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ABSTRACT
In this article we apply a unit-aware Genetic Programming (GP)
approach to solve a problem from the area of fluid-dynamics: The
Stokes flow around a sphere. We formulate 6 test instances with
different complexities and explore the capabilities of single- and
multi-objective GP variants to solve this problem with physically
correct units of measurement. The study is a starting point to inves-
tigate the amount of information necessary to solve fluid-dynamics-
related problems, and whether the inclusion of physical dimensions
is advantageous or not for such optimization tasks. From the simple
flow presented in this study we aim to extend this research to more
complex flows with multiple spheres and finite Reynolds numbers.
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1 STOKES FLOW AROUND A SPHERE
The fluid flow around a fixed sphere is governed by the Navier-
Stokes (NS) equations. Its nature depends upon Re, the Reynolds
number, a dimensionless quantity characterizing the ratio of in-
ertial effects over viscous effects within the fluid. Owing to the
non-linearity of the NS equations, there does not exist a general
analytical solution to this fluid-dynamics problem. However, when
Re → 0 (also referred to as the Stokes limit, or Stokes flow) the
NS equations can be linearized, and an analytical solution to the
steady-state flow over a sphere of radius 𝑎, subject to the far-field
velocity 𝒖∞, can be derived. In a spherical coordinate system whose
origin is the center of the sphere, and whose zenith is aligned with
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Figure 1: Streamlines of the Stokes flow around a sphere (col-
ored according to the magnitude of velocity).

the far-field velocity vector 𝒖∞, this axi-symmetric flow (𝜕/𝜕𝜙 = 0)
can be expressed in terms of the stream-function
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as shown in [e.g. 2], resulting in the velocity components
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The streamlines of this flow are shown in Fig. 1. In the remainder
of this paper, we will assess the aptitude of unit-aware GP for
recovering the governing equations of the flow, from its sampling
on a discrete grid. As a next step, we aim to extend this GP approach
to consider finite Reynolds number regimes, for which there does
not exist analytical velocity field expressions.

2 UNIT-AWARE GENETIC PROGRAMMING
The consideration of physical units inside GP has been introduced
in [4], where incompatible units are repaired using a special oper-
ator, e.g. adding a length and a time is carried out by artificially
transforming the time into a length. Multiple works have since
adapted this concept, and used single- as well as multi-objective
versions of it [e.g. 1, 3, 6]. Other works on dimensionally correct
GP focus on grammar-based GP, where, for instance, the rules of
the grammar ensure agreement with physical laws [e.g. 5, 7]. In our
approach, in contrast to the method used in [4], whenever incom-
patible units are used in an operator, the operation is still carried
out on the numeric values of the arguments, and the unit of the first
input argument is used as the unit for the result of the node (e.g. in
case a length and a duration are to be added, the operation is car-
ried out and the result is considered a length). To guide the search
towards evolving physically meaningful equations, a penalty value
of 1.0 is added every time such a nonphysical operation is carried
out. This penalty value is accumulated along the tree together with
the results of each function node. Since we know that the result
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Problem Instance No.
min 1 2 3 4 5 6
𝑓1 18 / 18 21 / 21 3 / 3 0 / 0 0 / 2 0 / 6

𝑓1, 𝑓2 21 / 21 21 / 21 0 / 0 6 / 7 1 / 20 0 / 13
𝑓1 + 𝑤 · 𝑓3 20 / 20 21 / 21 6 / 6 0 / 0 2 / 2 3 / 9

𝑓1, 𝑓3 21 / 21 21 / 21 16 / 16 0 / 0 2 / 2 4 / 7
𝑓1, 𝑓2, 𝑓3 21 / 21 21 / 21 13 / 13 7 / 7 13 / 17 5 / 12

Table 1: Correctly solved runs for each test instance and algo-
rithms. First number indicates numerically and physically
correct, second number numerically correct predictions.

should be a model that outputs, for instance, a velocity, any physical
unit that is not expressed in meter/second is not meaningful for
the purpose of the application. Therefore, an additional penalty
based on the difference between the obtained units of the tree and
the expected units of the output is added. Our approach uses the
deap-framework (https://github.com/DEAP/deap) and alternates
between two different optimization stages: (1) a normal GP variant
where crossover and mutation operators are employed and (2) a
mutation-only stage where no crossover is used. This two-stage
approach avoids extensive growing of the models and allows refine-
ments through a frequent mutation of the population. More details
on the parameter settings can be found in the supplement material.

3 EXPERIMENTS AND RESULTS
From the problem described above, we derived 6 problem instances
with different numbers of input features and complexities of the cor-
rect equations. Details on the problem instances can be found in the
supplements. We compare the performance of different variations
of GP using classical, dimensionless as well as unit-aware methods.
The objective functions used are defined as follows: 𝑓1 = maximum
absolute error over the training data. 𝑓2 = Spearman correlation
between model output and training data. 𝑓3 = accumulated penalty
of the model. The algorithm configurations used are as follows.
(1) single-objective dimensionless GP (min 𝑓1)
(2) multi-objective dimensionless GP (min 𝑓1 and 𝑓2)
(3) single-objective penalized GP (min 𝑓1 +𝑤 · 𝑓3) with𝑤 = 1/100
(4) multi-objective unit-aware GP (min 𝑓1 and 𝑓3)
(5) multi-objective unit-aware GP (min 𝑓1 and 𝑓2 and 𝑓3)
As the focus of this work lies on the creation of physically mean-
ingful solutions, a comparison with other numerical methods like
neural networks is left for future work. The GP uses the function-
set F = {+,−,×, .2, .3,−1}, where −1 is the unary negation, and the
terminal-set T = {4, 3, 2, 1, 12 ,

1
4 }. In addition to the given input fea-

tures, we precompute derived features, as preliminary experiments
showed that this can be helpful for the optimization. These are
sin(𝜃 ) and cos(𝜃 ), as well as the square, cubic and multiplicative
inverse values for 𝑟 , 𝑎 and 𝑢∞. In our proposed multi-objective
optimization, we employ the second and third objectives, where
applicable, only as a helpful tool for the GP to find solution which
predict the goal value correctly. Therefore, as opposed to classical
multi-objective experiment analysis, we are not actually interested
in the distribution of solutions in the multi-objective space, but
rather in the amount of solutions found which are physically mean-
ingful and predict the correct result. Based on this and due to the
limited space available in this article, the following analysis concen-
trates only on the number of successful runs (out of 21 independent

runs total) in terms of how often each GP-variant found (1) a nu-
merically correct prediction and (2) a numerically and physically
correct prediction of the goal value (i.e. a model with a penalty
value of 0 that predicts the correct physical units). Table 1 shows
the number of successful runs for both criteria. As for the simple
instances 1 and 2, we can observe that all algorithms were mostly
able to find the correct equations, and that this relatively simple
equation also represents physically correct results. The more com-
plex instance 3 draws a different picture, and we can observe that
the algorithms which do not take into account the physical units
perform especially poorly, while those which do, particularly the
multi-objective versions which optimize 𝑓3, obtain a correct result
more often, both physically and numerically. This indicates that
using the information of physical units not only leads to more ex-
plainable and meaningful solutions, but also enables the GP to solve
problems that were not solved in the dimensionless case. Instances
5 and 6 correspond to Eq. (2) and Eq. (3) respectively, and are the
most complicated in our experiments. In instances 4, 5 and 6, we can
observe that optimizing the second objective is especially helpful to
achieve success in these problems. Both algorithms using 𝑓2 show
a much higher amount of numerically successful runs. Also, we
can observe that only the algorithms which optimize 𝑓3 are able to
achieve a high amount of physically correct results.

4 CONCLUSIONS AND FUTUREWORK
In this article, we explore the capabilities of unit-aware GP ap-
proaches, both single-and multi-objective, to solve fluid-dynamics-
based optimization problems. The results of five different algorithms
are analyzed with regard to their numerical solution quality as well
as their compliance with the physical units of the measurements.
The results indicate that applying multi-objective approaches is
beneficial to the success of the GP variants, and that optimizing
correlation and violation of physical laws is not only helpful for
obtaining meaningful solutions, but also helps to guide the GP to-
ward numerically exact solutions. We aim to extend this research
to include more complex problem instances involving, for instance,
multiple spheres. In addition, future research aims to examine the
influence of the amount and type of input features and of the dif-
ferent objective functions used for the optimization.
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