10 meters has been performed
in a single hop scenario where tags only listen and determine their position.
The transmission range has been set to 10 meters. For each node at each
position update (iteration), the variance solver metric has been calculated over
the experiment run of 500 iterations. Furthermore, three different queue sizes
have been used to calculate the metric (10, 20 and 50). For each queue size 31
runs using the same initially randomly generated configuration of nodes, were
performed. The starting positions of the solvers were randomly sampled for
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each run. Figure 5.7 shows the correlation of the calculated metric with three
different queue sizes to the position errors of the tags at each iteration using
the Pearson correlation coefficient over all 31 runs per queue size.

It is clearly visible, that the correlation at the first 10 iterations is quite low.
This is caused by the queue (Qn(i)) over which the variance is calculated is
being filled up during the first iterations. In these first iterations, there are
too few position estimates calculated to allow the metric to work properly.
However, once the first 20 iterations have passed, the correlation of all three
queue sizes is increasing well over 0.7. The resulting correlation coefficients of
over 0.8 at the end of the run and around 0.75 on average indicate an overall
strong correlation between the metric and the actual position error [38].

Figure 5.7: Correlation of the variance solver metric with the localization error
in a single hop scenario over 500 iterations with three different
queue sizes

Furthermore, it is visible that the correlation increases with the calculated
positions converging. The correlation using the variance solver metric with
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a queue size of 50 is more consistent than the lower queue sizes. However,
the convergence of the correlation is slower. This is especially visible between
iteration 100 and 200 and is caused by the big queue size acting as a low pass
filter. Because of that, it cannot account for the rather dynamic change of the
solver positions, especially during the first 200 iterations where most of the
calculated positions have not fully converged.

Using a queue size of 20 results in the highest overall correlation for this exper-
iment, while maintaining a good correlation in lower iterations. 20 is therefore
used as queue size for this metric during the following experiments in this
work.

5.5 Multi Hop Experiments

5.5.1 Multi Hop Approach Comparison

In the following experiment, a multi hop scenario is simulated comparing mul-
tiple combinations of anchor decision and anchor selection algorithms. Eight
anchor nodes have been randomly placed on an area of 10 by 10 meters
(sA = 10m), while 100 nodes have been randomly sampled onto an area of
20 by 20 meters (sN = 20m). Figure 5.8 visualizes the two areas. This specific
configuration has been chosen because it represents a more difficult scenario
than placing the anchor nodes in the middle of the map when maintaining the
same amount of nodes and sizes of the area. Furthermore, this scenario con-
tains a wide range of different situations. The nodes within the area AA can
usually be localized within one hop because they have enough original anchor
nodes in range to do so, at the edge of the area only a few original anchors
reach the nodes while nodes in the top right corner will not be able to receive
any signals of the eight anchors.

During the experiment, different anchor selection and anchor decision algo-
rithm combinations are tested in the described scenario. As anchor decision
algorithms, the two proposed metric based approaches are tested in this exper-
iment (variance angle and variance solver). For the variance angle decision
algorithm a lower threshold tlow of 0.6793 and a higher threshold thigh of 1.1331

was set. The variance solver decision algorithm has been used with a single
threshold of tlow = thigh = 0.0215. Besides these two approaches, setting up
all nodes to share their calculated position as well as only letting the original
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Figure 5.8: Visualization of the area setup of the nodes and original anchor
nodes

anchor nodes share their position is investigated. The hop count metric is not
used as anchor decision because of its discrete value and low resolution.

To decide which of the sending nodes should be used, the proposed algorithms
in section 4.4.2 have been examined. The three metric based algorithms (hop
count, variance angle and variance solver) are set up to use the eight best
available options regarding their underlying metric (k = 8). Furthermore, the
approach of always choosing all available nodes and only choosing the original
anchor nodes were tested.

In addition to these algorithms, a combination of the metric based approaches
(comb) has been run in the experiment. For the anchor decision, this combi-
nation is an equally weighted sum of the variance angle metric and the variance
solver metric. There, the upper thresholds of the metrics are used to normalize
them, as in equation 5.4. A single threshold of tlow = thigh = 1 is then used
for the decision based on this metric.

sdecisioncomb (i) = (
sangle(i)

1.1331
+
ssolver(i)

0.0215
)/2 (5.4)

A similar approach has been used for the combination metric used as anchor
selection algorithm. This additionally includes the hop count metric. To nor-
malize this, the minimum hop count necessary to go along the diagonal of the
map is used. On the 20 by 20 meter sized map with a transmission range
of 10 meters, this results in around three hops. The combined score for the
anchor selection is then calculated as in equation 5.5. Again, the eight best
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performing nodes in range using that metric are selected as reference nodes
when using this combined approach as anchor selection algorithm (k = 8).

sselectioncomb (i) =
sangle(i)

1.1331
+
ssolver(i)

0.0215
+

#hop(i)

3
(5.5)

All configurations have been run 31 times for 2000 iterations with an allocation
phase each 25 solver position updates (updates per allocation = 25). In the
end, 80 allocation phases have been performed over the 2000 iterations.

Figure 5.10 and 5.9 show the results of different combination of anchor decision
and anchor selection algorithms in the described multi hop scenario at iteration
2000. While the heat map in figure 5.9 shows the number of not localized
nodes, figure 5.10 visualizes the median localization error in meters over all
nodes including the ones who have not obtained a position estimate. This
metric has been chosen to better compare the performance regarding all nodes
enabling the inclusion of not localized nodes. In both heat maps, each number
represents the median out of the performed 31 runs per configuration.

Further on, the notation [x,y] is used to simplify references to specific entries in
the heat map, where x notates an anchor decision algorithm and y an anchor
selection algorithm e.g.[all, v-solver] for the lower left entry of the table.

In figure 5.9 it can immediately be seen, that all approaches using the anchor
decision or anchor selection algorithm where only the original anchors may
send or are chosen as reference produce the highest number of not localized
nodes of 35. Only enabling the original anchor nodes to send or only selecting
the original anchor nodes when calculating a position renders the scenario to
single hop. Because the setup anchor nodes are only placed in a part of the
map as in figure 5.8 and with the limit of the transmission range of 10 m,
many nodes are not able to receive any signals and hence are unable to locate
themselves.

Figure 5.10 shows that the median error when using only the original anchors
as sending nodes is very consistent. There, the selection algorithms do not
have much influence, since they will always use all the available sending nodes.
This is because they either take all or the best eight nodes and there are
only eight original anchors available. However, setting all nodes to share their
position as soon as they have calculated one, but then only letting nodes
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use the original anchors as reference ([all, anchor]) results in a high median
error of 3.6 meters. Due to the high amount of sending nodes, the length of
the synchronization schedules drastically increases, resulting in a much higher
influence of the uncompensated clock drifts di (section 4.2). In addition to
that, more messages sent results in more messages affected by the multi path
model, influencing the quality of the localization.

When all nodes share their calculated positions, all anchor selection algorithms
except the one only choosing original anchors ([all,anchor]) manage to locate
all nodes (figure 5.9). However, the median localization error does differ sig-
nificantly. When using all available nodes for calculating the positions when
all nodes also share their position results in the highest median error of around
20 meters. There, loops in the Position Dependency Graph and the inclusion
of bad position estimates are probably the main reasons for the bad perfor-
mance. Furthermore, this approach requires substantially more computation
time since the amount of reference nodes used is not limited. In contrast,
selecting from the available nodes based on their hop count ([all, hop count])
manages a median position error of 2.3 meters while also locating all nodes.

Selecting the variance angle algorithm as anchor decision results in 26 and less
localized nodes while maintaining similar median errors over all nodes as the
original anchor based decision approach. It can be seen, that the approach
using all available anchors in combination with the variance angle decision
([v-angle, all]) does not perform very well. While this has the highest number
of localized nodes when using the variance angle metric for nodes to decide
whether they share their position, it comes with a very high median position
error of 19 meters which is a strongly dominated solution (e.g. by [all, hop
count]).

The variance solver metric based decision algorithm reduces the amount of not
localized nodes significantly compared to the v-angle based approach to around
18, at the cost of slightly higher median localization errors. The combination
[v-solver, v-angle] is able to increase the amount of localized nodes even further
but with a median error of 1.9 meters. This however is close to the 2.3 meters
error of the [all, hop count] approach which manages to localize all nodes and
therefore not really suitable. When looking at results with a median error of
under one meter, using the variance solver decision algorithm in combination
with the hop count as anchor selection [v-solver, hop count] has the highest
number of localized nodes.
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The combined approach overall performs very similar to the variance solver
algorithm. This might indicate, that the proposed scaling of the underlying
metrics fails to consider each metric evenly. The metric does not yield any
benefit and combination in which the metric outperforms the variance solver
approach in some way ([all, comb], [comb, v-angle]) are dominated by [all, hop
count].

Summarizing the analysis the following points can be seen:

• The presented problem has two main objectives, the number of localized
nodes and the median position error of all nodes

• All of the proposed multi hop combinations are able to locate more nodes
than the single hop algorithms which only use the original anchors. Some
of them do so while maintaining a similar median position error.

• When all nodes share their position and use all the available nodes to
calculate their own position ([all,all]), the median error is highest.

• Of the approaches which manage to localize all nodes, the combination
[all, hop count] has the lowest median localization error.

• Only considering solutions with a median error of below one meter, the
combination [v-solver, hop count] is able to locate the most nodes.

• The proposed combined score does not yield a noticeable benefit.
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Figure 5.9: Number of not localized nodes in a comparison table of different
multi hop allocation and selection algorithm combinations

Figure 5.10: Median error over all nodes in meters in a comparison table of dif-
ferent multi hop allocation and selection algorithm combinations
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5.5.2 Analysis of Anchor Decision Thresholds

The proposed variance angle and variance solver metrics are used with two
thresholds in the anchor decision algorithm, where nodes decide whether they
share their position or not. During this experiment, different configurations
for the thresholds tlow and thigh are tested.

To do so, a multi hop scenario with eight defined anchor nodes randomly
distributed over an area of 10 by 10 meters (sA = 10) and 100 nodes randomly
distributed over 20 by 20 meters (sN = 20). A layout of the different areas can
be seen in section 5.5.1 figure 5.8. Two different algorithm sets are tested, one
using the variance solver, the other the variance angle metric as anchor decision
algorithm. For both sets, the hop count based algorithm is used as anchor
selection function. This approach has been chosen to ensure a fair comparison
between the two decision algorithms in a multi hop scenario with reasonable
outcomes. As experiment 5.5.1 has shown, using ’all’ or ’anchor’ would not
be feasible. Using variance solver, variance angle or the combination approach
as anchor selection bias free results cannot be ensured. The hop count anchor
selection algorithm is used with a maximum number of anchors to select of
eight (k = 8).

set anchor selection anchor decision
1 hop count variance solver
2 hop count variance angle

Table 5.1: Algorithm Sets

Combinations of 10 values logarithmically sampled for tlow and thigh were sim-
ulated, resulting in 100 configuration per algorithm set. For the variance angle
based approach, the range of the tested parameters is set from 0.0877 to 8.7729,
which is determined to be the maximum feasible value this metric can have.
One worst case scenario for the variance angle metric would be a set of three
referenced anchor nodes all at the same position resulting in three angles: zero,
zero and 2*pi over which the variance is 8.7729. For the variance solver metric,
the tested parameters range from 0.01 to 10. The sampling and scale is based
on preliminary experiments with respect to the behavior of the metrics and
computational cost of the experiments.

The scenario has been run 31 times for each configuration over 1250 itera-
tions, with randomly sampled solver starting positions for each run. As in the
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previous experiment, one allocation phase every 25 localization updates has
been performed. The decreased run time of the experiments of 1250 instead
of 2000 iterations compared to the previous experiment is due to computa-
tional constraints. The convergence behavior and the influence of the number
of iterations if further analyzed in section 5.5.4.

Figure 5.11 and figure 5.12 show the resulting median localization errors and
number of not localized nodes of the two metrics variance angle and variance
solver at iteration 1250. In both figures, the values show the median over 31
runs.

It can be seen immediately that both metrics cover a wide range of solutions,
strongly dependent on the parameters tlow and thigh. Higher threshold values
result in more nodes localized while increasing the median localization error
while lower threshold values achieve the opposite. In both approaches, in-
creasing the threshold values beyond a certain point does not yield any benefit
anymore, only increasing the median error when all nodes are already local-
ized. For the variance solver metric this point can be found at 0.2154 for tlow
and thigh and for the variance angle metric at 1.1331 for the two thresholds.
Furthermore, it is visible, that the tlow has an overall bigger impact on the
results than thigh. This is because nodes need to achieve tlow at least once to
share their position. If a node does not manage to do so, thigh has no influence.
When the lower threshold is set high enough, the influence of thigh increases
since more nodes manage to surpass tlow at least for a short time.

With the variance solver metric as anchor decision, a threshold tlow of 0.0215
achieves a median position error of around one meter while localizing all but
around 20 nodes (figure 5.11). The upper threshold thigh has no real influence
on that result. Increasing the lower threshold to 0.0464 slightly increases the
median localization error while significantly improving the amount of localized
nodes. There, increasing thigh further increases the amount of localized nodes.
However, this also results in a higher inter quantile range (IQR) of the number
of not localized nodes over the 31 runs. This shows that a higher hysteria
given through higher difference between thigh and tlow does localize more nodes
in median but at the cost of more inconsistency.

The variance angle metric shows a similar behavior, although it is shifted
towards higher thresholds (figure 5.12). Lower thresholds of 0.0877 and 0.1463
can barely be met by any node, effectively rendering the scenario single hop.
Increasing tlow to 0.4072, the algorithm is able to locate 10 more nodes while
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maintaining the same median localization performance of below 0.8 meters
(e.g. tlow = 0.4072, thigh = 0.6793). Increasing thigh beyond 3.1528 results in
inconsistent behavior and a high IQR of over 30 for not localized nodes. A
steep decline in not localized nodes can be seen when setting tlow to 1.1331 or
higher. Also increasing thigh to 1.1331 and higher with tlow = 0.6793 shows
this behavior. This indicates that the chosen range of thresholds might not be
sufficient in this range. Still, similar performance to the variance solver metric
can be observed when comparing solutions localizing all nodes.

One of the research questions of this thesis is to analyze the capabilities of
passive TDOA in multi hop with median localization errors below one meter.
To do so, configurations of tlow and thigh with the highest amount of localized
nodes below the one meter in median localization error were chosen based on
this experiment and are further on used. For the variance solver based anchor
selection algorithm, tlow and thigh are therefore set to 0.0215. The thresholds
for the variance angle based approach were set to 0.6793 for tlow and 1.1331
for thigh. While this results in a surprisingly high number of localized nodes,
still being well under the one-meter mark for the median localization error,
this set of parameters comes with a rather high inter quantile range (IQR) for
the number of not localized nodes, nearly three times the IQR of the variance
solver metric with the chosen parameters.

With these thresholds, the proposed metrics have a powerful way to influence
the solution generated in this multi objective problem. When considering so-
lutions with slightly higher median localization errors than one meter, both
approaches manage to drastically increase the amount of localized nodes, even
managing to localize all nodes in the given scenario. Furthermore, it has been
noticed that the variance solver metric as anchor decision algorithm achieved
more consistent results overall with smaller inter quantile ranges over the per-
formed 31 runs per configuration compared to the variance angle approach.
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Figure 5.11: Median localization error in meters and number of not localized
nodes using different thresholds for the variance solver metric
as anchor decision algorithm (median over 31 runs)
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Figure 5.12: Median localization error in meters and number of not localized
nodes using different thresholds for the variance angle metric as
anchor decision algorithm (median over 31 runs)
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5.5.3 Influence of the Maximum Number of Allocated
Anchor Nodes

The proposed metrics are used as anchor selection algorithm by ranking avail-
able nodes around each node in that metric and then using the k best per-
forming nodes as reference to enable the calculation of an position estimate.

In this experiment, the influence of this maximum anchor size (k) is evaluated.
To do so, a multi hop scenario with eight original anchor nodes and 100 nodes
is simulated. Again, as in previous experiments, the eight anchor nodes were
randomly sampled onto an area of 10 by 10 meters, while the other nodes are
randomly distributed over an area of 20 by 20 meters (as in figure 5.8). As
anchor selection algorithms, the variance angle, variance solver and the hop
count metric are used with different values for k. These configurations are
tested with the variance solver metric as selection algorithm, as well as the
variance angle metric. There, the previously determined values for thigh and
tlow are used.

For the maximum number of anchors (k), values in the range from three to
20 are tested. At least three anchors are needed to compute a position in two
dimensions. For higher values of k, fewer values are tested, to enable an explo-
ration of the behavior without too much computational effort. Furthermore, it
is expected, that for those values of k the behavior is going to converge since
only a limited number of nodes is sending. When k is set too high, the anchor
selection algorithms are forced to always take all available nodes, rendering its
behavior equal to the "take all" approach (section 5.5.1).

All the resulting configurations were run 31 times for 2000 iterations with an
allocation phase every 25 iterations. Each run was performed on the same ini-
tially randomly generated map with different randomly sampled solver starting
positions.

Figure 5.13 shows the median position errors and not localized nodes for the
different values of k over all combinations of the tested anchor selection and
anchor decision functions at iteration 2000. It is immediately visible, that the
maximum number of anchors has a huge impact on the overall performance.
Solutions which manage to localize more nodes come with a higher median
localization error, while solutions with lower median localization error tend to
localize fewer nodes.
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Figure 5.13: Distribution of median localization error in meters and number
of not localized nodes at iteration 2000 for different maximum
anchor values (k) for the selection functions

Values for k of 16 and greater change the overall behavior of the algorithms
to mostly localize all nodes with a median localization error of around six to
seven meters. This performance is similar to using all available anchor nodes
as in the "all" approach in section 5.5.1. This backs up the previously stated
assumption of high maximal anchor values (k) making the anchor selection
algorithms always choosing all available anchors.

Using only three or four anchor nodes as reference results in similarly high
median localization errors of five to six meters. A drastic decline in the lo-
calization error can be seen when increasing k to five or more. With k = 9,
the median localization error visibly starts rising again, until it reaches it’s
maximum with k >= 16. Overall, similar behavior could be observed when
looking at the specific configurations of algorithms rather than the combined
plot of figure 5.13.
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Using more anchors generally results in higher errors due to longer schedules
and more influence of multi path distortions.

It is also likely that the increasing of the error beginning with k = 9 is related
to the eight original anchors used. When choosing up to nine nodes when-
ever possible results in barely any nodes only relying on the original anchors
anymore, thereby including worse performing nodes in their calculation. This
results in higher errors of the firsts hops, which eventually carry on through the
whole network. Furthermore, cycles are more likely to occur in the Position
Dependency Graph. These effects are further increased with higher values for
k.

Another reason for the increasing median error and the lower amount of not
localized nodes for higher values of k lies in the anchor decision metrics.
Both metrics behave differently with higher amount of nodes affecting the
amount of sending nodes. In case of the angle metric, more nodes automati-
cally result in a lower score, even if their distribution is considered equal (e.g.
σ2(0, 0, 0, 0, 0, 2pi) = 5.4831 while σ2(0, 0, 2pi) = 8.7729). For the variance
solver metric, with more anchor nodes selected, the influence of one anchor
node’s calculated position "running away" on the variance of the own calcu-
lated position is lower. This also leads to smaller metric values with more
reference nodes. In both cases, more nodes are going to send when applying
the same thresholds tlow and thigh further increasing the median position er-
ror due to the error model and in the meantime covering a bigger range and
thereby localizing more nodes.

Interestingly, with k = 3, the amount of localized nodes is increased compared
to higher maximum anchor values. This might be because with only three
selected anchor nodes, the system is way more dynamic, resulting in nodes
switching between sending and not sending more often. With this, more nodes
would be localized, even if they get position updates only for a short time. It
is also possible that the proposed anchor decision algorithms do not work as
intended with this few nodes and nodes share their position even though they
have a bad position estimate (similar to higher values for k).

For the tested parameters, lowest median localization errors were achieved with
k set to seven and eight. Between the median error values of these two, no
significant difference could be found when performing a Mann–Whitney U test
(p=0.715). However, using eight anchors significantly reduced the amount of
not localized nodes compared to k = 7 (Mann–Whitney U test, p=0.0024).
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Given these results and the research question asking for the performance with
a median localization error below one meter, setting the maximum number of
anchors to eight is seen as optimal and is further on used.

5.5.4 Convergence Analysis

This experiment aims to explore the behavior of selected algorithms over the
performed iterations. It is used to determine the length experiments need to
be run to ensure meaningful results. Furthermore, the influence of how often
an allocation phase is performed is tested.

As in previous experiments, eight setup anchor nodes are distributed onto an
area the size of 10 times 10 meters, with 100 nodes distributed over 20 by 20
meters as in figure 5.8.

For this experiment, the variance solver and variance angle metric are used
as anchor decision algorithms with the earlier determined thresholds (tlow =

thigh = 0.0215 and tlow = 0.6793, thigh = 1.1331). As selection algorithm, the
hop count approach has been used next to the two variance based metrics with
k set to eight. Additionally, different settings of how often an allocation phase
is performed are tested.

There, 5, 10, 25, 50, and 100 position updates per allocation (UPA) are consid-
ered. When performing only five position updates before the next allocation
phase, the anchor decision and anchor selection algorithms are run more fre-
quently. Setting the position updates per allocation phase to 100 however,
results in a less frequent reorientation of the nodes probably making the sys-
tem less responsive, but more precise.

To monitor long term behavior, the 31 runs per configuration were performed
over 12000 iterations. For each run, the solver starting positions were randomly
sampled.

Figure 5.14 shows the number of not localized nodes and the median local-
ization error over the performed iterations with the variance solver metric as
anchor decision, and the hop count metric as anchor selection algorithm. The
plots show a steep decline of the two performance metrics over the first 200
iterations. After that, the median position error settles at around one meter,
while the number of not localized nodes slowly continues to decrease.
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Overall, the different amounts of position updates per allocation phase (UPA)
do not appear to make a big difference considering the localized nodes. Setting
UPA to five outperforms the other approaches at the first 1000 iterations. How-
ever, at around 2000 iterations, higher values for UPA surpass this approach
in terms of localized nodes.

Figure 5.14: Convergence of the number of not localized nodes and the median
localization error in meter for variance solver - hop count
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Figure 5.15: Convergence of the number of not localized nodes and the median
localization error in meter for variance angle - hop count

Looking at the median localization error it stands out, that performing an
allocation phase each 100 localization updates results in a swinging behavior
roughly inline with the allocation phases. A similar but much less intense
behavior can be observed with UPA set to 50. A possible explanation can be
found when considering cycles in the Position Dependency Graph. Due to the
low update rate of the chosen anchors, cycles would increase the error over the
100 (or 50 respectively) updates. After an allocation phase, new anchor nodes
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would be used, first lowering the error, but then again increasing it given new
cyclic dependencies. When performing the allocation phase more frequent, no
such behavior could be observed. There the values of 5, 10 and 25 for UPA
enable a similar performance regarding the median localization error.

Figure 5.15 visualizes the median localization error and the amount of not
localized nodes for the combination of the variance angle metric as anchor
decision algorithm, again with the hop count metric as anchor selection.

Regarding the number of not localized nodes, this approach shows a similar
convergence behavior. However, it can be seen that performing the allocation
phase less often by setting the position updates per allocation (UPA) to 50
or 100 results in less nodes localized. Again, the results with an UPA of five
converge the quickest, while being matched by UPA 10 and 25 after the first
1000 iterations. Furthermore, the results vary a lot more compared to the
approach using the variance solver metric as anchor decision algorithm.

This also can be observed for the median localization error. There the errors
range from around 0.9 to two meters even when the algorithm is converged. In
the first 2000 iterations, setting UPA to 25 appears to reach the lowest errors
of below one meter, while UPA of five and 10 has the highest errors. When
looking at iterations greater than 3000, running 100 localization updates per
allocation phase seems to settle with the lowest median position errors, while
10 localization updates per allocation phase results in spikes in errors of two
meters and more.

Similar convergence behavior has been observed for the other tested combina-
tions of allocation selection and allocation decision functions and is not further
considered in this section since the presented combinations are seen as more
relevant in terms of the desired performance.

Overall, the approaches converged within the first 2000 iterations. Running
experiments for more iterations could slightly increase the amount of localized
nodes. However, the rather small expected performance gain would require
a significantly higher computational effort, which does not justify the small
increase in localized nodes. Other multi hop experiments are therefore run for
2000 iterations if possible.

Performing an allocation phase less often (UPA of 50 or 100) overall results in
less desirable behavior compared to more frequent runs of the anchor decision
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and anchor selection algorithms. Due to research pragmatic reasons, other
experiments are conducted with 25 localization updates per allocation phase.

5.5.5 Performance on Different Scenarios

In this final experiment, the influence of different amounts of nodes and dif-
ferent sizes of the area the nodes are distributed over is examined.

As in previous experiments, eight anchor nodes are distributed over an area
of 10 times 10 meters. There, the same positions as in experiment 5.5.1 are
used. The different amounts of nodes were then distributed randomly on an
area of 10, 15, 20 and 25 meters square. As in figure 5.8, the area on which the
original anchors are sampled on is placed in one corner of the other. In case
of the smallest tested size, the two areas are the same (AN = AA). Compared
are the combination of the hop count metric with k = 8 as selection algorithm
and the variance solver metric as anchor decision algorithm with tlow = thigh =

0.0215 against the single hop approach where only the eight original anchors
are sending and tags always using all signals available. The combination of
algorithms representing the multi hop approach has been chosen based on
previous experiments. There it can be seen that this approach is able to
locate more nodes than other algorithm pairs while still maintaining an median
position error below one meter in the tested scenarios. Furthermore, this
combination shows a more predictable behavior over the performed iterations,
with less varying results compared to the variance angle metric as anchor
decision algorithm.

Again, 31 runs over 2000 iterations were performed for each tested configura-
tion. For each run, the starting positions of the solver are randomly sampled.

Figure 5.16 visualizes the median localization error and the amount of not
localized nodes for the two tested approaches over different amounts of nodes
and different area sizes the nodes are distributed over at iteration 2000. While
the distribution of nodes over the different scenarios is not equal, the 31 runs
of one configuration always use the same "map" of nodes.
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Figure 5.16: Scaling analysis of selected approaches showing median localiza-
tion error in meter and not localized nodes over different areas
and amount of nodes.

In figure 5.16, the upper two heat maps show the median error of both ap-
proaches. Again, the median localization error is the median over all nodes,
also the ones which are not localized (excluding the original anchor nodes).
Overall, it is noticeable that the errors increase with the size of the area the
nodes are distributed over. For the largest tested area of 25 by 25 meters, the
single hop approach is not able to locate more than half of the nodes. There-
fore, no median localization error could be computed, represented by blank
entries (figure 5.16 top right). The median localization errors of the multi
hop approach (figure 5.16 top left) for the smaller areas does also seem to be
impacted by the amount of nodes. This might be due to a faster convergence
behavior when using smaller amounts of nodes. The two heat maps further-
more show that the median localization error of the smaller areas is drastically
lower when using the single hop approach. This shows, that the proposed multi
hop approach is not able to improve the localization performance in a scenario
fully solvable with a single hop approach (research question Q2). However,
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5.5 Multi Hop Experiments

this changes when looking at lager areas. For the 20 by 20 meters sized area,
the shown multi hop algorithms manage to roughly match the performance of
the single hop approach for scenarios with 40 or more nodes. When looking at
20 nodes, it dramatically outperforms the single hop approach.

The lower two heat maps in figure 5.16 visualize the number of not localized
nodes (n.l. nodes). It can be seen that the single hop approach manages to
localize all nodes for the smallest tested size, while for the area of 15 by 15
meters, it locates every but one node for the scenarios with 80 and 100 nodes.
However, for the larger area of 20 by 20 meters, between 30 and 35 percent
of the nodes are not localized, which further increases to over 50 percent for
the biggest area tested of 25 by 25 meters. Overall, similar percentages of not
localized nodes can be seen across the different amounts of nodes tested.

The multi hop approach is able to significantly reduce the amount of not
localized nodes. When considering scenarios with higher amounts of nodes,
the multi hop approach reduces the amount of not localized nodes by around
45 percent. It does so while maintaining errors of one meter and lower for
the 20 by 20 meter sized map. For the larger map however, the calculated
positions have a very high median error of more than six meters. These high
errors show the limit of the tested approach (research question Q4). However,
choosing different parameters for the proposed algorithms may improve this
scenario a lot, at the cost of higher localization errors on smaller areas.

It is noticeable that the multi hop approach is not able to localize more nodes
compared to the single hop case when looking at the scenario with sN = 25

and 20 nodes. This phenomenon can be explained with the low node density
of this scenario. There it is not possible to find at least three reference nodes
for each node due to the transmission range limitation of 10 meters.

Overall it can be seen, that the tested multi hop approach does not improve
the localization performance in scenarios, where a single hop setup reaches all
nodes. However, the multi hop approach is able to significantly improve the
amount of localized nodes when increasing the area to the point, where a single
hop scenario is not able to reach all nodes. For the tested scenario, it has been
shown, that the tested approach manages to do so while maintaining median
position errors of one meter and below on a map size of four times the area
the original anchors are distributed on.

This experiment has also been run with more challenging positions of the
original anchor nodes. These were mostly distributed in the lower left corner
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of the 10 by 10 meter area, effectively sizing this area down to around six times
six meters. Consequently, the single hop approach already struggled with the
15 by 15 meters map with roughly 15 to 20 percent of the nodes not localized,
while the multi hop approach was able to localize all nodes for the scenario
with higher amounts of placed nodes (>20) with median position errors of
around 0.6 meters. Overall, the results are shifted towards smaller sizes of the
map.
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6 Conclusion

In this thesis, a passive TDOA localization approach using ultra wide band
communication has been extended to be applicable in a multi hop scenario.
Different methods for node allocation and position sharing have been proposed
and evaluated in simulation.

To generate meaningful results, clock drifts of DWM1000 UWB modules have
been recorded and used in two different ways as input for the simulation error
model. It has been shown, that the normal distribution based approach is
applicable.

After further determination of basic parameters, a performance overview of dif-
ferent methods to achieve multi hop localization is given in this work. There,
it has become visible that sharing and using all available positions is not fea-
sible. Other proposed approaches however manage to increase the amount of
localized nodes in certain multi hop scenarios while maintaining similar median
localization errors of below one meter compared to the single hop approach.
Using a combination of the proposed hop count metric as anchor selection and
variance solver metric as anchor decision algorithm showed about 45% less not
localized nodes in a scenario where nodes were located on a four times lager
area than the original anchor nodes (Q3). This has been achieved with a max-
imum of eight anchor nodes selected by the hop count metric and thresholds
of tlow = thigh = 0.0215 for the variance solver metric.

Further analyzing the threshold parameters of the anchor decision algorithms
showed a huge influence on the multi hop performance. Lower parameter
values tend to decrease the median localization error but localize fewer nodes,
while higher values enable the localization of more nodes but also generate
larger errors. Thresholds of tlow = 0.6793 and thigh = 1.8901 for the variance
angle and tlow = 0.1 and thigh = 1.0 for the variance solver metric were able
to localize all nodes in the tested scenario with only slightly higher median
localization errors of around 1.3 meters.
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6 Conclusion

Additionally, the influence of the maximum amount of selected anchor nodes
has been looked at. While using seven and eight anchors produced similarly low
median localization errors, significantly more nodes could be localized when
using eight anchor nodes. Choosing only three to four anchor nodes, as well
as choosing more than nine, results in very high median localization errors for
the tested scenarios.

Further experiments have demonstrated, that using the multi hop approach
based on the variance solver decision and the hop count selection algorithm on
an area, which is already properly covered with original anchors did not yield
any benefit (Q2).

The disadvantage of multi hop localization is, that the position and synchro-
nization errors of nodes are forwarded to other nodes, limiting the range which
it can be used to extend localization. The trade-off when localizing more nodes
or extending the area of the nodes is the higher overall localization error. This
phenomenon also became apparent in the different results of this thesis. Due
to the more complex timing and synchronization dependencies of the passive
TDOA approach and with the conservative error model used, no meaningful
results could be seen when extending the area to 25 by 25 meters with the
tested settings (Q4).

Overall, this thesis shows working approaches to enable passive TDOA multi
hop localization with possible application in systems with many nodes in GPS
denied environments where the area scale is not yet completely known.
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7 Future Work

The multi hop capable passive TDOA localization approach introduced in this
thesis enables further research on this topic.

In this thesis, the proposed algorithms, variance solver and variance angle,
have been shown to display very different behavior depending on the parame-
ters chosen. Adjusting these parameters over time of nodes could drastically
improve the overall performance of the system. Also, enabling tags to send a
position request to trigger other anchor decision algorithms using this infor-
mation is conceivable. Furthermore, different synchronization node allocation
algorithms can be implemented and analyzed.

To make the approaches proposed in this thesis a more viable option for wire-
less sensor networks and certain swarm applications, an energy model and an
adaption of the proposed algorithms with regard to power consumption and
state of battery would be necessary. Additionally, the influence of moving
nodes in the system can be analyzed. There it would be interesting to see how
the system reacts to different amounts of moving nodes with different speeds
and movement models.

In the end, an actual implementation of the proposed multi hop localization
system on ultra wide band nodes with different scheduling approaches of the
sending nodes would greatly contribute to research in this topic.
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