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Summary

In this paper, we study the effects of a modified crowding distance method and a Polynomial mutation operator
on multimodal multi-objective optimization algorithms. Our goal is to provide an in-depth analysis on these two
modifications which we apply to NSGA-II: The weighted sum crowding distance and the neighborhood mutation operator.
Furthermore, we examine the performance of the proposed weighted sum crowding distance method under different
weight values, to find a trend for the behaviour of the proposed algorithm. We compare the different variations of the
proposed method with the state-of-the-art algorithms and the baseline NSGA-II. The results show that we can improve
the functionality of NSGA-II on multi-modal multi-objective problems.
Keywords: Multi-modality, Multi-modal problems, Multi-objective Optimization, Evolutionary Algorithms,
Non-dominated Sorting Genetic Algorithm.

1 Introduction

In real-world applications, there are many problems with
several conflicting objectives which need to be optimized
at the same time. These problems are usually referred
to as Multi-Objective Problems (MOP). In such problems,
improving one of the objectives can affect satisfaction of
other objectives.1 Multi-objective optimization problems
are mathematically formulated as follows (we consider
minimization problems, without loss of generality):

minimize ~f (~x) = ( f1(~x), f2(~x), ..., fM(~x)) (1)
subject to ~x ∈ S⊂ RD

gi(~x)≤ 0, i = 1,2, ...,k
h j(~x) = 0, j = 1,2, ..., p

where ~x = (x1,x2, ...,xD) is considered as a
D–dimensional decision vector and ( f1, f2, ..., fM) is a
M–dimensional objective vector. gi(~x) and h j(~x) are
inequality and equality constraints in decision space.

In order to deal with these problems, the concept of
domination can be used. Given two vectors ~x, ~y ∈ S, ~x
is said to be dominated by ~y (denoted by ~y ≺ ~x) if and
only if ∀ j ∈ {1, ..,M}, f j(~y) ≤ f j(~x), and ∃k ∈ {1, ..,M},
fk(~y)< fk(~x).2

A solution which is not dominated by any other solution
in the decision space is called a Pareto-optimal solution.
The set of such optimal solutions in the decision space is
called Pareto-Set (PS), and the corresponding solutions in
the objective space are called Pareto-Front (PF).3 The goal
of multi-objective optimization algorithms is to find a set of
non-dominated solutions with a good approximation of the
PF both in terms of convergence and diversity.1

By using the definition of domination, there is no
guarantee that finding all of the solutions in the PF leads
to finding all the solutions which actually belong to the
PS, since two solutions in decision space might map into
one point in the objective space. This class of problems
is referred to as multimodal multi-objective problems by
Liang and Qu.2 More precisely, in a multimodal problem,
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there are multiple subsets of the PS which map to the
same objective function values. Therefore, the PF can be
approximated by just finding one of these subsets of the
PS. However, decision makers are very often interested
in a high diversity in both decision space and objective
space simultaneously. Therefore, it might be practical to
develop algorithms that can find multiple Pareto-optimal
solutions in both decision and objective space for such
multimodal problems. In this paper, we modify the
concept of crowding distance in both decision and objective
spaces and investigate a neighborhood mutation operator.
Both these approaches are based on our preliminary
short study.4 In this paper, we introduce them and
evaluate their performances in both decision and objective
spaces using various performance indicators and perform a
detailed comparative study of the obtained PS and PF. In
addition, we examine their effects separately and analyze
the contribution of each of them on the approximation of
PS and PF. We also evaluate the effects of different weight
parameter values on the diversity of solutions in both the
decision and objective spaces.

The rest of this paper is organized as follows: In
Section 2 the related works are briefly reviewed. Section
3 introduces the proposed algorithms and the novelty of
the work with more detail. In Section 4, the setting of
the experiments will be explained. The results of the
experiments and analysis are provided in Section 5. Finally
the conclusion and the future works will be presented in
Section 6.

2 Related Work

In recent years, there has been an increasing amount of
literature focusing on finding multimodal solutions for
multi-objective optimization problems.5–7 Some of these
works aim to get a better approximation of the PS by
increasing the diversity of solutions in decision space.
However, this might not provide a better convergence to the
PS.2

The Omni-optimizer Algorithm8 applies a crowding
distance approach to the solutions in the decision space to
preserve more solutions in decision space than the objective
space. In this algorithm, the final crowding distance value
for each solution is assigned based on the comparison of
the average crowding distance in both the decision and
objective space: If the crowding distance value of each
solution either in decision or objective space becomes larger
than or equal to the average value, the maximum crowding
distance is selected, otherwise the minimum of these
two values is taken as the final crowding distance value.
The provided modification was applied to the well-known
Non-dominated Sorting Genetic Algorithm (NSGA-II).1

Zhou et al.9 proposed a model to make better
approximation of both the decision and objective space
simultaneously. The population is classified into
sub-populations in objective space, and the model increases
the diversity of solutions in decision space by evaluation of

diversity of the PS in each sup-population. The obtained
solutions show better convergence to the PS and PF for the
MOP in comparison with the Omni-optimizer algorithm.

Liang et al.2 presented DN-NSGA-II which incorporates
a niching algorithm in the decision space. It contains
two modifications of the original NSGA-II: The crowding
distance method is performed in the decision space instead
of objective space, and it creates a mating pool of solutions
with a niching technique. The resulting algorithm was able
to cover more solutions in the PS than the original NSGA-II
algorithm.

Yue et al.6 proposed Multi-objective Particle Swarm
Optimization using Ring topology by applying Special
Crowding Distance (MO-Ring-PSO-SCD). In this work, a
ring topology is used to capture more optimal solutions in
the decision space by making robust niches, and a special
crowding distance method assists to preserve solutions
in the PS. The results of this algorithm show significant
improvement compared to NSGA-II, DN-NSGA-II and
Omni-optimizer in terms of approximation of the PS in
decision space.

In a recent work, Liang et al.5 adopt the concept
of a mutation bound process, which gives a second
opportunity to perform in-bound mutation if the mutated
solutions lie outside the boundaries of the decision
space. They also use both non-dominated sorting in
objective space and the crowding distance technique in
decision space. Their proposed method, called Multimodal
Multi-Objective Differential Evolution (MMODE), was
applied to a differential evolution algorithm. The results
of this algorithm show improvement in terms of diversity of
solutions in both decision and objective space.

In the work presented by Liang et al. in 2018,7

they proposed an improved version of SMPSO algorithm10

with the ability of creating neighborhoods in decision
space. Furthermore, they designed a special version of
crowding distance on both decision and objective space
to keep the obtained optimal solutions. The experimental
results show that the mentioned algorithm could obtain
better approximations of the PS than other state-of-the-art
algorithms like the MO-Ring-PSO-SCD.

3 Proposed NSGA-II-WSCD-NBM

In this section, we modify the existing NSGA-II1

with a weighted sum crowding distance method and
a new polynomial mutation operator in the so called
NSGA-II-WSCD-NBM algorithm.

3.1 Weighted-Sum Crowding Distance method

The classical crowding distance (CD) approach is typically
used in the objective space to improve the diversity of the
solutions in the objective space.1 This approach leads to
a better approximation of the PF, but it does not promise
to preserve all the solution in the PS. Therefore, similar
to the Omni-optimizer algorithm,8 we adopt the concept
of crowding distance in both spaces to obtain the better
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Algorithm 1: Weighted Sum Crowding Distance
approach.
Input: List S of non-dominated solutions with added

Crowding Distance (CDob j) values for each
solution in objective space according to
NSGA-II1 algorithm with s := |S|,

Number of Objectives: M,
Number of Decision Variables

1 : D
Output: List S with added Weighted Sum Crowding

Distance (CDWS) values for each solution
2 for i ∈ {1, ..,D} do
3 xi,max = maximum of values for i-th decision

variable in S
4 xi,min = minimum of values for i-th decision

variable in S
5 end
6 for j ∈ {1, ..,s} do
7 S[ j].CDdec = 0 //initialize CDdec of j-th solution in

S
8 S[ j].CDWS = 0 //initialize CDWS of j-th solution in

S
9 end

10 for i ∈ {1, ..,D} do
11 S′ = sort S ascending based on i-th decision

variable
12 S′[1].CDdec += 2 · |S

′[ j+1].xi−S′[ j].xi|
|xi,max−xi,min|

13 S′[s].CDdec += 2 · |S
′[ j].xi−S′[ j−1].xi|
|xi,max−xi,min|

14 for j ∈ {2, ..,s−1} do

15 S′[ j].CDdec +=
|S′[ j+1].xi−S′[ j−1].xi|
|xi,max−xi,min|

16 end
17 end
18 for j ∈ {1, ..,s} do
19 S[ j].CD.ob j = norm(S[ j].CDob j) //normalize

CDob j of j-th solution using max and min values
of CDob j in S

20 S[ j].CD.dec = norm(S[ j].CDdec) //normalize
CDdec of j-th solution using max and min values
of CDdec in S

21 S[ j].CDWS = w1 ·S[ j].CDdec +w2 ·S[ j].CDob j;
22 end
23 return S

approximation of the PS and PF. Our approach is called
Weighted Sum Crowding Distance WSCD as it is calculated
as the weighted sum of the crowding distances in objective
and decision space. The WSCD method is shown in
Algorithm 1.

In WSCD, the calculation of crowding distance in the
objective space is similar to the proposed CD calculations
in NSGA-II. The extreme solutions in the objective space
are assigned a large CD values (infinity).The CD values

for the rest of the solutions are calculated by the sum
of the normalized distances between the left-side and the
right-side neighbors in the objective space.1

In the proposed WSCD approach, first the calculation
of the crowding distance in decision space is adopted from
the Omni-optimizer from the literature (Lines 1 to 16).
The maximum and minimum values for all solutions are
calculated (Lines 2 and 3). The crowding distance values
in decision space and the WSCD values for all solutions
are first set to zero (Lines 6 and 7). Then the solutions
are sorted based on the decision variable values for each
variable (Line 10). The crowding distance value for the
boundary solutions are calculated from the normalized
distance values between the solution and its adjacent
neighbors (Lines 11 and 12). The crowding distance values
for the rest of the solutions are calculated by normalizing
the distances between the left-side and right side neighbors
for the solutions in decision space (Line 14). The novelty
of our work is as follows: The crowding distance values
in decision and objective spaces are normalized in order to
make the scores of crowding distance values comparable
for different dimensions in decision and objective space
(Lines 18 and 19). Given the importance of having a good
diversity of solutions in both decision and objective space,
we allocate a final weighted sum crowding distance value
based on the assigned weights w1 and w2 for the crowding
distance in the decision and the objective space (Line 21).

3.2 Neighborhood Polynomial Mutation

In multi-objective evolutionary algorithms, the Polynomial
mutation is shown to be one of the effective operators.11

It was originally proposed by Deb and Goyal.12 In this
section, we propose a modification to this operator inspired
by the concept of neighborhood mutation by Qu et al.13

to make it more applicable on multimodal optimization
problems. The neighborhood polynomial mutation is
presented in Algorithm 2. In this algorithm, a set of
neighbors is computed for each solution, and the mutation
operator is applied to each of them.

In Algorithm 2, at first the Euclidean distances between
all solutions in the decision space are computed (Line 3).
The neighborhood of each solution is composed out of
the individual itself and its K nearest neighbors in terms
of computed distances (Line 7). Afterwards, for each
individual in the population, a Polynomial mutation is used
to mutate the individual and its neighbors (Lines 9 to 26).
The mutated offsprings are returned (Line 27). Using this
mutation operator implies that a neighboring solution which
appears in the neighborhood of many solutions, has the
chance to be mutated more often than other solutions. In
that way, the solutions which are located in crowded areas
in the search space have a higher chance of being mutated.
As a result, this might lead to a better exploration in the
decision space.
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Algorithm 2: Neighborhood Polynomial Mutation.
Input: List O of offspring of solutions of current

generation with o := |O|,
Neighborhood Size=K
Probability of Mutation=pm,
Distribution Index=ηm
Upper and lower bounds xu

k and xl
k for each variable k

Output: Mutated Individuals O
1 for i ∈ {1, ..,o} do
2 for j ∈ {1, ..,o} do
3 Euc(i, j) = ‖O[i].~x−O[ j].~x‖2 //calculate

Euclidean distances between solutions
4 end
5 end
6 for i ∈ {1, ..,o} do
7 N(i) = list of indices of K +1 smallest values in

Euc(i) //Set the neighborhood of each solution i
as itself and its K nearest neighbors

8 end
9 for i ∈ {1, ..,o} do

10 for j ∈ N(i) do
11 for k ∈ {1, ..,D} do
12 b =U(0,1)
13 if b≤ pm then

14 δ1 =
O[ j].xk−xl

k
xu

k−xl
k

15 δ2 =
xu

k−O[ j].xk

xu
k−xl

k

16 b =U(0,1)
17 if b≤ 1/2 then
18 δq = [(2b)+(1−2b)(1−

δ1)
ηm+1]

1
ηm+1 −1

19 else
20 δq = [1− (2(1−b))+2(b−

0.5)(1−δ2)
ηm+1]

1
ηm+1

21 end
22 O[ j].xk+= δq.(xu

k − xl
k)

23 end
24 end
25 end
26 end
27 return O

4 Experimental Setting

In order to evaluate the effectiveness of the modifications,
we considered various versions of the proposed algorithm.
The NSGA-II with the Neighbourhood Mutation operator
(NSGA-II-NBM), the NSGA-II with the Weighted Sum
Crowding Distance (NSGA-II-WSCD), and NSGA-II with
both of the modifications (NSGA-II-WSCD-NBM). The
results are compared with the results of the state-of-the-art
multimodal optimization algorithm Mo-Ring-PSO-SCD.6

We additionally compare the results with NSGA-II1 as the

baseline.
The median and the interquartile range (IQR) of all

the experimental results are calculated over 31 independent
runs for a maximum of 10,000 function evaluations. The
population size is set to 100 for all the experiments.

The parameters of NSGA-II are set to be similar as in the
literature.1 We set the distribution index of both crossover
ηc and mutation ηm to be 20. The probability of crossover
is set to pc = 1.0, and the probability of mutation is set to
pm = 1/D, where D is the number of decision variables.

The neighborhood size for the neighborhood
mutation in both the NSGA-II-WSCD-NBM and
NSGA-II-NBM is set to 20. In both WSCD variations,
NSGA-II-WSCD-NBM and NSGA-II-WSCD, the weights
are equally divided for crowding distances in decision
and objective spaces as w1 = 0.5 and w2 = 0.5. In the
Mo-Ring-PSO-SCD, we use the same parameter values as
in the literature.6 Therefore, we set C1 = C2 = 2.05 and
W = 0.7298. We used codes provided in Matlab-based
PlatEmo14 framework for the NSGA-II and the codes by
the original authors for Mo-Ring-PSO-SCD.6

4.1 Test Problems

We take the state-of-the-art test problems for multimodal
multi-objective optimization2, 6 to test our proposed
algorithms. We use the SSUF1 and SSUF3 test problems2

and MMF3, MMF4, MMF5,and MMF6 problems.6 The
problems contain different levels of complexity and
different numbers of equivalent subsets of the PS to
challenge the functionality of the proposed algorithms.

The dimensions of decision and objective spaces are 2 in
all of the problems. Since the problems are multimodal, one
of the most important features of these test problems is that
there are always multiple distinct subsets of the PS in each
problem, where each of them covers the PF completely on
its own. The related features of the test problems are listed
in Table 1.

Table 1: Properties of Test Problems

Test Problems No. of subsets in the PS PF Shape
SSUF1 2 concave
SSUF3 2 concave
MMF3 2 concave
MMF4 4 convex
MMF5 4 concave
MMF6 4 concave

4.2 Performance Measures

Since our primary focus lies in decision space, the
Inverted Generational Distance in decision space (IGDX)9

is adopted as a metric to measure the effectiveness of the
algorithms. The IGDX performance metric is calculated as
the average Euclidean distance between the set of obtained
solutions and the PS in decision space. This metric
demonstrates the diversity and convergence of obtained
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solutions in relation to the Pareto-optimal solutions set. A
lower IGDX value indicates a better performance. Let P∗

be a sample of the PS of the problem, and R a set of
obtained solutions in decision space by an algorithm, the
IGDX indicator is formulated as:

IGDX(P∗,R) =
∑v∈P∗ ‖R− v‖2

|P∗|
(2)

Where ‖R− v‖2 is the minimum Euclidean distance
between the sampled point v and any point in R.

Additionally, in order to compare the performance of
the algorithms with each other in the objective space, we
use the Inverted Generational distance (IGD):15, 16

IGD(P∗,R) =
∑v∈P∗

∥∥∥~f (R)−~f (v)
∥∥∥

2
|P∗|

(3)

This indicator is formulated in the same way as the
IGDX. The IGD value is calculated, with the difference that
the distances are calculated in the objective space using a
sample of the PF (which can be obtained by evaluating the
PS as ~f (P∗)) and ~f (R) accordingly.

5 Analysis of Results

The experimental results (median and IQR) for the
comparison of the used algorithms concerning IGDX and
IGD indicators are shown in Tables 2 and 3 respectively.
In order to test the statistical significance, we take the
Mann-Whitney U statistical test with respect to the best
algorithm on each test problem. That is, we test for
each algorithm the hypothesis that the performance of the
algorithm and the performance of the best algorithm on this
problem have equal medians. A difference between the two
results is regarded as significant for values of p < 0.01.
The best values are highlighted in bold and significance
compared to the best algorithm is shown by an asterisk (*)
in the respective columns.

From the analysis of Table 2 regarding the
comparison of IGDX values, it can be concluded that
the NSGA-II-WSCD-NBM algorithm outperforms the
NSGA-II-NBM in four out of six problems. It also shows
its significant superiority for all the test problems compared
with the results of the other algorithms. This means the
proposed algorithm provides better approximations of
PS in terms of the both diversity and convergence of the
obtained solutions.

To analyze the performance in the objective space,
Table 3 shows the IGD values for the different algorithms.
As can be observed from the results, NSGA-II-NBM
obtains a better IGD value than the others, while both the
NSGA-II and NSGA-II-WSCD-NBM algorithms gained
IGD values similar to each other.

We can further observe that the proposed methods
significantly outperform the original NSGA-II and the
state-of-the-art Mo-Ring-PSO-SCD. In terms of IGDX, the
proposed NSGA-II-WSCD-NBM performs significantly

better than both algorithms from the literature on all of
the six test problems. In the objective space, measured
by the IGD indicator, NSGA-II-NBM outperforms the
state-of-the-art in all of the used benchmarks, and the
original NSGA-II on all but one test problem.

According to the analysis of the results, the WSCD
variants lead to preserving distinct solutions with the same
objective function values. Therefore the NSGA-II-WSCD
shows improvement compared to NSGA-II in terms
of the decision-space related metric. In addition,
introducing neighborhood mutation helps to discover more
Pareto-optimal solutions during the search by increasing the
diversity of solutions.

In order to better understand the similarity
between the obtained solutions in both decision and
objective spaces, we present the obtained solutions
for the NSGA-II-WSCD-NBM, NSGA-II-WSCD,
NSGA-II-NBM and Mo-Ring-PSO-SCD in Figures 1
and 2. The figures show the runs which achieved the
median IGDX indicator for each of the algorithms.

As an example, in Figure 1, we illustrate the obtained
solutions in the decision space for the SSUF3 problem of
the algorithms. The same is shown for the objective space.
We can observe that all algorithms obtain an evenly spread
solution set along the PF in the objective space. However,
when we look at the decision space we see differences. As
can be seen from the Figures 1 and2, the obtained solutions
in the decision space for NSGA-II-WSCD-NBM are evenly
distributed along the PS while covering more points in each
of the subsets of the PS. This is because both the NBM
and WSCD methods could help the algorithm to locate and
maintain the captured optimal solutions in decision space in
each generation.

In NSGA-II-NBM, the obtained solutions are mostly
located in one of the subsets. This means that this algorithm
could not preserve the solutions in different subsets, since
the crowding distance is only used in objective space.
While the solutions in decision space are distributed in all
the equivalent subsets of the PS in the NSGA-II-WSCD
algorithm, we still lack an even spread along these subsets
(Figure 2c).

Altogether, we conclude that NSGA-II-WSCD which
uses the crowding distance in the decision space helps to
maintain most of the so far found solutions. However, due
to a lack of neighborhood mutation process, it could not find
all the solutions of the PS.

The results of the Mo-Ring-NSGA-II shown in the
Figures 1 and 2, also reveal that the PS could not be fully
covered by the algorithm and the solutions are not evenly
distributed along the PS.

In further experiments, we will investigate the impact of
the weights in the WSCD variants. Our preliminary studies
show that increasing the weight value in each of the spaces
improves the distribution of solutions in the corresponding
space, while deteriorating the distribution of solution in the
other space.
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(a) PS for
NSGA-II-WSCD-NBM (b) PS for NSGA-II-NBM (c) PS for NSGA-II-WSCD (d) PS for Mo-Ring-PSO-SCD

(e) PF for
NSGA-II-WSCD-NBM (f) PF for NSGA-II-NBM (g) PF for NSGA-II-WSCD (h) PF for Mo-Ring-PSO-SCD

Figure 1: Obtained solutions in decision and objective space for SSUF3 problem

(a) PS for
NSGA-II-WSCD-NBM (b) PS for NSGA-II-NBM (c) PS for NSGA-II-WSCD (d) PS for Mo-Ring-PSO-SCD

(e) PF for
NSGA-II-WSCD-NBM (f) PF for NSGA-II-NBM (g) PF for NSGA-II-WSCD (h) PF for Mo-Ring-PSO-SCD

Figure 2: Obtained solutions in decision and objective space for MMF4 problem

6 Conclusion

The purpose of the current study is to propose two
mechanisms for acquiring better approximations of the
PS in multimodal multi-objective problems. These two
mechanisms are (1) the WSCD method which combines
crowding distance in both objective and decision space,
and (2) a neighborhood Polynomial mutation. The two
proposed operators were included in different combinations
into the existing NSGA-II algorithm. In order to examine
the performance of the presented combination of operators,
we compare the algorithms with the original NSGA-II
algorithm as well as the state-of-the-art multimodal
algorithm from the literature (Mo-Ring-PSO-SCD) on six
different test problems. The IGDX and IGD performance
indicators are used to compare the performance of

the algorithms in decision and objective spaces,
respectively. The results show significant differences
between the proposed variants of NSGA-II-WSCD-NBM,
NSGA-II-WSCD, NSGA-II-NBM algorithms and the
existing algorithms in terms of approximations of the PS
and PF. The proposed algorithm NSGA-II-WSCD-NBM is
able to outperform the state-of-the-art Mo-Ring-PSO-SCD
and the standard NSGA-II on all of the test problems in
terms of approximating the PS, while at the same time
obtaining comparable IGD values.

For future work, we want to compare the proposed
NSGA-II-WSCD-NBM with other state-of-the-art
multimodal algorithms like those recently proposed
in.5, 7, 17 In addition, we will study the influence of the
weights in the WSCD variants.
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Table 2: IGDX values of different algorithms. An asterisk (*) indicates statistical significance compared to the respective
best algorithm

NSGA-II-WSCD-NBM NSGA-II-NBM NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II
SSUF1 0.063212 (1.817E-3) 0.075516 (9.316E-3) * 0.07923 (7.412E-3) * 0.07242 (7.267E-3) * 0.109946 (0.017274) *
SSUF3 0.01688 (2.885E-3) 0.01771 (3.956E-3) 0.089485 (7.2725E-2) * 0.038545 (1.18391E-2) * 0.083872 (4.0917E-2) *
MMF3 0.014856 (1.309E-3) 0.015017 (2.318E-3) 0.0.05839 (3.49894E-2) * 0.03063 (1.0334E-3) * 0.072747 (2.8699E-2) *
MMF4 0.041635 (4.949E-3) 0.058955 (1.0412E-2) * 0.057928 (1.0978E-2) * 0.045201 (5.714E-3) * 0.111808 (31111E-1) *
MMF5 0.113945 (4.388E-3) 0.129521 (1.7379E-2) * 0.144731 (1.1124E-2) * 0.125208 (9.125E-3) * 0.184868 (6.653E-2) *
MMF6 0.099212 (6.021E-3) 0.108116 (1.054E-2) * 0.124064 (1.2611E-2) * 0.106895 (9.113E-3) * 0.212675 (7.075113E-2) *

Table 3: IGD values of different algorithms. An asterisk (*) indicates statistical significance compared to the respective
best algorithm

NSGA-II-WSCD-NBM NSGA-II-NBM NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II
SSUF1 5.528E-3 (6.2E-4) * 4.6E-3 (1.16E-4) 5.441E-3 (3.22E-4) * 6.459 E-3 (8.19E-4) * 5.35E-3 (2.72E-4) *
SSUF3 1.4495E-2 (2.516E-3) 1.4452E-2 (2.497E-3) 1.6955E-2 (1.4602E-2)* 1.883E-2 (5.794E-3) * 1.6727E-2 (9.216E-3)
MMF3 1.2298 E-2 (2.123E-3) * 1.098E-2 (2.007E-3) 1.527E-2 (1.3291E-2) * 1.6865E-2 (4.86E-3) * 1.4027E-2 (9.412E-3) *
MMF4 5.347E-3 (7.62E-4) * 4.762E-2 (2.37E-4) 5.425E-3 (2.52E-4) * 7.047E-3 (9.98E-4) * 5.165E-3 (2.65E-4) *
MMF5 5.369E-3 (3.94E-4)* 4.595E-3 (1.73E-4) 5.588E-3 (3.24E-4) * 6.544E-3 (5.4E-4) * 5.403E-3 (3.2E-4) *
MMF6 5.433E-3 (4.57E-4) 4.589 E-3 (2.01E-4) 5.489E-3 (2.83E-4) * 6.44E-3 (7.58E-4) * 5.185E-3 (2.13E-4) *
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