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Abstract. Genetic Programming (GP) has been used in a variety of fields to learn the rela-
tionships between physical measurements of real-world problems. In this article, we combine
different techniques from the area of evolutionary optimization and, particularly, GP to solve a
fluid-dynamics problem: the Stokes flow around a rigid sphere. This serves as the starting point
to explore the potential of applying different GP techniques to such complex physical problems.
From the definition of the considered fluid-dynamics problem, six benchmark instances with
different lengths and complexities are derived. We use single- and multi-objective GP methods
and compare their performance using different objective functions. More precisely, we study
how model complexity, correlation and the consistency with physical laws (i.e. physical units
of measurement) can be included as different objective functions, and whether their inclusion
is beneficial to the overall search process. In addition, we include the concept of Coopera-
tive Coevolution, which maintains multiple independent populations of solutions, into our GP
implementations and explore the capabilities and limitations of such coevolution-based opti-
mization. We further propose a novel multi-phase approach, which alternates in the GP process
between phases of traditional optimization and a mutation-only phase to reduce the model com-
plexity. The results indicate that using multi-objective optimization is beneficial to the search
process and can help finding numerically correct solutions to the problems, especially when in-
cluding a transformed Spearman correlation as an additional optimization goal. Furthermore,
the inclusion of the physical units of measurement also helps guide the GP toward numerically
correct and physically meaningful equations. While the concept of coevolution did not lead to a
superior performance in all cases, the precomputation of additional features, and the resulting
reduction of the function set of the GP, leads to a drastic increase in performance and enables
the algorithms to solve even the most complex of our benchmark instances. In the future, we
aim to extend this research to more complex flows with multiple spheres and at higher Reynolds
numbers, which involve a large number of input features.
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1 INTRODUCTION

GP has been applied to a variety of applications to relate the physics of real-world phenom-
ena to their experimental measurements or numerical simulations. Typically in physics and
engineering applications, the goal of the optimization is not only to numerically predict vari-
ables accurately, but also to gain insight into the underlying physics and relations between input
variables. In that regard, the fact that GP produces human-readable mathematical models is
an advantage compared to other approaches such as Neural Networks (NN). In this article, we
combine different techniques from the area of multi-objective evolutionary optimization and
GP to solve a classical fluid-dynamics problem: the Stokes flow around a rigid sphere.

The fluid flow around a fixed rigid sphere is governed by a set of non-linear partial differ-
ential equations, the Navier-Stokes (NS) equations, and its nature depends upon the Reynolds
number, Re, a dimensionless quantity characterizing the ratio of inertial effects over viscous
effects within the fluid. Owing to the non-linearity of the NS equations, there is no general
analytical solution to this fluid-dynamics problem. However, when Re→ 0 (also referred to as
the Stokes limit, or Stokes flow) the NS equations can be approximately linearized, and an ana-
lytical solution to the steady-state flow over a sphere of radius a, subject to the far-field velocity
u∞, can be derived [20]. The streamlines of this flow are shown in Fig. 1.

The application of GP to this fundamental flow problem serves as a starting point for ex-
ploring the capabilities of different GP techniques in predicting the behavior of complex flows,
such as particle-laden flows. To that end, we derive in this work six test problem instances
with different lengths and complexities, as to benchmark and compare different GP approaches
and their ability to recover the analytical expression of this flow. Four different algorithm vari-
ants using classical methods as well as techniques from the field of coevolutionary optimization
methods are compared. In the field of evolutionary optimization, the co-evolution of different
components of the solutions has become increasingly popular in recent years, and this concept
has also been applied to GP [e.g. 19]. In addition to using the concept of Cooperative Coevolu-
tion (CC) and a special multi-Phase GP approach, we investigate the use of multiple objective
functions for the optimization. The single-objective fitness optimization is compared with 2-, 3-
and 4-objective versions of the different algorithms, resulting in 32 different algorithms to solve
the benchmark instances. As far as physical or engineering applications are concerned, a trained
model that explains the connection between input and output data should also be consistent with
the laws that govern their evolution. This means that, even though numerically correct predic-
tions can be obtained, for instance, by adding a length and a time, such solutions are not in line
with physical units and therefore of little value. For this reason, we additionally formalize the
consistency with the law of physics as an objective. We furthermore include the correlation and
complexity of the model as two objective functions. Our experiments also discuss the possible
influence of incorporating expert knowledge and the precomputation of features on the perfor-
mance of the GP process. The insights provided by this study serve as a basis for exploring the
capabilities of GP in solving complex fluid-dynamics problems.

The remainder of this article is organized as follows. In Section 2, we derive the Stokes flow
around a rigid sphere and discuss its utility for the modeling of particle-laden flows. In Sec-
tion 3, we briefly outline the basics of Genetic Programming and the approaches that have been
used in the literature so far with regard to Cooperative Coevolution and the inclusion of phys-
ical measurements in the GP process. Subsequently, in Section 4, we introduce our proposed
GP variants and the objective functions we use in the optimization process. The benchmark
instances and their corresponding function- and terminal sets are outlined in Section 5. Finally,
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we shows the results of our experimental evaluation in Section 6, and the article is concluded in
Section 7.

2 THE STOKES FLOW AROUND A SPHERE

Flows that are laden with particles are at the heart of many natural processes and engineering
applications, ranging from the flow of sediments in river beds to the combustion of fuel and
biomass in furnaces. Understanding and predicting such processes typically require the devel-
opment of reduced models to estimate the hydrodynamics forces acting on a particle carried
within a flow, based on the averaged properties of that flow. When viscous effects dominate in-
ertial effects, the Reynolds number of a rigid spherical particle of radius a, subject to a far-field
flow with velocity u∞ (‖u∞‖ = u∞), satisfies

Re =
2 a ρ u∞

µ
� 1 , (1)

where ρ and µ are the density and viscosity of the fluid, respectively. It this regime, it is possible
to derive an analytical solution of the flow around the sphere, which is axi-symmetric about the
direction of the far-field velocity. In a spherical coordinate system whose origin is the center
of the sphere, and whose zenith is aligned with u∞, this flow can be expressed in terms of the
stream-function

ψ(r, θ) = u∞ sin2 θ

(
r2

2
+
a3

4 r
− 3 a r

4

)
, (2)

which results in the velocity field
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)
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This, in turn, enables the direct calculation of the resultant of the fluid forces acting on that
particle [20], which reads

F = 6π aµu∞ . (5)

As soon as inertial effects become significant or if other particles are present in the vicinity
of the particle under consideration, it becomes impossible to derive such an analytical solution,
and one must rely on the results of experiments or numerical simulations to estimate the fluid
forces acting on the particle. Owing to the human-readable nature of the models it produces,
GP has the potential to provide a new insight into the non-linear physics of the flow through
ensembles of particles at varying Reynolds number, and can therefore lead to the development
of better reduced models for studying the behavior of particle-laden flows. In the following
sections, and with the aim to explore this potential, we apply GP to the case of the Stokes
flow around a fixed rigid sphere and study its ability to recover the analytical expressions of its
velocity field, as given in Eqs. (3) and (4). The six benchmark instances that we derive from the
Stokes problem are described in detail in Section 5.

3 GENETIC PROGRAMMING AND RELATED WORK

Genetic Programming (GP) is a subfield of Evolutionary Algorithms (EA) and was popular-
ized by the work of Koza [9]. EA makes use of the Darwinian principle of survival of the fittest
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Figure 1: Streamlines of the Stokes flow around a rigid sphere, colored by the magnitude of
velocity.

in order to optimize a given problem. Hence, a problem-dependent fitness function is used to
evaluate the quality of a solution, usually in terms of how well the prediction of the GP model
matches the training data that serves as input. Inside the GP process, evolutionary principles
(selection, recombination of models, mutation operators) are used to perform a guided search
towards optimal solutions. This way, promising individuals are created and refined iteratively
until a stopping criterion is reached.

Evolutionary Multi-objective Optimization (EMO) is an important subfield of EA. Multi-
objective Optimization Problems (MOOP) have not only one, but multiple objective conflicting
functions that are to be optimized simultaneously. Mathematically, a multi-objective optimiza-
tion problem can be formulated as follows:

min f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x ∈ Ω
(6)

A MOOP maps the search space Ω to the objective spaceM of dimension m. The definition
of Ω depends on the encoding used for the problem. While in classical EAs, such encodings
are often vectors of binary or real numbers, in the field of GP, the search space is the set of all
possible models that can be created using the provided terminal symbols T and functions F .

Since the problem consists of more than one objective, one single optimal solution cannot be
ascertained anymore. Instead, the concept of Pareto-dominance is used in many of the existing
EMO algorithms. A solution x1 is a solution that dominates the solution x2 if the following
conditions are met [4]: (1) The solution x1 is no worse than x2 in all objectives, i.e. fj(x1) ≤
fj(x2) for all j = 1 . . .m. (2) The solution x1 is strictly better than x2 in at least one objective,
i.e. fj(x1) < fj(x2) for at least one j = 1 . . .m. The solution of a MOOP is a set of so-called
Pareto-optimal solutions which are not dominated by any other solution in the search space
Ω. By using the concept of domination together with other principles, EMO algorithms aim to
provide an approximated set of Pareto-optimal solutions.

Applying the principles of evolution, GP aims at identifying a relation between a given input
and output. A solution in GP is represented by a syntax tree consisting of terminals (input
variables) and functions that are applied to them. This tree can be parsed into an executable
program or equation. Special mechanisms for recombination and mutation on a syntax tree
during the evolutionary process are required: For example, crossover can be performed by
exchanging branches of two tree individuals; Mutation can be performed by replacing one node
or branch by an other randomly chosen node or branch. For the fitness function, a distance
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measure between the produced and the desired output is often used such as the rooted mean
squared error.

In the basic version of GP, the execution of the program manipulates numerical values with-
out considering their physical units. This leads to situations in which non-physical solutions
can be produced; a result which is of little interest for physics or engineering applications. The
consideration of physical units inside GP was first proposed in [8], where special operators were
applied in order to repair incompatible units. As an example: an operation adding a length and
a time is repaired by artificially transforming a time into a length. This concept inspired mul-
tiple other works and has, since then, been implemented in single- as well as multi-objective
GP algorithms [e.g. 1, 15, 6]. A different development line in dimensionally aware GP focuses
on grammar-based GP, where constraints given by physical laws are already included in the
rules of the programming grammar [e.g. 14, 18]. Another noteworthy concept was presented
in [21], where strongly typed GP was used to generate viable method call sequences for soft-
ware testing. This approach limits the search space only to feasible solutions and could be
transferred to our problem by only allowing for dimensionally meaningful operations. A recent
work on dimensionally aware GP was presented in [12], where an approach similar to ours is
proposed: For each dimensionally incompatible GP operation, a penalty is calculated and ag-
gregated throughout an individual. Minimizing this penalty value is an additional objective of
the algorithm. Unlike the previously mentioned works, this method allows the initialization of
physically non-meaningful solutions and enables them to develop towards physically meaning-
ful solutions.

In most applications, GP has been used on a relatively small feature space, and research
on high-dimensional GP for regression problems remains sparse. Some work has been done
recently to include concepts like Cooperative Coevolution (CC) into the field of GP [e.g. 19],
which has been used in many evolutionary algorithms as a successful optimization technique
[e.g. 2, 23]. While CC, and more specifically the separation of solutions into multiple com-
ponents, has mostly been used in the EA community as a technique to solve high-dimensional
problems [22], CC-based approaches have been used in GP mostly as a way to boost per-
formance, irrespective of the number of features. Applying Cooperative co-evolutionary GP
(CCGP) on a problem requires (1) splitting the original feature space into smaller sets to cre-
ate subsolutions as well as (2) merging partial solutions into one combined solution. In [19],
the authors identified three different levels on which the merging of partial solutions in CCGP
can be performed: genotype, feature and ensemble level. While fusion on a genotype level is
the equivalent of the method originally proposed by Potter and De Jong [17] for evolutionary
algorithms, fusion on feature [10, 11] and ensemble level [5, 13, 16] have been studied more
extensively in the literature. The evaluation of the three proposed approaches on an image
denoising problem showed that the ensemble method performed best on the given task. The
authors also demonstrated that Cooperative coevolution can boost the performance of GP on
high-dimensional problems compared to other modern, non-CC GP approaches.

4 PROPOSED METHODS

In this work, we explore the potential of various combinations of GP-techniques for solving
Stokes Flow-related benchmarks. We use CC-based single- and multi-objective GP methods
and compare their performance using different objective functions. More precisely, we inves-
tigate how length, correlation and the consistency with physical laws (i.e. physical units of
measurement as, for instance, introduced in [8]) can be included as different objective func-
tions, and whether their inclusion is beneficial to the overall search process. In total, we use
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four different variants of GP, along with 8 combinations of objective functions, which results
in 32 different optimization methods. In the following paragraphs, we start by describing the
four base-algorithm variants, before going into the details of the proposed objective function
combinations.

4.1 Algorithm Variants

Standard GP: The first algorithm used in this article is a standard GP algorithm, abbreviated
as S-GP, which is based on a classical (µ+ λ)-reproduction scheme and follows its implemen-
tation in the deap-framework1. The algorithm produces in each generation from a population
of size µ a set of λ offspring solutions, which are then evaluated. The best out of the (µ + λ)
solutions are taken over to the next generation of the algorithm. This environmental selection
follows the procedure of the NSGA-II algorithm [3], while the selection of the parent-solutions
for the reproduction are chosen at random. The new λ solutions are created either by repeat-
edly recombining two random solutions from the current population, or by applying mutation
to a random individual. The mutation and recombination operators are selected at random from
different operators every time a recombination/mutation is carried out.

For recombination, the algorithm chooses between two crossover operators: One-point crossover
randomly selects a cut-off point in two individuals and swaps the selected branches. Leaf-based
one-point crossover does so as well, while giving higher probability to leaves being exchanged
between individuals rather than entire branches. For mutation, the algorithm chooses between
uniform mutation, node replacement, insertion mutation and shrink mutation, all of which are
chosen with equal probability. The uniform mutation replaces a randomly selected subtree by
a randomly generated new branch. Node replacement, as the name suggests, chooses one node
at random and replaces this function- or terminal-symbol with another one of the same arity.
The insertion mutation creates a new subtree and inserts it at a random position, using the pre-
vious branch on that position as a subcomponent of the created subtree. Shrink mutation aims
at decreasing the size of an individual by replacing a branch with one of its arguments.

Multi-Phase GP: The second algorithm is a Multi-Phase GP (MP-GP). The MP-GP is a vari-
ation of the S-GP above, which alternates between two phases of optimization behavior. In the
first phase, the algorithm behaves identically to the S-GP. In the second phase, the crossover op-
erators are disabled and the probabilities of the mutation operators to choose from are changed.
More precisely, in this second phase of the optimization, the algorithm only applies node re-
placement mutation and shrink mutation, where the former is chosen with a probability of 2/3
and the latter with a probability 1/3. This two-stage approach avoids extensive growing of the
models and allows refinements through a frequent mutation of the population. This proves par-
ticularly useful since not all of the algorithm variants employ the length of the individual as an
objective, which in turn can lead to extensive growing of the trees. Another issue which was
often observed in initial experiments is that solutions which only differ from an optimal model
in one node may obtain a bad fitness, and using crossover is not likely to produce the required
small change. Moreover, the replacement of one node may have a large impact on the actual
fitness (for instance, changing an addition into a subtraction), which results in a less smooth
fitness landscape. Therefore, enabling the algorithm to perform this second phase with a focus
on small adjustments and shrinking the tree can be beneficial to find optimal solutions.

1https://github.com/DEAP/deap
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Algorithm 1 Pseudocode of the Coevolutionary Genetic Programming (CC-GP)
Input: Training Data X , Terminals T , Functions F , Crossover probability pc, Mutation prob-

ability pm, Number of subpopulations v
Output: Set of non-dominated Solutions S

1: S0 ← Random initial population of Solutions for upper-level GP
2: r0 ← Choose random solution from S0 as representative
3: A0 ← Empty Pareto-dominance-based Archive
4: for i = 1 to v do
5: Si ← Random initial population of Solutions for i−th lower-level GP
6: ri ← Choose random solution from Si as representative
7: Ai ← Empty Pareto-dominance-based Archive
8: end for
9: repeat

10: for i = 1 to v do
11: if i is part of r0 then
12: Si, Ai ← Optimize Si using standard GP for k generations
13: ri ← updateRepresentative(Ai)
14: else
15: ri ← Choose random solution from Si as representative
16: end if
17: end for
18: S0, A0 ← Optimize S0 using standard GP for k generations
19: r0 ← updateRepresentative(A0)
20: until total #Evaluations used
21: return

⋃v
i=0Ai

Cooperative-Coevolution-based GP: Our CC-based approach, abbreviated CC-GP, divides
the problem into multiple, independent populations, with the intent that each population could,
in theory, evolve different aspects of the original problem. As a result, multiple transformed fea-
tures are created which serve as inputs to another, higher-level GP process. Lower- and higher-
level GP populations are evolved cooperatively to enable the prediction of complex physical
relationships in the data. This means that function evaluations are only carried out coopera-
tively, by taking a representative from each of the lower-level and upper-level populations and
building a combined individual which is then evaluated using the training data.

The structure of the CC-GP algorithm is shown in Algorithm 1. In the main loop of the
algorithm, each lower-level population (sometimes also referred to as subpopulation) is evolved
using the standard GP method for a fixed amount of generations. After the last iteration of
each population’s optimization process, a representative solution is chosen from the current
population, and this representative is used in the subsequent function evaluations of the other
populations. After all lower-level populations have been evolved, the higher-level GP is used
to optimize models that represent combinations of the representatives of the lower-level pop-
ulations. The upper-level population uses only these representatives as input features, while
the lower-level populations operate on the terminal set and input features that are given by the
problem (i.e. that are also used in the above S-GP and MP-GP).

In order to use the computational budget more efficiently, the conditional statement of line
11 in Algorithm 1 is used to check whether the current, about-to-be-optimized subpopulation is
part of the current representative of the upper-level population. If that is not the case, then the
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optimization of the lower-level population would be meaningless, since all function evaluations
would return the same values (as they only depend on the values of all other representatives).
Therefore, we assume that if a population i was not used in the current upper-level GP, the
feature that was given by the representative of subpopulation i may not have been useful, and
we replace it with a new, random representative.

Multi-Phase CC-GP: The last algorithm considered in this work, MP-CC-GP, is a combina-
tion of the two methods described above. It follows the same structure as the CC-GP, with the
addition that it also alternates between the two optimization phases. The switch between the
normal optimization (including crossover) and the mutation-only phase is done at the beginning
of the main loop, i.e. the algorithm optimizes each lower-level and the upper-level population
once with crossover and mutation, followed by one iteration with mutation only, as described
above.

4.2 Objective Function Specification

To examine the effect of different objective functions, and the benefit of using multi-objective
GP as opposed to a single-objective version, we define four different fitness functions. They
are related to the quality of the prediction, the correlation with the training data, the physical
correctness of the produced equations, and the complexity of the model. These four fitness
functions are used in different combinations in the experiments below.

Maximum Absolute Error (f1): The first objective function is related to the error between
the prediction of the GP-produced model and the actual, expected output in the data set. Since
we are interested in an accurate prediction of the physical relationship between the data, we
decided to use the maximum absolute error over the data set, i.e. during the training, the value
of f1 is the absolute error of the worst data point within the training data set. By using the
maximum error, we obtain a solution which guarantees that all predictions have at least a certain
quality. Preliminary experiments have shown that this leads more often to exact and physically
correct models compared to the rooted mean squared error.

Transformed Spearman Correlation (f2): The second objective function is a transformed
version of the Spearman Correlation ρ between the data set and the predictions. By using
this correlation coefficient to guide the optimization, the GP algorithm may favor models which
themselves are not numerically accurate, but are highly correlated with the desired output. Such
models can, for instance, be multiplicative or additive components within a numerically correct
model. A multi-objective EA optimizing f2 has the ability to keep such models in the population
over the generations, which can then be used in subsequent recombination steps to approximate
numerically correct results. As an example, the term u∞ · cos(θ) in Benchmark Instance 3 (see
below) would show a high correlation with the data set, even though the actual prediction of the
outcome ur may still be poor. An EA which optimizes with regard to f2, however, may consider
this as a good solution and keep it in the population for further refinement.

To utilize the correlation coefficient in the optimization, we transform its value to fit our
requirements. The range of ρ lies between -1 and 1, with a high coefficient indicating a strong
positive (non-linear or linear) correlation, and a low value of ρ indicates a strong negative cor-
relation. Both cases are, however, useful for the optimization, as building blocks with a strong
negative correlation may still be helpful when used in a subtraction, for instance. In addition, our
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objective function are always minimized, which leads to a transformed objective f2 := 1− |ρ|.
The worst possible value of f2 is 1.0, which indicates no correlation at all, while smaller values
of f2 indicate some kind of connection (positive or negative) between the model and the data
set.

In the CC-based approaches, a small adjustment is made to this objective: When the opti-
mization of one of the lower-level populations is carried out, the value of f2 is computed using
the output of only the current individual of the subpopulation (which represents only a branch
within the whole, combined tree model). In contrast, the upper-level GP uses the actual predic-
tion from the combined model (i.e. the model that incorporates all lower-level representatives
into the upper-level one). This way, the GP judges the features developed by the lower-level
GP processes based on how correlated this feature is with the target data, and therefore obtains
a more accurate measure of how useful the developed feature of this subpopulation is to the
whole, combined, CC-based optimization.

Dimension Penalty (f3): As explained previously in this article, it may be useful to guide the
optimization as to find physically correct models, which (1) do not violate the laws of physics in
their calculations and (2) predict the same unit of measurement as the unit of the target variable.
To achieve both of these goals, we model the third objective function f3 in the following way.

In our approach, contrary to the method used in [8], we do not use a special operator to
adjust units to each other. Instead, whenever incompatible units are used in an operator, the
operation is still carried out on the numerical values of the arguments, and the unit of the first
input argument is used as the unit of the result of the node (e.g. in case a length and a time
are added, the operation is carried out and the result is considered to be a length). To guide the
search towards evolving physically meaningful equations, a penalty value of 1.0 is added every
time such a nonphysical operation is carried out. This penalty value is accumulated along the
tree together with the outputs of each function node. As a result, the root of the tree returns a
value for the prediction of the training data, its physical units and a value for the total penalty
occurring in the execution of that tree. Since we know that the expected result is a model that
outputs, for instance, a velocity, any physical unit that is not expressed in meters/second
is not meaningful for the purpose of the application. Therefore, an additional penalty based
on the difference between the obtained units of the tree and the expected units of the output is
added. This additional penalty is based on the distances between the exponents of the SI-base
units (plus the unit radian for angles in this work) of which the final unit is composed. As an
example, velocity can be written as m1 · s−1. If our model output a result in the units m2 · s3,
the distances in the respective exponents are summed up as |1 − 2| + | − 1 − 3| = 1 + 4 = 5.
The value of the objective function f3 is defined as the sum of the accumulated penalty during
tree executing and the dimension-penalty for not matching the correct output units.

Length of Individual (f4): The last of the four objective functions considers the length of
the model, i.e. the number of nodes (function and terminal symbols) that are used to represent
the model in its tree-based representation. This can be seen as a measure of the complexity
of the model in terms of necessary mathematical operations. In the literature, the length of
the solutions is often used in a weighted sum together with the fitness / error to avoid extensive
growth of the trees. In our approach, instead, we employ the length as its own objective function.
In the CC-based algorithms, the length refers to the length of the complete, combined individual,
i.e. the model that incorporates all lower-level trees into the upper-level one.
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4.3 Conflicts of Objective Functions

In contrast to the usual assumption in multi-objective optimization that the objective func-
tions are somewhat in conflict with each other, this does not have to be the case between f1 and
f2. It is clear that the model which perfectly optimizes f1 will also produce an optimal value for
f2. This property may, however, not be true in earlier generations of the GP, since there exist op-
timal solutions with regard to f2 with very poor performance in f1. A similar expectation can be
formulated for the relation between f1 and f3, although conflict may be stronger between these
two functions. It is, on the one hand, clear that the optimal model for f1 may, most probably,
also be physically correct. This however is only true if there exists an actual physically correct
relationship between the variables, which does not have to be the case for all applications. On
the other hand, it is easy to construct solutions which are physically correct and match the units
of the target variable, but perform horribly in a numerical sense with regard to f1 and f2. In
conclusion, we can assume that there is, at least for sub-optimal solutions, a conflict between
all four objective functions, although we can expect the conflict to vanish, the closer the models
get to an optimal prediction of the data. It should also be noted that a vanishing conflict is, for
our application, desirable, since the objectives f2 and f4 are merely tools to guide the algorithm
to better solutions, while the objectives that are actually important for the application are f1 and
f3.

5 BENCHMARK INSTANCES, FUNCTION SET AND TERMINAL SET

From the definition of the fluid-dynamics problem described in Section 2, we derive six
problem instances with varying complexities, alongside with the used function and terminal
sets. In the following, besides the variables and derived features of the problem, the terminal
sets T include a set of constants, which we set as C = {4, 3, 2, 1, 1

2
, 1
4
}.

Benchmark Instance 1: Predict |u| from ux and uy.

|u| =
√
u2x + u2y (7)

Instance 1 is a rather simple equation and involves only 2 variables. To solve this in-
stance, 4 computational operations are necessary (two multiplications or square-operations,
one addition and one square root operation). The function set for this instance is given as
F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦),

√
◦} and the terminal set as T = C ∪ {ux, uy}, where ◦

denotes the input of the unary functions.

Benchmark Instance 2: Predict ux from ur, uθ and θ.

ux = ur · cos(θ)− uθ · sin(θ) (8)

Instance 2 is more complex, first due to its length (3 variables and 5 computational opera-
tions), but also due to the inclusion of trigonometric functions. Compared to the other unary
functions such as the square root, the power function or the multiplicative inverse, the trigono-
metric functions sin(◦) and cos(◦) are not monotonously increasing or decreasing with their
input argument. Therefore, the fitness landscape in this problem instance may be more com-
plex, and finding the optimal model to solve it may be more challenging for the GP variants.
The function set for this instance is given as F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦)} and the
terminal set as T = C ∪ {ur, uθ, θ}.
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Benchmark Instance 3: Predict ur from u∞, θ, a and r.

ur = u∞ · cos(θ) ·
(

1 +
a3

2 · r3
− 3 · a

2 · r

)
(9)

Instance 3 is the most complex and involves 4 variables and 13 computational operations
(given its function set F , defined below) in its simplified form as given in Equation (9). How-
ever, the GP may not necessarily end up with the simplification of multiplying the first two
terms after the addition and subtraction in the parenthesis, and the expanded form of this equa-
tion needs 19 operations. Instance 3 further involves a trigonometric function, which adds the
same additional complexity as described in Instance 2. The function and terminal sets for this
instance are F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦)} and T = C ∪ {a, r, u∞, θ}.

Benchmark Instance 4: The basic relation between input and output variables in Instance 4
is identical to the one in Instance 1, i.e. the same equation needs to be learned. However, to
examine the effect of preprocessing variables using expert knowledge or other computational
techniques, we change the terminal and function sets compared to Instance 1. We use some
of the unary function operators in the original set F and perform their operation of the input
variables ux and uy. As a results, we obtain a smaller set of functions, but in exchange a
much larger set of terminal symbols for the GP process. The sets for Instance 4 are F =
{+,−,×,

√
◦} and T = C ∪ {ux, uy} ∪ {u2x, u3x, 1

ux
, u2y, u

3
y,

1
uy
}. Since we assume that the

functions sin(◦) and cos(◦) can only be applied to angles in order to be physically meaningful,
these two functions are not used on the velocities ux and uy. While the effect of a much larger
terminal set is explored in our experiments (see Section 6.4), from a theoretical point of view
Instance 4 is less complex than Instance 1, since only two operations are now necessary to
assemble the correct equation.

Benchmark Instance 5: Instance 5 follows the same equation as Instance 2, but with changed
function and terminal sets, as done in Instance 4. Again, trigonometric functions are applied
to angles, while the other functions are applied to the velocities. As a result, we obtain F =
{+,−,×} and T = C ∪ {ur, uθ, θ} ∪ {u2r, u3r, 1

ur
, u2θ, u

3
θ,

1
uθ
, sin(θ), cos(θ)}.

Benchmark Instance 6: As done in Instances 4 and 5, we derive Instance 6 from the equation
of Instance 3 and change the function and terminal sets to F = {+,−,×} and T = C ∪
{a, r, u∞, θ} ∪ {a2, a3, 1a , r

2, r3, 1
r
, u2∞, u

3
∞,

1
u∞
, sin(θ), cos(θ)}. As a result, while the terminal

set is much larger than that of Instance 3, the complexity in terms of the necessary number of
operations is smaller (10 operations).

For the above-mentioned benchmark instances, we create a data set of 366 data points using a
far-field velocity u∞ = 1.0 and a radius of the sphere of a = 1.0. The data set is randomly split
in an 80/20 ratio, i.e. into 292 data points in the training set and 74 data points in the test set.

6 EVALUATION

In conducting experiments, we aim to compare various aspects of the algorithms and to com-
pare the problems with each other. More precisely, we aim to answer the following questions:

11
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1. How are the numerical performance and physical correctness of the results affected by
the inclusion of additional objectives, especially of correlation and dimension-penalty?
(Section 6.1)

2. How do the Cooperative Coevolution-based GP methods perform compared to the classi-
cal approaches? (Section 6.2)

3. How is performance affected by the multi-phase approach with additional mutation-only
phases? (Section 6.3)

4. How is performance affected by the precomputation of features, and the corresponding
changes in the function- and terminal-sets of the GP? (Section 6.4)

In this section, we answer these questions in detail by comparing the results of 32 combina-
tions of algorithms and fitness functions on the six benchmark instances described in Section 5.
The first objective function f1 is always part of the optimization, and is paired with all possi-
ble combinations of the other three objectives, as seen in Table 1. For each algorithm variant
and benchmark instance, we perform 31 independent runs. The parameters are set as follows:
The population size is µ = λ = 2000 for all algorithms. The probabilities for crossover and
mutation are set to 0.5 and 0.5 respectively, except in the Multi-phase approaches, where no
crossover is used and the mutation probability is set to 1.0 instead. The number of generations
before a switch between normal optimization and mutation-only phase is set to 20. In the CC-
based algorithms, all populations are optimized for 20 generations before moving on to the next
one, and a switch of the phase in the CC-MP-GP is done once all lower-level and the upper-
level GPs have been optimized once. The number of lower-level populations in CC-GP and
CC-MP-GP is set to 2. In the leaf-based one-point crossover the probability to select a terminal
symbol is set to 0.9. The maximum depth of the initial random solutions is set to 4. During
the optimization, created solutions are restricted to a maximum length of 50 for the S-GP and
the MP-GP, and a maximum length of 15 for the CC-based variants. The smaller limit in the
CC-based algorithms applies to each population, but the combination of the representatives to
form one final individual can, of course, still create much longer models. All experiments stop
after 1, 600, 000 function evaluations, i.e. after 800 generations of optimization. The algorithms
are implemented using the deap-framework2 version 1.3.1 [7] and the pint package3 version
0.16.1.

In order to examine the quality of solutions, Table 1 shows the results of the experiments in
terms of success rates, i.e. the numbers show how many out of the 31 runs achieved a certain
goal. We compare two different types of success rates:

1. The first number represents the physical and numerical success rate. It shows how many
runs have achieved a perfect numerical results, which we consider as f1 < 1e−15 and at
the same time delivered a model that satisfies f3 = 0 and therefore delivered the correct
units of measurement in a physically correct way.

2. The second number in each cell shows the numerical success rate only, i.e. how many
models delivered a maximum absolute error of f1 < 1e−15, regardless of an existing
dimension penalty in f3.

2https://github.com/DEAP/deap
3https://github.com/hgrecco/pint
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Objectives 1 2 3 4 5 6

S-GP

f1 - / - 1 / 1 - / - 30 / 31 2 / 4 - / 17
f1, f2 30 / 31 1 / 1 - / 5 31 / 31 3 / 5 - / 31
f1, f3 2 / 2 - / - - / - 31 / 31 18 / 18 7 / 7
f1, f4 - / - - / - - / - 31 / 31 10 / 10 - / -
f1, f2, f3 31 / 31 8 / 8 13 / 13 31 / 31 25 / 25 27 / 28
f1, f2, f4 31 / 31 - / - - / - 31 / 31 11 / 13 - / 4
f1, f3, f4 - / - - / - - / - 31 / 31 13 / 14 - / -
f1, f2, f3, f4 31 / 31 1 / 1 - / 1 31 / 31 29 / 29 - / 6

MP-GP

f1 - / - - / - - / - 28 / 30 3 / 4 - / 17
f1, f2 30 / 30 3 / 3 - / 3 31 / 31 3 / 5 - / 31
f1, f3 - / - - / - - / - 31 / 31 17 / 18 7 / 7
f1, f4 - / - - / - - / - 31 / 31 3 / 3 - / -
f1, f2, f3 30 / 30 6 / 6 4 / 7 31 / 31 25 / 25 22 / 22
f1, f2, f4 28 / 28 - / - - / - 31 / 31 4 / 4 - / -
f1, f3, f4 1 / 1 - / - - / - 31 / 31 2 / 2 - / -
f1, f2, f3, f4 31 / 31 - / - - / - 31 / 31 14 / 14 - / -

CC-GP

f1 1 / 1 - / - - / - 16 / 17 9 / 11 - / 1
f1, f2 29 / 31 - / - - / - 29 / 31 5 / 7 - / 8
f1, f3 4 / 4 - / - - / - 26 / 26 14 / 14 - / -
f1, f4 - / - - / - - / - 28 / 28 2 / 2 - / -
f1, f2, f3 27 / 27 6 / 6 - / - 29 / 29 24 / 24 2 / 3
f1, f2, f4 31 / 31 - / - - / - 31 / 31 5 / 8 - / -
f1, f3, f4 1 / 1 - / - - / - 22 / 22 11 / 12 - / -
f1, f2, f3, f4 28 / 28 - / 1 - / - 29 / 29 15 / 17 - / -

MP-CC-GP

f1 - / - - / - - / - 19 / 20 8 / 9 - / 3
f1, f2 30 / 31 - / - - / - 30 / 30 4 / 7 - / 9
f1, f3 2 / 2 - / - - / - 28 / 28 20 / 20 - / 1
f1, f4 2 / 2 - / - - / - 28 / 28 1 / 1 - / -
f1, f2, f3 28 / 28 5 / 5 - / - 29 / 30 21 / 21 - / 4
f1, f2, f4 30 / 30 2 / 2 - / - 29 / 29 3 / 4 - / -
f1, f3, f4 2 / 2 - / - - / - 21 / 21 4 / 4 - / -
f1, f2, f3, f4 29 / 29 - / - - / - 29 / 29 12 / 12 - / -

Table 1: Success rates for the six benchmark instances in terms of numerically and physically
correct results (first number) and numerically correct results only (second number). A value of
0 is shown as a dash.

In addition, we take a close look at the actual numerical results. Table 2 shows the average
values obtained for f1 over the 31 independent runs. For each of the benchmark instances
(each of the columns), the respective best performance is marked in bold. A one-sided Mann-
Whitney-U statistical test was performed for each algorithm to test whether its performance was
significantly worse than that of the respective best algorithm for that benchmark. A difference
is considered significant for p < 0.05 and is marked with an asterisk in Table 2, while all
non-significant results are printed in bold font.

All analyses in this section are performed on the test set, which was not available to the algo-
rithms during the optimization process. In general, the observed performance in all experiments
does not differ significantly between the test set and the training set, which indicates that none
of the algorithms suffers from a large amount of overfitting.
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6.1 The Effect of Adding Additional Objectives

First, we take a look at how the final performance, numerically and physically, is impacted
by the inclusion of additional objectives.

The effect of f2: For the S-GP, we can see in Table 1 that the (f1, f2)-version achieves much
higher success rates than the single-objective version which only uses f1, especially in Instances
1, 2 and 6. This effect is even larger when looking at the other combinations with vs. without
f2. S-GP with (f1, f3) can, for instance, only solve Instance 1 twice, and cannot solve Instances
2 and 3 at all, while the same algorithm with f2 as an additional objective solves these instances
31, 8 and 13 times, respectively. Adding f2 to the 3-objective version (f1, f3, f4) increases
the performance from 0 to 31 successful runs in Instance 1 and from 14 to 29 numerically
successful runs in Instance 5. For both the S-GP and the MP-GP we observe that in none of the
objective combinations and for none of the benchmarks has the inclusion of f2 led to a decrease
in the success rates, both numerically and physically. For the CC-based algorithms, we can
observe a similar picture, with the only exceptions in Instance 5, where the (f1, f2) version
does not perform better than using f1 only. We can further observe that the effect of only
adding f2 to the f1-version of any of the algorithms in Instances 2 and 5 (which share the same
characteristics) is not as powerful as for the other problem Instances. This may indicate that
the positive effect of optimizing the correlation is weaker when non-monotonous, trigonometric
functions are involved. In conclusion, we can clearly see the benefit of optimizing correlation
in almost all of the experiments, which supports our hypothesis that this enables the algorithm
to appreciate and reuse smaller, correlated building blocks within the optimization process.

The effect of f3: The impact of the inclusion of physical meaning in the optimization process
is most interesting. In principle, this adds another layer of difficulty to the problem, as the
expectations to an optimal solution are higher than only finding a numerical optimum. When
we compare the (f1)-only algorithms with their (f1, f3) counterparts, we can see that there
are a number of instances for which there are positive effects, but the boost in performance
is not as strong as the one observed for f2. In some cases, the consideration of f3 even has
a negative effect on outcome, both numerically and physically. An interesting observation in
this case is that the effect in Instance 5 is usually positive, and that the same is true for the
most complicated Instances 3 and 6. Here, the (f1, f2) variants, especially, often did not find
any physically correct equations, even though they were able to find numerical ones. After the
inclusion of f3, the (f1, f2, f3) versions were able to find more numerically, and also physically
correct models. A reason for this may lie in the created training data. In our generated data
samples, the value for u∞ is constant. Therefore, a purely numerical optimization does not need
to multiply it to the model (see Eq. (9)) to obtain numerically correct results. A physically-aware
algorithm however, can discover this relationship in the data based on the units of measurement,
even though the data of the application may be biased in such a way. In general, even though
a strictly positive effect can not be seen in all cases, the inclusion of physical units into the
algorithm can be seen as an advancement. If the user is interested in gaining insight on the
workings of the application and what the physical relations are between the input parameters,
the slightly lower success rates may be a small price to pay for ultimately obtaining physically
meaningful models.
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The effect of f4: Using the length of a model as an optimization criteria has, in most cases,
a negative effect on the success rates of the algorithms. We can, however, observe a positive
effect in some instances for the S-GP and the CC-GP. This makes sense since the additional
mutation phase in the other two algorithms already aims to reduce the size of the models during
the optimization, while the S-GP and CC-GP may still suffer from an excessive growth of the
trees, and therefore have a higher potential to actually benefit from using f4.

In summary, we can conclude that solving GP problems with multiple objectives is certainly
superior to the single-objective version which only uses f1. It is not strictly better to use any
additional objective in all cases, but for every instance and for every algorithm there exists at
least one of the multi-objective versions that performed strictly better in both success rates com-
pared to the single-objective version. The largest benefit came from using f2, which improved
performance dramatically in almost all of the experiments.

6.2 Performance of Coevolutionary Algorithms

Next, we take a close look at the performance of the two CC-based algorithms in comparison
with their traditional counterparts. Overall, we can not observe a strictly positive effect of using
the coevolutionary approach in our experiments. For Instances 3, 4 and 6, all success rates of
the CC-GP are lower than the ones of the S-GP, and similarly the results of the MP-CC-GP are
worse than the ones of the MP-GP. We can, however, observe a certain impact for the Instances
1 and 5. In Instance 1 and one case of Instance 2, the success rates are slightly higher in the CC-
based approaches. This impact, however, is not particularly strong, and the small changes in the
success rates (e.g. 2 vs. 0 solved runs and 4 vs. 2 solved runs in the (f1, f3) algorithms) can also
be caused by statistical effects. This is also supported by the fact that the average performances
for these cases (see Table 2) do not deviate much, and in some cases the average performance is
slightly lower even though less instances are solved correctly. Therefore, we can not observe a
negative effect for Instance 1 as for some of the other instances, but the slightly higher success
rates of the CC-algorithms can also not reliably indicate a superior performance. One case
where we can observe a larger positive effect is Instance 5 when we perform a single-objective
optimization with only f1. The CC-GP variant solves 9/11 instances (physically/numerically),
while the normal S-GP only achieves success rates of 2/4. On the other hand, we can see in
Table 2 that the average fitness of S-GP is actually smaller than the one of CC-GP. To examine
this effect in more detail, we show the boxplots of the numerically best results for this case in
Fig. 2a. We can observe clearly that on the one hand, the CC-GP is able to find more results
closer to the optimum, while on the other hand suffering from a larger spread of the solutions.
The overall performance of S-GP is more robust over the independent runs, with a slightly
smaller median and smaller spread. CC-GP is more successful overall, but in turn also produces
results in some runs with a very poor performance. Looking at Fig. 2b, we observe a similar
picture, with a higher success rate but larger spread and overall lower median performance in
the CC-MP-GP compared to its counterpart MP-GP. This trade-off between higher success rates
but lower robustness can be seen as an interesting property and, depending on the application,
may be beneficial to the overall goal of the application.

6.3 Performance of the Multi-Phase Algorithms

Third, we analyze the effect of using the multi-phase approach in the algorithms. Overall,
we can observe that adding the mutation-only phase does not increase the performance by large
amounts in terms of success rates, but in most cases also does not deteriorate the performance
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Figure 2: Distribution of numerical results for benchmark instance 5 and the single-objective
f1-variants of the four algorithms.

of the algorithms. An interesting observation regards the combination with the length of the
individuals, i.e. the optimization of f4. In Instances 5 and 6, we observe that the success rates
of MP-GP drop largely for all the algorithms that optimize f4. This can be explained by the fact
that the additional mutation phase, as described above, used only operators that help to reduce
the size of the trees and therefore prevent excessive growth. If f4 is one of the objectives,
however, such operations result in a direct increase of one of the objective functions regardless
of the quality in terms of the other objectives. This may lead to a premature convergence of
the population to very short and simple individuals, from where it is more difficult to find the
optimal solutions. The same behavior can also be observed when comparing CC-GP with MP-
CC-GP. With the exception of these algorithms, a negative effect can not be observed for the
problem instances 1, 4, 5 and 6. This is also reflected in the average performance values in
Table 2, where in these instances the best performance of the S-GP is matched by the same
algorithm configuration using the multi-phase approach (i.e. the difference between the same
algorithm with and without this approach is not statistically significant). In Instances 2 and 3,
which are the most difficult to solve in our experiments, the best performance is, however, only
achieved by the S-GP, both in terms of success rates as well as average performance values.

6.4 The Effect of Precomputing Features

Lastly, we analyze the effect of feature transformation before the start of the GP process, i.e.
we compare the Instances 1, 2 and 3 with the Instances 4, 5 and 6 respectively. As described in
Section 5, the equations that need to be approximated are identical, but the last three instances
contain a much larger terminal set in exchange for a smaller function set. Such derived features
may, depending on the application, be obtained using expert knowledge or simply, as in this
work, by taking physical properties of a problem into account. The results in Table 1 show that
this precomputing step improves the outcomes significantly. For Instance 1, only algorithms
which included f2 in their optimization were able to solve this instance, with numerical success
rates of 27 to 31 solved runs, while all other algorithms were often not able to even solve a single
run. Once we precompute the features and solve the same problem with changed function-
and terminal sets, all algorithm versions of the S-GP and MP-GP are able to solve Instance 4
perfectly with success rates of 30 or 31 runs. For the CC-based algorithms, we observe the same
increase in performance, which enables all algorithms to perform superior or on par in Instance
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4 compared to Instance 1. The difference between Instances 2 and 5 is even more prominent,
as we see that Instance 2 was rarely solved by any of the algorithms, while Instance 5 is solved
reasonably often by various algorithm combinations, most notably with an almost perfect score
of 29 solved instances for the S-GP with (f1, f2, f3, f4). As a last result, we can confirm this
trend also for the instance pair 3 and 6. The precomputation of the features enables the S-GP
and the MP-GP (using (f1, f2)) to solve all 31 instances numerically correctly in Instance 6,
while they achieved success rates of only 5 and 3 respectively in Instance 3. Based on these
results, an interesting observation is that even though the feature transformation prior to the
optimization is a very simple and computationally inexpensive measure, it changes the outcome
of all GP algorithms drastically, and the magnitude of the performance enhancement is maybe
only matched by the inclusion of the correlation f2 into the optimization process.

7 CONCLUSION

In this article we have explored the possibilities of various different techniques in GP algo-
rithms to solve the regression problem for a fluid-dynamics problem: the Stokes flow around a
rigid sphere. We have derived six benchmark instances as examples of relationships that occur
in this sort of problems. Apart from numerically correct predictions, the goal of this research
was to produce models which can help researchers and engineers understand the underlying
physical mechanisms governing such applications. Therefore, we included the physical correct-
ness of the models, in terms of penalties for nonphysical operations as well as for not matching
the desired output units of measurement, as an objective of the optimization. The inclusion
of additional objective functions such as correlation and complexity of the model was further
used to aid the GP process in reaching numerically and physically correct results. Moreover,
we also explored different optimization techniques, such as the principle of Cooperative Coevo-
lution and a multi-phase approach. Finally, the effect of a feature transformation prior to the
optimization was investigated. The results of our experiments indicate that the ability to solve
the benchmarks varies greatly with the usage of different optimization techniques. The greatest
benefits in terms of numerical results were observed first, when the correlation f2 was included
in the optimization and second, when features were precomputed and the function-set F was
reduced at the same time. Using these techniques, we observed a drastic increase in physi-
cally meaningful and numerically correct models produced by the GP. The usage of CC-based
approaches and the multi-phase approaches, on the other hand, were not as beneficial to the
overall outcomes. It must be noted however, that the CC-based algorithms in our experiments
were only configured with two subpopulations, and other aspects such as the divisions of the
terminal and function sets between the populations may require further investigation. In the
future, we plan to apply the developed methods to fluid-dynamics problems with higher dimen-
sionality – involving multiple spheres and varying Reynolds numbers – with the aim to provide
helpful tools for understanding the complex physics of particle-laden flows.
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