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Abstract—In multi-objective optimization, scalable test prob-
lems are required to test and compare the search abilities of
the algorithms in solving large and small-dimensional problems.
In this paper, we analyze a generalized Distance Minimization
Problem (DMP) that is scalable in the number of decision
variables and objectives and can be used with any distance
function. Since previous research mostly regarded the behaviour
of algorithms for Euclidean distances, in this work, we propose to
use the Manhattan metric to measure the distances of solutions
towards a set of predefined locations in the decision space. The
structure of the Pareto-fronts of this problem widely differ from
those of the euclidean problem. We perform an analytical analysis
exemplary for low-dimensional instances of the problem to
provide an understanding of the general properties and structure,
and the challenges that might arise in many-objective many-
variable instances. The negative effects on the search behaviour
of algorithms are theoretically described, and three different
optimization methods (MOEA/D, NSGA-II, SMPSO) are tested
to give an understanding of different instances of the problem.
The experimental results support our expectations and show that
the proposed Manhattan metric DMP is difficult to solve for
optimization algorithms even in low-dimensional spaces.

Keywords—multi-objective optimization, distance minimization
problems, multi-objective test problems, many-objective test prob-
lems, scalable test problems

I. INTRODUCTION

In the last years, many-objective and large scale problems
have been studied in the area of Evolutionary Multi-objective
Optimization (EMO). Such problems provide additional chal-
lenges for EMO methods. It is known that by increasing the
number of objectives, the performance of the optimization
algorithms using Pareto-dominance deteriorates. This is due to
the large number of non-dominated solutions in the population
[1], [2]. For evaluating the performance of EMO algorithms,
scalable test problems have been introduced. Some of them
like ZDT-problems [3] are scalable in terms of the number of
variables while others like the DTLZ [4] or WFG [5] are scal-
able both in terms of the number of variables and objectives.
One challenge in evaluating the solutions of these problems
for large number of objectives concerns the visualization of
the results.

Recently Distance Minimization Problems (DMP) are be-
ing introduced as scalable test problems which can be easily
visualized in the objective space. This kind of problem contains
several predefined objective points (the same as the number

of objectives) in the decision space. The goal is to find the
solutions in the decision space which have the minimum
Euclidian distances to all of the objective points. In the
previous research this problem was mostly used to visually
demonstrate certain search behaviour of algorithms. A basic
version of the Distance Minimization Problem was introduced
in [6] and [7] and has been reformulated in other research since
then. Schütze et al. used quadratic Euclidian distances to obtain
a convex optimization problem for their analytical analysis and
showed that an increase in the number of objectives does not
significantly increase the hardness of an optimization problem
[8]. In their work they first formulated the problem for arbitrary
numbers of variables and objectives.

Different versions of the DMP, sometimes also with mul-
tiple Pareto-optimal areas, were used in [9], [10], [1] and
[11]. In [10], an instance of a DMP was created from a
real-world map to determine optimal living positions within
a city, using the Euclidean metric as an approximation of the
distances within the map. In [1] Ishibuchi et al. used the DMP
to visually examine the search behaviour of algorithms and
applied existing algorithms such as NSGA II, SPEA2 and
MOEA/D to problem instances of 2 and 4 objectives with
up to 1000 variables. They found that the increase in the
number of decision variables had a negative effect on the
diversity of solutions, and showed that the solutions converged
towards the Pareto-front with a low diversity and spreading out
more along the front once it was reached. This research was
extended in [11] to 6- and 8-objective instances, and showed
that an increase in the number of decision variables has a large
influence on solution quality compared to the increase in the
number of objectives.

However, all previous studies on the Distance Minimization
Problem have only considered Euclidean distance measure-
ment, with the exceptions of [8] and [12]. The idea to use
different metrics in the distance measurement of this family of
problems was initially suggested in [12], but didn’t provide
detailed analysis of the specific properties of the problem
when using Manhattan-distances. When using only Euclidean
distances, the Pareto-fronts consist of one or more convex
polygons within the decision space. Therefore, in previous
work, the problem itself didn’t provide a lot of hardness as
long as the number of variables was low, and was used mostly
for demonstrating search behaviour visually. However in real
world applications, the assumption that distances are euclidean
might not be a realistic approximation for the actual distances.
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For instance in logistic applications such as in robot-driven
warehousing applications, or grid-like scenarios like street
networks, often other measurements are being employed. This
leads to the idea to use different distance measurements for
the Distance Minimization Problem.

In this work, we generalize this geometric optimization
problem that is based on distance minimization. We propose
a new optimization problem by using the Manhattan metric
for the distance measurement and show various properties and
challenges of this problem exemplary on only small instances
of the problem. Our proposed generalized DMP will not only
be usable for any number of objectives and variables, but also
alters its properties and shape of Pareto-fronts depending on
the locations and amount of objective-points.

The goal of this paper is to analytically examine the proper-
ties of the generalized DMP when using the p−1 (Manhattan)
metric as a measurement. Our proposed problems properties
differ greatly from the existing ones and provide complicated
domination structures and hard to find Pareto-fronts already
in low-dimensional instances. We want to introduce these
properties using a simple 2-variable problem with only 2 and
3 objectives, and demonstrate the difficulties and effects that
optimization algorithms have to deal with. We aim to provide
a general impression on the structure of the problem, which
can be shown by the low-dimensional instances, as a base for
further large-scale instances.

The remainder of this paper is structured as follows. First,
we give a detailed description of the existing DMP and
our proposed generalized form, and analytically examine its
properties and challenges. We raise some expectations about
the search behaviour of algorithms, mainly when they rely
on Pareto-dominance. In the experiments section, we provide
some results of 3 popular algorithms (MOEA/D, NSGA-II,
SMPSO) and examine their performance mainly with respect
to our raised expectations. We want to note here that our focus
is not to show advantages of one method over the other, but in
general to point out the difficulties that optimization algorithms
have to deal with and that might cause them problems in higher
dimensional instances of the problem.

II. PROBLEM DESCRIPTION

In this section we describe the Distance Minimization
Problem (DMP) and its properties. Furthermore, we introduce
a special instance of DMP and give a detailed analysis.

The DMP is a scalable multi-objective optimization prob-
lem which contains a set of predefined so-called objective-
points { ~O1, .., ~Om} with coordinates ~Oi = (oi1, .., oin)

T in
the n-dimensional decision space. The number of objective-
points corresponds to the number of objectives (m). The goal
of the DMP is to find a set of solutions vectors (∈ Rn) in the
decision space which have a minimum distance to all of the
objective-points. The general DMP is formulated as follows:

min f(~x) = (f1(~x), f2(~x), ..., fm(~x))T

s.t. fi = dist(~x, ~Oi) ∀i = 1, ..,m

xj ≤ xmax ∀j = 1, .., n

xj ≥ xmin ∀j = 1, .., n

(1)

The central aspect in the DMP is the function for cal-
culating the distance (dist(~x, ~Oi)) between a solution vector
~x and the objective-point ~Oi. Most of the previous research
has used the Euclidean metric for measuring the distances in
the decision space. This metric refers to the naturally shortest
distance. It is induced by the p−2 norm ‖ ~a ‖2=

√∑n
i=1 |ai|2

and will therefore also be addressed as the p−2 metric in this
paper. It gives the distance of two points as:

dist2(~a,~b) := ‖ ~a−~b ‖2 =

√√√√ n∑
i=1

|ai − bi|2 (2)

Although this might be the most natural perception of
distance, it is not the only one that occurs in applications and
theory. In this paper, we use the Manhattan metric (in this
paper also called p− 1 metric), which is induced by the p− 1
norm, for measuring the distances between two points in the
decision space as follows:

dist1(~a,~b) := ‖ ~a−~b ‖1 =
n∑
i=1

|ai − bi| (3)

In the next sections, we illustrate that the p − 1 metric
drastically changes the properties of the DMP and adds to the
difficulty of the problem. In the remainder of this paper, we
refer to the DMP using the Euclidean (p− 2) metric as DMP-
2 and the DMP using the Manhattan (p − 1) metric as the
DMP-1.

A. Choosing Objective-Points

Finding the positions for the objective-points in the de-
cision space is one of the challenging parts in setting up a
DMP problem. Usually they should be evenly distributed in
the decision space. In this paper, we set the positions for the
objective points ~Oi by using polar-coordinates around a middle
point denoted as ~M in the decision space:

Oi = g( ~Ai, r, ~M)

~Ai := {αi,1, .., αi,n−1}
(4)

In order to illustrate the features of the DMP, we focus
on 2-dimensional decision spaces (n = 2) in the following. In
this case, we get ~Ai = {αi,1} = αi. Therefore the function
for obtaining the objective points will reduce to

g( ~Ai, r, ~M) = ~M +

(
r · cosαi
r · sinαi

)
(5)

Since we aim to get evenly distributed objective points ~Oi
for any number m of objectives, we only need to set the initial
value of α1 and set the remaining values as

αi = α1 +
(i− 1) · 2π

m
(mod 2π) ∀i = 2..m (6)

This symmetry will result in symmetrically shaped con-
vex polygons as the Pareto-fronts of the DMP-2, as can be
observed in Figure 2. Figure 1 illustrates the positions of
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O1

O3

O2

Fig. 1. Example of how to obtain 3 objective points around a central point
~M , by defining the three angles α1, α2 and α3

O2 P

O1

O3x1

x2

Fig. 2. Decision space of the euclidean DMP for m = 3 objectives and n = 2
decision variables. The convex triangle (P) is Pareto-optimal. An optimal point
is defined by the intersection of distance-circles around the objective-points

three objective-points in a 2-dimensional decision-space. By
changing the parameter for α1 (or in general all the values
for ~A1 = {α1,1, .., α1,n−1}), we achieve a rotation of the
objective-points, which will, as we see in the remainder of the
paper, result in drastic changes of the shapes of the Pareto-
fronts for the DMP-1.

B. Pareto-fronts of the DMP-2

In order to better understand the overall structure of the
problem, we first give a short description of the Pareto-fronts
of the DMP-2.

As an example, for the three objective-points ~O1, ~O2 and
~O3 in Figure 2, we see easily that all the solutions that lie
within the convex triangle created by the 3 objective-points
in the decision space are Pareto-optimal. We can draw the
different distance-levels (all solutions with the same distance to
one objective-point) as circles around them or in an analytical
manner as {~s ∈ [xmin, xmax]

2 : ‖ ~s − ~Oi ‖2= fi}. Each
intersection between different minimal circles defines a non-
dominated point, and the set of all those solutions form a
convex polygon. If we increase the number of objectives or
decision variables, the Pareto-optimal solutions for the DMP-
2 will always be the set of the convex combinations of all
objective-points: P = {~s | ~s =

∑m
i=1 γi

~Oi ∧
∑m
i=1 γi =

1 ∧ γi > 0 ∀i}.

0

O2

O1

A

P

Fig. 3. The Pareto-optimal area between the objective-points ~O1 and ~O2

consists of the intersections of the distance circles. The red dashed line shows
the intersection line where all solutions have the same distances to both
objective-points as solution A. The whole Pareto-optimal region P is the
shaded rectangle composed by all the intersection lines

C. A new Problem: Pareto-fronts of the DMP-1

The Pareto-optimal front in the case of the p − 1 metric
is more complex and has a special structure of dominating
solutions compared to the DMP-2.

In Figure 3, we depict the shape of the Pareto-optimal
front for 2 objectives in the decision space. For 2 objectives,
the entire square defined by the minimum and maximum
coordinates of the two objective-points is Pareto-optimal. The
distance ”circles” from Figure 2 turn to a diamond shape in
this case. These diamond shapes define all the points, that
have the same distance (measured by the p− 1 metric) to the
respective objective-point in the center. Due to their shape,
these ”circles” might have more than just one Pareto-optimal
intersection point per distance level. This can be seen in Figure
3, where all the solutions that lie on the red dashed diagonal
line (as solution A) have the same distances to both objective-
points. This means, that there is a large set of Pareto-optimal
solutions in the decision space that are all mapped to the same
vector in the objective space and are therefore indifferent to
each other.

Now we look at the case of more than 2 objectives. We
choose 3 objective-points on a circle as described above, and
the Pareto-optimal front in the decision space consists of the
combination of intersection sets of each two of the objectives.
The construction of the Pareto-optimal front is shown in Figure
4. We calculate the Pareto-optimal areas of each pair of the
objective-points in the same way as described above, which
means we get a rectangular Pareto-optimal front for each pair.
For three objective-points ~O1, ~O2 and ~O3, we obtain the three
sets S12, S13, S23 of solutions which contain the sets of Pareto-
optimal solutions if only the corresponding two objectives are
taken into account. Then we construct the intersection sets
I1 = {S12 ∩ S13}, I2 = {S12 ∩ S23}, I3 = {S13 ∩ S23}. The
union of all these intersection sets form the Pareto-optimal
front: P = I1 ∪ I2 ∪ I3.
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D. Domination in the DMP-1

For the further analysis, we classify the solutions into
different types, which are located in different areas of the
decision space. These sets are called type I to IV solutions and
are explained in the following. Figure 5 shows an example for
the locations of the different types of solutions in a 3-objective
scenario.

Type I: Pareto-optimal (bijective objective function)
Solution of the types I and II are both part of the Pareto-optimal
front of the problem and are therefore globally non-dominated.
However, the front consists of two different kinds of solutions.
Solutions of type I are unique in a sense that their objective
vectors can only be achieved by exactly one combination of
decision variables. So the objective function f(~x) is bijective
on the set of type I solutions and their objective values. Type
I solutions can be found in Figure 5 as lines of solutions in
the middle area.

Type II: Pareto-optimal (surjective objective function)
Type II solutions are also part of the Pareto-optimal front of the
problem. In comparison to type I, solutions of type II are those
~x for which at least there is one other solution ~y 6= ~x with
the exact same objective vector: f(~x) = f(~y). Solutions of
type II have actually an infinite number of solutions that have
different decision variables but the exact same objective values
for every objective. The function f(~x) is therefore surjective
but not injective on the set of type II solutions and their
objective values. The set of type II solutions forms an area
in this problem, as can be seen in Figure 5, and also in the
previously explained 2-objective example in Figure 3.

Type III: Dominated by a line
Solutions of the types III and IV are not part of the Pareto-
optimal front. Type III solution lie within the rectangular
area (excluding the type I and II solutions) than is spanned
by the minimum and maximum coordinates in each variable
j: oj,min = mini=1..m oij and oj,max = maxi=1..m oij .
Solutions in that area are dominated only by solutions that are
located on the exact same line with a gradient of either 1 or −1,
and that ends in a Pareto-optimal solution. These dominating
lines follow along the intersections of p − 1 ”circles” of two
objective points, while the solutions on it can become closer
to one other objective, while not leaving the intersection line.
Figure 6 illustrates how a type III solution can and cannot be
dominated, and Figure 7 depicts how these dominating lines
are composed from the p− 1 ”circles” around the 3 objective-
points. In this scenario the solution A cannot be dominated
easily, even if a solution like D is located very close to the
Pareto-front. Unfortunately, the solutions that belong to the
same dominating line are the only solutions, that dominate
their solutions within the entire decision space. If we look
at that from another perspective, this implies that even if a
Pareto-optimal solution is found, it will dominate only a small
subset (of the type III solutions). Such a dominating line
is a 1-dimensional set of solutions, which means it has no
inner volume. Therefore, a random sampling of the (in theory)
continuous decision space would cover the same line two times
with a probability of p = 0, and therefore dominate a type III
solution with a probability of p = 0.

Type IV: Dominated by a volume
Type IV solutions can be regarded as ”easily dominated”

O2

S12

O1

O3

O2

O1

O3

S23

S13
O2

O1

O3

O2 I1

O1

O3

O2

I2

O1

O3

O2

I3

O1

O3

O2

P

O1

O3

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

Fig. 4. The Pareto-optimal area (P ) of a 3-objective problem is composed by
combining the intersection sets (I1, I2, I3) of the different 2-objective optimal
areas (S12, S13, S23)

II
I

IIII

IVx1

x2

Fig. 5. The locations of the solutions types in a 3-objective problem

solutions. Usually there is a larger set of solutions which can
dominate them. In addition, these solutions form a volume,
since it is possible to reduce the distance to two or more
objective-points at the same time. This means that a randomly
chosen solution in the search space can dominate a type IV
solution with a probability of p > 0. The situation is shown
in Figure 8. Type IV solutions are all other solutions that
don’t belong to the other 3 types, which are in the 3 objective
scenario all the solutions outside of the type III rectangle (see
again Figure 5.

E. The Influence of the Offset-Parameter α1

By creating the objective-points as described above, the
initial offset angle α1 has a strong impact on the shape and
properties of the Pareto-fronts. The intersection sets Ii vary
from straight lines (type I solutions) only, to a combination of
type I and type II volumes. A sketch of the different areas of
optimal solutions for 2 and 3 objectives and values of α1 =
0, π4 and π

2 are illustrated in the Figures 9 and 10.
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A B
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D

E

C

O1

O3

O2

I
x1

x2

Fig. 6. The Solution A of Type III is only dominated by the solutions E and
F, but not by the solutions B, C and D

O2

O3

O1

A

x1

x2

Fig. 7. Intersection of distance-circles in a 3-objective problem. Point A is a
type III solution and can move closer to ~O3 while keeping the same distances
to ~O1 and ~O2

O2

O3

O1

x1

x2

A

Fig. 8. Intersection of distance-circles in a 3-objective problem. Point A
is a type IV solution and is dominated by every solution within the filled
rectangular area

In the 2-objective problems, there are no type III solutions.
All the solutions inside the rectangle formed by the two
objective-points are Pareto-optimal and of type II. This holds
for every offset α1, except when α1 = n · π2 , n ∈ N0. In these

O1P
O2

x1

x2

(a) α1 = 0

O1

P

O2
x1

x2

(b) α1 = π/4

O1

P

O2x1

x2

(c) α1 = π/2

Fig. 9. Example instances of the 2-objective problem and their Pareto-fronts

O1

P

O2

O3x1

x2

(a) α1 = 0

O1

P
O2

O3x1

x2

(b) α1 = π/4

O1

P
O2

O3

x1

x2

(c) α1 = π/2

Fig. 10. Example instances of the 3-objective problem and their Pareto-fronts

cases, like seen in the Figures 9a and 9c, the type II area
shrinks down to a 1-dimensional line and we only obtain type
I solutions as the Pareto-optimal front.

In the 3-objective problems, all 4 kinds of solutions can be
found, depending on the offset parameter. In the Figures 10a
and 10c, for α1 = 0 or α1 = π

2 , the Pareto-front consists only
of type I solutions, which are surrounded by a square of type
III solutions, and type IV solution on the outer sides of the
decision space. The most interesting case is shown in Figure
10b. Here, we obtain type IV solutions in the outer decision
space and a square of type III solutions formed by the outer
boundaries of the objective-points coordinates as described
above. The Pareto-optimal front in this problem consists of
the type I solutions which form the two lines going up and
right inside the space, and a rectangle of type II solutions.

We observe that a variation of the parameter α1 not only
changes the locations and sizes of the Pareto-optimal fronts,
but also their types and therefore alter the properties and
dominance relations.

F. Problems in the Optimization of the DMP-1

Based on the structure of the Pareto-fronts and the dif-
ferent properties of the solutions for the DMP-1 problem, we
expect certain behaviors for the optimization algorithms which
use Pareto-dominance. In addition, due to the sparse Pareto-
optimal areas in the objective-space, other algorithms such as
MOEA/D (which are not based on Pareto-dominance) can also
experience some difficulties on this problem.

Expectation 1
Based on the properties of the type IV solutions, we expect that
the optimization algorithms can easily find solutions which can
dominate a type IV solution (as shown in Figure 8). In addition,
such dominating solutions can be found easier, the further the
type IV solutions are away from the type III area. Therefore we
expect algorithms to quickly dismiss type IV solutions from the
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population and converge towards the area of type III solutions
during the optimization process.

Expectation 2
As type III solutions are only dominated by a very specific set
of solutions, namely the ones that lie on the same intersection
line between two objectives, it seems improbable for the
optimization algorithms (involving randomness) to discover
two solutions that lie on the exact same dominating line.
Instead, a population of type III solutions is likely to produce
more type III solutions surrounding them which will belong
to the same non-dominated front. For instance in Figure 6,
solution D is not regarded as any ”closer” to the Pareto-front
as solution A in terms of Pareto-dominance. An evolutionary
pressure towards the Pareto-optimal region does hardly exist
among type III solutions. For this reason, we expect algorithms
that rely on Pareto-dominance to have slow convergence and
difficulties and to approach the Pareto-front from inside the
type III areas.

Expectation 3
Type II solutions form a volume in the decision space which is
mapped to a line of Pareto-optimal solutions in the objective-
space (since an infinite number of solutions inside that volume
maps to the same objective vector). Since most of the op-
timization methods utilize a clustering in the objective space
(and not the decision space), we expect that, even though there
is a clear Pareto-optimal line in the objective space to which
an algorithm should converge, the search might result in an
unorganized and undesired distribution of solutions throughout
type II areas.

III. EXPERIMENTS

The goal of our experiments is to provide an impression
of the difficulty of the proposed DMP-1 problem and illustrate
how existing algorithms deal with this problem. We do not
intend to prove one method superior to the others. In addition,
we want to raise the questions of how existing algorithms could
perform in higher-dimensional instances of the problem.

In our experiments we use the DMP-1 using 2 and 3
objectives and only 2 decision variables like described above.
Both problems will be tested with 2 different settings α1 = 0
and α1 = π/4, as already seen in the Figures 9a, 9b, 10a and
10b. In the 2-objective problem with α1 = 0 we find only
type I and type IV solutions, while the same problem with
α1 = π/4 only consists of type II and type IV solutions. For
the 3-objective instances, the α1 = 0 instance has types I, II
and IV solutions, while the α1 = π/4 instance has all 4 kinds
of solution types to offer. We will set [xmin, xmax] = [0, 10],
~M = (5, 5) and r = 2.0, and let 3 different algorithms solve

our problem. These are: MOEA/D ([13]), NSGA-II ([14]) and
SMPSO ([15]). The performance of the algorithms is measured
by the average number of solutions that are found for each
type. Since solutions of type I are numerically hard to find,
we apply a tolerance radius of 0.01. Solutions found within
this distance of a type I or II solution will be counted as if
they actually lied within the desired area.

A. Parameter settings

For the experiments we take the standard values recorded
for the algorithms in the literature. The MOEA/D and NSGA-

II algorithms use a SBX Crossover ([16]) with a crossover
probability of 0.9 and distribution index of 20.0. All 3 algo-
rithms use polynomial mutation ([16]) with a distribution index
of 20.0 and a mutation probability of 1/n. The population
size of all three methods is 120. MEOA/D is used without
an external archive. For the MOEA/D, the neighbourhood size
is 20, the probability of choosing a parent solution from the
neighbourhood is 0.9 and the maximum number of replaced
solutions for each offspring is 2. All algorithms stop after a
fixed number of function evaluations. To be able to examine the
convergence of the algorithms, we use three different settings
for the number of function evaluations, which are set to 30000,
60000 and 120000, and perform 50 independent runs for each
experiment.

B. Results

Tables I to IV show the average number of obtained
solutions of each type that are found by the three algorithms
for each of the four configurations with 2-, 3-objectives and
α1 = 0, α1 = π/4. In addition, Figures 11 to 14 illustrate the
obtained solutions in the decision space of a selected single run
for the four configurations and three tested algorithms. In the
following, we analyze the results in terms of the expectations
about the search behaviour of the algorithms from the last
section.

Expectation 1
According to the results in Tables I to IV, we can conclude
that all of the optimization algorithms are able to dismiss type
IV solutions from their populations. As there is no type III
solution in both of the 2-objective instances, we obtain a good
approximation of the Pareto-fronts (although in the α1 = π/4
case, the diversity of solutions need to be considered, see
below). In addition, we can confirm this visually by looking
at the distribution of solutions in the decision space (Figures
11 to 14). All solutions lie within the rectangle (α1 = π/4) or
line (α1 = 0) defined by the objective points, and are therefore
only of the types I, II and III.

Expectation 2
The two algorithms that mainly rely on Pareto-dominance
(NSGA-II and SMPSO) fail to approach the actual Pareto-
front from within the type III area (Tables III and IV). The
results of a single run of the 3 algorithms for both 3-objective
instances are shown in the Figures 13 and 14. NSGA-II and
SMPSO both rely on Pareto-dominance, and they both suffer
from the effects of the hard to dominate type III solutions the
most.

In Table III, the MOEA/D algorithm performs slightly
better in terms of the obtained type I and II solutions. However,
even though it does not rely on Pareto-dominance, it is not
showing a good convergence behaviour with increasing num-
ber of function evaluations. The increase in found type I and II
solutions of the MOEA/D doesn’t show a better convergence
behaviour than the NSGA-II and SMPSO algorithms, although
the overall distribution of solutions seems to lie visually closer
to the Pareto-fronts (Figure 13). We see that even though the
MOEA/D was able to find slightly more optimal solutions after
30000 evaluations, its convergence seems to be not better than
the other methods (Table III).
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Fig. 11. Distribution of solutions of a single run (120000 evaluations) in the
decision space (2 objectives, α1 = π/4)

A special note goes to the performance of the MOEA/D
in the 3-objective α1 = 0 scenario. We observe a superior
performance compared to the other two methods (Table IV).
This behaviour differs from the performance with the offset of
π/4. We want to denote here that the algorithm performs better
in the α1 = 0 scenario because in this special instance of the
problem, a part of the Pareto-optimal area of the problem falls
together with the connecting line between two of the objective-
points. Since the weight vector distribution of the MOEA/D
algorithm usually prefers these regions, it is likely that the
rather good performance in this α1 = 0 case results from this
geometric coincidence. This is supported by Figure 14a, where
we see that most of the found Pareto-optimal solutions lie on
the connecting line between the two objective-points on the
left, but less along the other Pareto-optimal line.

Expectation 3
For our third expectation we take a look at the two Figures 11
and 13. In these instances the Pareto-optimal fronts (partially)
consist of type II solutions. In the 2-objective case (Figure
11) the SMPSO shows the best organization of solutions in
the type II area, while the MOEA/D and NSGA II obtain a
worse organization and the solutions are still distributed widely
throughout the area. In the 3 objective case (Table III, Figure
13), we observe that the type II Pareto-optimal areas are on
average covered by the NSGA-II and SMPSO slightly less
than by the MOEA/D. However, a clear organization of the
solutions cannot be seen in our experiments.

In conclusion, we find that in the instances that do not
contain type III solutions (both 2-objective instances), all
algorithms show a good convergence towards the Pareto-front,
even though the distribution of solutions still shows differences
in the α1 = π/4 scenario. In the 3-objective instances,
both algorithms that rely mainly on Pareto-dominance have
difficulties to find the Pareto-fronts within the type III solution
area, while the MOEA/D can find more optimal solutions
already with a low number of function evaluations, but doesn’t
show much improvement with increasing evaluations.

IV. CONCLUSION

In this paper, we proposed a generalization of a m-objective
n-variable Distance Minimization Problem, that allows the
use of any distance measurement in the decision space. We
analytically examined the properties and geometric structure
of the problem using the Manhattan metric (p-1) and pointed
out the difficulties that arise from that structure. The problem
instances used in this paper with only 2 decision variables and
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TABLE I. AVERAGE NUMBERS AND STANDARD ERRORS (50 RUNS) OF
THE DIFFERENT SOLUTION TYPES (2 OBJECTIVES, α1 = π/4)

Algorithm Type I Type II Type III Type IV

30 000 function evaluations

MOEA/D — 119.94 (±.03) — 0.06 (±.03)
NSGA II — 119.1 (±.14) — 0.9 (±.14)
SMPSO — 119.62 (±.07) — 0.38 (±.07)

60 000 function evaluations

MOEA/D — 120.0 (±.00) — 0.0 (±.00)
NSGA II — 118.72 (±.17) — 1.28 (±.17)
SMPSO — 119.9 (±.04) — 0.1 (±.04)

120 000 function evaluations

MOEA/D — 120.0 (±.00) — 0.0 (±.00)
NSGA II — 118.72 (±.18) — 1.28 (±.18)
SMPSO — 120.0 (±.00) — 0.0 (±.00)

only 2- and 3-objectives were used to give an overview of the
properties of this scalable test problem and at the same time
already provide difficult tasks for optimization algorithms. By
our analysis we want to show that the general DMP, using
the Manhattan metric, is a difficult optimization problem even
with small numbers of dimensions. Since it can be scaled very
easily to a many-variable and many-objective problem, it can
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TABLE II. AVERAGE NUMBERS AND STANDARD ERRORS (50 RUNS) OF
THE DIFFERENT SOLUTION TYPES (2 OBJECTIVES, α1 = 0)

Algorithm Type I Type II Type III Type IV

30 000 function evaluations

MOEA/D 120.0 (±.00) — — 0.0 (±.00)
NSGA II 119.12 (±.14) — — 0.88 (±.14)
SMPSO 120.0 (±.00) — — 0.0 (±.00)

60 000 function evaluations

MOEA/D 120.0 (±.00) — — 0.0 (±.00)
NSGA II 119.1 (±.16) — — 0.9 (±.16)
SMPSO 120.0 (±.00) — — 0.0 (±.00)

120 000 function evaluations

MOEA/D 120.0 (±.00) — — 0.0 (±.00)
NSGA II 119.34 (±.16) — — 0.66 (±.16)
SMPSO 120.0 (±.00) — — 0.0 (±.00)

TABLE III. AVERAGE NUMBERS AND STANDARD ERRORS (50 RUNS)
OF THE DIFFERENT SOLUTION TYPES (3 OBJECTIVES, α1 = π/4)

Algorithm Type I Type II Type III Type IV

30 000 function evaluations

MOEA/D 5.82 (±.39) 24.9 (±.25) 88.76 (±.46) 0.52 (±.09)
NSGA II 3.8 (±.18) 15.96 (±.37) 90.72 (±.70) 9.52 (±.51)
SMPSO 2.18 (±.16) 17.6 (±.29) 95.44 (±.37) 4.78 (±.30)

60 000 function evaluations

MOEA/D 6.5 (±.42) 25.06 (±.24) 88.26 (±.51) 0.18 (±.06)
NSGA II 3.76 (±.21) 16.02 (±.33) 90.24 (±.72) 9.98 (±.60)
SMPSO 2.42 (±.19) 17.92 (±.28) 95.28 (±.47) 4.38 (±.30)

120 000 function evaluations

MOEA/D 6.0 (±.39) 26.04 (±.30) 87.94 (±.49) 0.02 (±.02)
NSGA II 3.88 (±.19) 16.36 (±.32) 87.68 (±.71) 12.08 (±.66)
SMPSO 3.14 (±.16) 18.44 (±.25) 94.7 (±.44) 3.72 (±.28)

TABLE IV. AVERAGE NUMBERS AND STANDARD ERRORS (50 RUNS)
OF THE DIFFERENT SOLUTION TYPES (3 OBJECTIVES, α1 = 0)

Algorithm Type I Type II Type III Type IV

30 000 function evaluations

MOEA/D 56.3 (±.69) — 63.44 (±.68) 0.26 (±.08)
NSGA II 10.52 (±.38) — 98.68 (±.60) 10.8 (±.56)
SMPSO 9.54 (±.37) — 105.56 (±.37) 4.9 (±.25)

60 000 function evaluations

MOEA/D 59.54 (±.77) — 60.44 (±.77) 0.02 (±.02)
NSGA II 9.96 (±.39) — 98.84 (±.70) 11.2 (±.61)
SMPSO 9.62 (±.38) — 106.44 (±.36) 3.94 (±.24)

120 000 function evaluations

MOEA/D 59.44 (±.82) — 60.56 (±.82) 0.0 (±.00)
NSGA II 9.62 (±.35) — 99.26 (±.80) 11.12 (±.77)
SMPSO 10.04 (±.40) — 105.82 (±.43) 4.14 (±.28)

provide even more complex instances. A good performance of
existing algorithms in higher dimensional spaces might be a
subject for future research.

We want to point out that the generalization of the DMP
allows not only to use any metric as a distance measurement,
but also non-metric distance relations. The effects on the
Pareto-fronts and the behaviour of algorithms when using other
distance functions than the ones proposed here might also be
of interest for further research.
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