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Summary
This paper presents a new variant of the Non-dominated Sorting Genetic Algorithm to solve Multimodal Multi-objective
optimization problems. We introduce a novel method to augment the diversity of solutions in decision space by combining
the Manhattan and Crowding distances. In our experiments, we use six test problems with different levels of complexity
to examine the performance of our proposed algorithm. The results are compared with NSGA-II and NSGA-II-WSCD
algorithms. Using IGDX and IGD performance indicators, we demonstrate the superiority of our proposed method
over the rest of competitors to provide a better approximation of the Pareto Set while not getting much worse results in
objective space.
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1 Introduction

In real world, there are many Multi-objective Optimization
Problems (MOP) with at least two conflicting objectives in
nature. This means that improving one of the objectives
leads to deteriorating the value for the other objectives.
Without loss of generality, a multi-objective minimization
problems is formulated as follows:

minimize ~f (~x) = ( f1(~x), f2(~x), ..., fM(~x)) (1)
subject to ~x ∈ S⊂ RD

gi(~x)≤ 0, i = 1,2, ...,G
h j(~x) = 0, j = 1,2, ...,H

where ~x = (x1,x2, ...,xD) is considered as a
D–dimensional decision vector and ( f1, f2, ..., fM) is a
M–dimensional objective vector. gi(~x) and h j(~x) are
inequality and equality constraint functions in decision
space.

In order to deal with these problems, the concept of
domination can be used. Given two vectors ~x, ~y ∈ S, ~x
is said to be dominated by ~y (denoted by ~y ≺ ~x) if and
only if ∀ j ∈ {1, ..,M}, f j(~y) ≤ f j(~x), and ∃k ∈ {1, ..,M},
fk(~y)< fk(~x).1

The solution of multi-objective optimization problems,
is a set of non-dominated solutions called Pareto-Set (PS),
which the corresponding set of these solutions in the
objective space is called the Pareto-Front (PF).

In Multimodal Multi-Objective Optimization Problems,
there are two or more distinct solutions in the PS, which
correspond to the same value in the PF. In this area, most
of the available literature deals with multimodal single
objective optimization problemsand there is a relatively
small number of published research on Multimodal
Multi-objective Optimization Problems (MMOP).2 In the
current paper, we propose a new method for this type
of problems, which is based on the combination of the
Manhattan distance and the Crowding distance in decision
space (MDCD).
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The performance of our proposed method is examined
on a number of available multimodal multi-objective test
functions. We study the influence of the proposed method
on finding a better approximation of optimal solutions
in decision space, and the results are compared with the
state-of-the-art algorithms.

The remaining parts of the paper proceed as follows:
In section 2 the related works on MMOPs are investigated.
The proposed algorithm is presented in section 3. In
section 4, the setting of the experiments is explained. The
experiments and analysis are presented in section 5. In the
end, section 6 concludes the paper and provides the future
research direction.

2 Related Work

In the field of Evolutionary Multi-Objective Optimization,
the main concern is to find a good approximation of PF with
a good diversity of solutions in objective space.3 However,
there There is not much literature focusing on increasing
the diversity of solutions in the decision space to handle
MMOPs.

One of the first works dealing with MMOPs
was proposed by Deb and Tiwari4 who introduce
the omni-optimizer algorithm. This algorithm
is a modified version of the well-known
Non-Dominated-Genetic-Algorithm-II (NSGA-II).5

The aim of this work was dealing with a wider range of
optimization problems (i.e: single or multi-objective and
uni or multi-modal problems). They proposed a modified
crowding distance by comparing the crowding distance
value of each individual with its average value (in both
spaces), and take the larger value of the two distances.

To achieve a better distribution of solutions both in
decision and objective spaces, Zhou et al.6 proposed
a model where the population is classified into
sub-populations in the objective space, and the diversity of
solutions is increased in the decision space by evaluating
the diversity of PS in each sub-population. The obtained
solutions show a better convergence to PS and PF for the
MOP compared to the Omni-optimizer algorithm.

The concept of niching in MMOPs is used by
Liang et al.1 They proposed Decision-Based Niching
NSGA-II (DN-NSGA-II) algorithm, where they applied
the crowding distance technique to the decision space
instead of the objective space as a secondary selection
criteria. Even though this algorithm could find more Pareto
optimal solutions than NSGA-II, the solutions are not well
distributed in decision space.

Another perspective is found in an algorithm called
Multi-objective Particle Swarm Optimization using
Ring topology by applying Special Crowding Distance
(MO-Ring-PSO-SCD) proposed by Yue et al.7 They used
a ring topology and a special crowding distance method
to locate and maintain more Pareto optimal solutions.
This algorithm is able to provide better approximation
of PS in comparison with NSGA-II, DN-NSGA-II and

Omni-optimizer algorithms.
Multimodal Multi-Objective Differential Evolution

algorithm (MMODE) was proposed by Liang et al.8

The mutation-bound process was introduced to provide
a second opportunity to perform mutation for infeasible
solutions (those outside the boundaries) of the decision
space. In their presented algorithm, the crowding distance
method is applied to the solutions in the decision space to
maintain the diversity of solutions.

In a recent study, another contribution is proposed by
Liu et al.,2 called Double-Niches Evolutionary Algorithm
(DNEA). The main focus of this method is the calculation
of Euclidean distance in both decision and objective spaces.
Then, a double-niched method is applied to diversify the
solutions on both decision and objective spaces.

In a previous work, we proposed a modified version
of NSGA-II algorithm called Weighted Sum Crowding
Distance using NSGA-II algorithm (NSGA-II-WSCD).9 To
obtain a good diversity of solutions both in the decision and
objective spaces, we compute the Crowding distance value
of solutions by taking the weighted sum value of crowding
distances in both spaces.

3 Proposed NSGA-II-MDCD Algorithm

In this section we propose a modified distance measurement
technique that can be used to obtain a better diversity of
solutions in decision space, and therefore make a better
approximation of PS.
In the proposed method, due to the natural capability of
grids to represent the distribution of solutions, we took
the Manhattan distance metric (also called p1 metric) as a
distance measurement method in the decision space. For
each solution, we calculate the Manhattan distance to all
other solutions in the current front. Then, our global
Manhattan Distance metric is computed as the summation
of all of these distances between each solution and the rest
of solutions. This metric is formulated as follows:

MDglobal(~a) = ∑
p∈P
‖~a−~p‖= ∑

p∈P

D

∑
i=1
|ai− pi| (2)

Where P is current front of solutions, D is the dimension
of decision variables. Furthermore, ai and pi represent the
grid index values of solutions~a and ~p in dimension i.

In order to have a better diversity of solutions, we
multiply the obtained global Manhattan distance metric
value with its Crowding distance value in decision space (as
defined in Omni-optimizer algorithm,4 this distance only
takes into account its nearest neighbor for boundaries). In
Figure 1, we provide an example to better illustrate the
influence of both Manhattan and Crowding distance on
obtaining a good diversity of solutions in the decision space.

In Figure 1, the global Manhattan distance values of S1
and S2 are both equal to 20. Both of the solutions are located
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Figure 1: An example of the computation of MDCD, and its
influence on the diversity of solutions in the decision space

far from the rest of the solutions and both make a good
coverage of solutions in decision space. In this example,
solution S1 is located in a more crowded neighborhood
area than S2. Therefore, the crowding distance value for
S1 is smaller than for the other solutions. By multiplying
both Manhattan and crowding distance values, S2 gets a
larger value than the other solutions. Therefore, we could
guarantee a better diversity of solutions by using both
distance metrics.

In algorithm 1 we present our proposed method
(NSGA-II-MDCD) in details. We modify NSGA-II by
changing the Crowding distance with our MDCD metric.
First we calculate the global Manhattan distance value
(Lines 1 to 7). Then, the crowding distance value for all
solutions in the decision space is calculated (Lines 8 to 21).
The Final MDCD value for each solution is calculated by
multiplying the two distance values.

4 Experiments

This section is dedicated to investigate the effectiveness
of the proposed method (NSGA-II-MDCD) for obtaining
a good approximation of solutions in both decision and
objective spaces. We compare the proposed approach
with the state-of-the-art, NSGA-II-WSCD algorithm and
NSGA-II as a base-line algorithm.

4.1 Test Problems

We took 6 multimodal multi-objective test functions from
the literature SSUF1, SSUF31 and MMF3-MMF6.7 These
test problems have different shapes and properties of the PF
(concave and convex).

4.2 Parameter Settings

In the following we explain the parameter setting used in
the comparisons. The population size is set to 100 and we

Algorithm 1: Combined Manhattan Distance and
Crowding distance Approach (MDCD).

Input: Number of Objective functions: M,
Number of Decision Variables: D,
List P of solutions of current front (with GridIndex values for
each dimension), of size p = |P|
Output: List P of solutions of current front with extra

property of Combined Manhattan Distance and
Crowding Distance (MDCD) for each solution

1 for j ∈ {1, .., p} do
2 P[ j].MDglobal = 0
3 P[ j].CDdec = 0
4 P[ j].MDCD = 0
5 end
6 for i ∈ {1, .., p} do
7 for j ∈ {1, .., p} do
8 for k ∈ {1, ..,D} do
9 P[i].MDglobal+=

P[i].GridIndex(k)−P[ j].GridIndex(k))
10 end
11 end
12 end
13 for i ∈ {1, ..,D} do
14 xi,min = minimum of values for i-th decision variable in P
15 xi,max = maximum of values for i-th decision variable in

P
16 end
17 for i ∈ {1, ..,D} do
18 P′ = sort P ascending based on i-th decision variable

19 P′[1].CDdec += 2 · |P
′[ j+1].xi−P′[ j].xi|
|xi,max−xi,min|

20 P′[p].CDdec += 2 · |P
′[ j].xi−P′[ j−1].xi|
|xi,max−xi,min|

21 for j ∈ {2, .., p−1} do
22 P′[ j].CDdec +=

|P′[ j+1].xi−P′[ j−1].xi|
|xi,max−xi,min|

23 end
24 end
25 for i ∈ {1, .., p} do
26 P[ j].MDCD = P[ j].CDdec ·P[ j].MDsum
27 end
28 return P

used 10000 function evaluations as a termination criterion
in all the experiments. We calculate the median and
interquartile (IQR) ranges out of 31 independent runs. We
used simulated Binary Crossover (SBX) and Polynomial
Mutation as variation operators. The distribution index for
both crossover and mutation is set to 20. The recombination
probability Pc = 1 and the mutation probability Pm = 1/D.
The grid size of the proposed algorithm is set to 10. We
used the parameter value as in the literature where the
WSCD value is obtained by equally division of weights in
both decision and objective spaces. The implementation of
these algorithms, as well as NSGA-II, is provided in the
Matlab-based platform PlatEmo.7
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Table 1: Featurs of Test Problems

Problem name No. of Pareto subsets PF Shape

SSUF1 2 concave
SSFU3 2 concave
MMF3 2 concave
MMF4 4 concave
MMF5 4 convex
MMF6 4 convex

4.3 Performance Measures

To assess the performance of the proposed method and the
compared algorithms, we used the Inverted Generational
Distance in decision space (IGDX).6 The obtained values
demonstrate both the diversity and convergence of solutions
in decision space by calculating the Euclidean distance
between the PS and the set of obtained solutions in decision
space. The mathematical definition of IGDX is:

IGDX(P∗,R) =
∑v∈P∗ ‖R− v‖2

|P∗|
(3)

Where R and P∗ accordingly are a set of obtained
solutions in decision space and a sample of the PS, and
‖R− v‖2 is the minimum Euclidean distance between the
sampled point v and any point in R.

We also look at the diversity and convergence of
obtained solutions in objective space, by calculation
of Inverted Generational distance (IGD),10, 11 which is
mathematically formatted in the same way as IGDX as
follows:

IGD(P∗,R) =
∑v∈P∗

∥∥∥~f (R)−~f (v)
∥∥∥

2
|P∗|

(4)

Where R and P∗ respectively are a set of obtained
solutions in objective space and a sample of the PF.

5 Analysis of Results

The IGDX and IGD results are presented in Tables 2
and 3. The Mann-Whitney U statistical test is taken to test
statistical significance according to the best algorithm on
each test problems, and the significance is assumed for a
value of p≤ 0.05. The values highlighted in bold represents
the best values for each problem, and the asterisks (*)
demonstrate the significance compared to the best algorithm
for each test problem.

As can be observed in Table 2, NSGA-II-MDCD
performs the best in terms of IGDX compared to the
rest of the algorithms for four out of six test problems,
which means that the proposed algorithm provides better
distribution of solutions in the decision space. Even
though NSGA-II-WSCD algorithm is getting better results
for MMF3 and MMF4compared to the proposed method,
no statistical significance was observed between these
two algorithms. A possible explanation for this might

Table 2: IGDX value for comparison of different
algorithms

NSGA-II-MDCD NSGA-II-WSCD NSGA-II

SSUF1 0.07478 (0.00849) 0.07923 (0.00741)* 0.1051 (0.0151)*
SSFU3 0.08699 (0.072) 0.08949 (0.07273) 0.1021 (0.0853)
MMF3 0.07747 (0.03521) 0.05839 (0.03499) 0.07854(0.0314)
MMF4 0.06053 (0.01059) 0.05793 (0.01098) 0.11921 (0.04185)*
MMF5 0.13723 (0.01042) 0.14473 (0.01112)* 0.19475 (0.03932)*
MMF6 0.11752 (0.00682) 0.12406 (0.01261)* 0.18852 (0.06103)*

Table 3: IGD value for comparison of different algorithms

NSGA-II-MDCD NSGA-II-WSCD NSGA-II

SSUF1 0.00662 (0.00053)* 0.00544 (0.00032) 0.00532 (0.00026)
SSFU3 0.02011 (0.02278) 0.01696 (0.0146) 0.01995 (0.01253)
MMF3 0.01805 (0.01474) 0.01527 (0.01329) 0.0149 (0.00972)
MMF4 0.00645 (0.00035)* 0.00542 (0.00025)* 0.00517 (0.00019)
MMF5 0.00655 (0.00034)* 0.00559 (0.00032)* 0.00534 (0.00032)
MMF6 0.00647 (0.0005)* 0.00549 (0.00028)* 0.00531 (0.00026)

be that by gridding the decision space, in MMF3 and
MMF4, as the optimal solutions are more concentrated in
concrete grids, then the NSGA-II-MDCD is getting worse
results compared to other problems with optimal solutions
involved in larger number of grids.
As we expected from Table 3, the IGD value of the
NSGA-II algorithm shows its superiority in comparison
with the proposed algorithm. The reason is that the
main focus of NSGA-II algorithm is to get a better
diversity of solutions in objective space, while neglecting
decision space, therefore a lower IGD value is expected.
According to the further analysis of results we cloud
claim that NSGA-II-MDCD algorithm provides a better
approximation of PS while not disturbing that much the
approximation of PF.
In addition to these tables, we show the obtained solutions
in both decision and objective spaces of the run with the
median IGDX value for the SSUF1, MMF5 and MMF6 test
problems in Figures 2, 3, and 4.

As can be seen from Figure 4 as an instance, the
solutions of NSGA-II-MDCD are more evenly distributed
in decision space than the solutions of NSGA-II-WSCD and
NSGA-II algorithms. In objective space, the algorithm is
still obtaining a good approximation of the PF, but some
parts of it are less crowded than others in comparison with
NSGA-II.

6 Conclusions

The goal of this study is to develop a method for MMOPs to
provide a better approximation of solutions in the decision
space. It is important to note that the good diversity of
solutions in objective space does not guarantee a good
diversity of solutions in decision space. As a result, we
propose a technique to focus on increasing the distribution
of solutions in decision space. We combine the Manhattan
distance metric with crowding distance in decision space
to satisfy our goal. Both distance measurement metrics
together help to make a better distribution of solutions
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(a) PS for NSGA-II-MDCD (b) PS for NSGA-II-WSCD (c) PS for NSGA-II

(d) PF for NSGA-II-MDCD (e) PF for NSGA-II-WSCD (f) PF for NSGA-II

Figure 2: Obtained solutions in decision and objective space for SSUF1 problem

(a) PS for NSGA-II-MDCD (b) PS for NSGA-II-WSCD (c) PS for NSGA-II

(d) PF for NSGA-II-MDCD (e) PF for NSGA-II-WSCD (f) PF for NSGA-II

Figure 3: Obtained solutions in decision and objective space for MMF5 problem

in decision space. The results of our experiments with
6 test problems show the superiority of the proposed
method according to the approximation of PS over the
NSGA-II-WSCD and NSGA-II algorithms.
Further studies are required to investigate the impact of
the grid size on the quality of obtained optimal solutions
in decision space. In addition, it is needed to develop
techniques providing the ability of better local search to
locate more optimal solutions.
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