
2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

1

Building a Planner: A Survey of Planning Systems

Used in Commercial Video Games
Xenija Neufeld∗†, Sanaz Mostaghim∗, Dario L. Sancho-Pradel†, Sandy Brand†

∗Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
†Crytek GmbH, Frankfurt, Germany

Abstract—In the last decade, many commercial video games
have used planners instead of classical Behavior Trees or Finite
State Machines to define agent behaviors. Planners allow looking
ahead in time and can prevent some problems of purely reactive
systems. Furthermore, some of them allow coordination of
multiple agents. However, implementing a planner for highly-
dynamic environments like video games is a difficult task. This
work aims to provide an overview of different elements of
planners and the problems that developers might have when
dealing with them. We identify the major areas of plan creation
and execution, trying to guide developers through the process
of implementing a planner and discuss possible solutions for
problems that may arise in the following areas: environment,
planning domain, goals, agents, actions, plan creation and plan
execution processes. Giving insights into multiple commercial
games, we show different possibilities of solving such problems
and discuss which solutions are better suited under specific
circumstances and why some academic approaches find a limited
application in the context of commercial titles.

Index Terms—Planning, Multi-agent Systems, Video Games,
Agent Behavior.

I. INTRODUCTION

FOR a long time, most commercial video games have

been using Behavior Trees or Finite State Machines to

define agent behaviors and to allow agents to make decisions

at runtime [1]. These approaches implement reactive agent

behaviors, but they cannot be used to look ahead in time

and create longer action plans. Furthermore, they are very

limited with regard to coordination of actions of multiple

agents. For these reasons, in the last decade, many games have

implemented different kinds of action planners (see sections

II-A,II-B for examples). By using a planner it is possible

to overcome some problems of purely reactive systems as

it enables us to look further ahead in time and implement

context-sensitive behaviors and strategies. The game F.E.A.R.1

is often mentioned as the first published title that successfully

used a planner-based approach [1].

This survey aims to provide an exhaustive overview of

different modules that need to be taken into consideration

when creating a planner for a video game where different Non-

Player-Characters (NPCs) need to interact with each other.

Furthermore, providing insights into multiple published games,

this work shows different possibilities of implementing these

modules and explains why some academic approaches find

only limited application in the area of commercial video

1F.E.A.R.: Developer: Monolith Productions; Publisher: Sierra Entertain-
ment. 2005

games. With this approach we hope to identify opportunities

for further research topics geared towards solving the complex

needs of practical applications.

The remainder of the paper is structured as follows: first,

we describe two major planners used in the game industry

– the Stanford Research Institute Problem Solver and the

Hierarchical Task Network – in section II. Afterwards we

divide planner systems into seven major areas that we look

into in more detail. The first six areas describe the process

of creating the planner itself, whereas the last area handles

the process of implementing a plan executor. Combined, these

seven areas are the following: the environment that the planner

is used in, described in section III; the planning domain that it

operates on, described in section IV; the goals, which have to

be achieved by agents using the plans, in section V; the agents,

that execute plans, described in section VI; the actions that the

agents can perform, in section VII; the process of plan creation

and the process of plan execution in sections VIII and IX.

Additionally, we draw the reader’s attention to important tools

in section X and provide concluding remarks in section XI.

Trying to guide developers through the process of imple-

menting a planner, we will show different aspects of each of

the seven areas in an individual figure containing an Activity

Diagram. Note though that these diagrams are parts of a single

larger activity diagram which represents the whole process of

the planner implementation.

II. PLANNERS USED IN COMMERCIAL GAMES

Even though there are many different classical planning

techniques in academia, hardly any of them have found

proper application in the field of commercial video games so

far. Game environments are often very complex and highly-

dynamic. They differ a lot from the environments that clas-

sical planning approaches were originally designed for. As

described in more detail in [2], classical planning techniques

rely on the following assumptions about the system they deal

with: a) the system has a finite set of states, b) the system

is fully observable, c) it is deterministic, d) it is static in

the sense that its state can only be changed through action

of agents known to the planner, e) the only kind of agent

goals are attainment goals that are defined as goal states

meaning that e.g. states to be avoided are not defined, f) a

solution plan is an ordered finite set of actions, g) actions

have no duration and lead to instantaneous transitions between

states, h) planning is done offline meaning that the planner

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

2

does not take into consideration any changes of the world

state that happen while planning. However, most of these

assumptions do not hold in games with the exception of

constraints b, e, f, and h which may be attainable depending on

the actual implementation of the planner, as we will describe

in more detail in next sections. Thus, several changes to

these approaches are required for planning in games and other

practical planning applications [3]. The two main planners

used as bases in most published game titles are described in

the following section. To our knowledge, no other type of

planners has seen adoption in commercial games today.

A. STRIPS and GOAP

The Stanford Research Institute Problem Solver

(STRIPS) [4] was developed in 1971 at the Stanford

Research Institute. Its main purpose was the creation of plans

for a robot that should navigate and re-arrange objects in

rooms [4]. Implemented in Lisp, STRIPS belongs to the

group of problem solvers that search through the space of

world states in order to find a state in which conditions

of a given goal are satisfied. Such a state is called the

goal state. The problem space of STRIPS consists of the

following five components: the initial world state, the goal

world state, a set of operators, their preconditions and their

effects. A world state is represented by a set of well-formed

formulas of first-order logic2. In the context of planning, these

formulas are often called facts. They describe some world

properties using functions and variables like, for example,

isAtPosition(agent, position) describes the position of an

agent. An instance of this fact could be isAtPosition(agent1,

home) where the variable agent gets the value agent1 and the

variable position gets the value home meaning that agent1 is

at home. Operators are symbolic representations of actions

that can be performed by agents and are defined by the

preconditions under which they are applicable and by the

effects that they have on the world states. In addition to world

states, preconditions are defined by instances of facts that

have to hold true in the world state before the application of

an operator. Effects are subdivided into two types: those that

add new knowledge (new instances of facts) to the world state

and those that remove knowledge from it. The knowledge to

be added is stored in an add list and the knowledge to be

removed is stored in a delete list. Effects are the results of

applying both lists to a world state.

The following example shows the operator GoTo that can

make an agent move from startPosition to destinationPosition.

Its precondition says that the agent has to be at startPosition

before the action can start and its effects show that he will be

at destinationPosition once the action concludes.

2For more information on first-order logic see [5].

Operator: GoTo(agent, startPosition, destinationPosition)

Preconditions:

isAtPosition(agent, startPosition)

Effects:

Delete List:

isAtPosition(agent, startPosition)

Add List:

isAtPosition(agent, destinationPosition)

It is assumed that for any world state, there exists a set

of operators that transform such a state into a different one.

To find a valid sequence of operators that lead to the goal

state, STRIPS uses an extended theorem-prover. This theorem-

prover takes the difference between the initial world state and

the goal state, comparing the instances of facts and searches

for operators that resolve away clauses3 [4]. If an operator

that reduces the difference is found, it is added to the list of

relevant operators.

When a new operator is added to the ordered list of

relevant operators, its preconditions add new subgoals to the

goal list. These subgoals have to be achieved in order for

the operators to be applicable [6, Chapter 4.4]. For example,

assume that we have the previous GoTo-operator and the

following PickUp-operator:

Operator : PickUp(agent, object, position)

Preconditions:

isAtPosition(agent, position)

isAtPosition(object, position)

Effects:

Delete list

isAtPosition(object, position)

Add List:

carries(agent, object)

If the goal state contains the instance of the fact car-

ries(agent1, objectB) meaning that agent1 has to pick up

objectB, a relevant operator would be PickUp(agent, object,

position) with agent = agent1 and object = objectB and

position = park (if the object is in the park). This operator

would add the subgoals/conditions isAtPosition(objectB, park)

and isAtPosition(agent1, park) to be satisfied. Assuming that

agent1 is currently at home, in the next step, the instance

GoTo(agent1, home, park) of the GoTo-operator would have

to be added to the list of relevant operators. For more complex

operators and preconditions, the search tree might grow at this

point very rapidly. For this reason, STRIPS uses heuristics,

such as the number of remaining subgoals, during the operator

selection process.

Since an operator that is found relevant might be either

applicable to the initial world state or some intermediate state

or its effects might directly lead to the goal state, it is not

known where this operator will occur in the final plan [4]. For

example, if agent1 from the previous example had to wear a

special suit when picking up objectB in the park, he could

3In propositional logic, a clause is a disjunction of literals. A literal is either
a term/variable or the negation of it [5].

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

3

either first put on that suit (for example using the operator

Wear(agent, suit)) and then use the GoTo-operator or first go

to the park and then put on the suit before picking up the

object.

One of the earliest examples of the usage of planners

for behavioral modeling in commercial games was F.E.A.R.

Although STRIPS has proven itself as a very powerful tool

to be able to reason about big search spaces in classical

planning environments, the authors of F.E.A.R. adopted a

modified version of STRIPS in order to make the planner more

controllable, performant and better applicable to a real-time

game dropping some of the assumptions of classical planning

mentioned in section II. This resulted in the so called Goal

Oriented Action Planner (GOAP) [7] which included four

major differences from the original approach.

First, every action/operator got a cost value assigned. These

values were used as heuristic for the A* algorithm that

searched through the space of world states. The second dif-

ference was the representation of the actions’ preconditions

and effects. Instead of using add and delete lists, GOAP

represented both the preconditions and effects as fixed-sized

arrays of world state variables. This way, it was faster to find

an action that could reduce the difference between the initial

and the goal world state through direct comparison of the

arrays.

The third change introduced procedural preconditions with

which the system could reason about more complex logic at

run-time. So after the initial check on fixed-sized arrays of

world state variables, preconditions could now call functions

to perform certain checks when necessary (as discussed later

in section VIII-A). For example, instead of keeping track of

whether or not a path exists or if an enemy is visible, a path-

finding function or a ray-caster could be called on-demand.

The final change to the original planner was the introduction

of the so-called procedural effects [7] which were used to

define which behaviors should be executed by the agents

applying the GOAP actions. Therefore, the states of a Finite

State Machine (FSM) were used to handle different behaviors

of an agent and the actions of a plan represented transitions

between these states defining when to enter and leave them [8].

After the successful use of GOAP in F.E.A.R., many other

games implemented their own versions of STRIPS-like plan-

ners. In this paper, we will look into more details to the planner

implementations of games like F.E.A.R., Dirty Harry4 [9],

Tomb Raider5 and Middle-earth: Shadow of Mordor6[10].

B. HTN

A few years after the release of F.E.A.R. (2005), the next

milestone in the history of planning in video games was the

game Killzone 27 (2009) which was the first one to implement

a Hierarchical Task Network (HTN) [6, Chapter 11.5], [11].

4Dirty Harry: Developer: The Collective, Publisher: Warner Bros. Interac-
tive, cancelled

5Tomb Raider: Developer: Crystal Dynamics, Publisher: Square Enix, 2013
6Middle-earth: Shadow of Mordor: Developer: Monolith Productions, Pub-

lisher: Warner Bros. Interactive, 2014
7Killzone 2: Developer: Guerrilla Games, Publisher: Sony Computer En-

tertainment, 2009

Primitive tasks:

Compound task:

Methods:

Initial compound task:

Preconditions:
isNotAtPosition(agent, park)

TeleportAndPickUp

isAtPosition(agent, park)
isAtPosition(car, park)
carries(agent, object)

isAtPosition(object, park)
isAtPosition(agent, park)

isAtPosition(car, park)

isAtPosition(object, park)
isInCar(agent, car)

isAtPosition(agent, park)
isAtPosition(car, park)

isAtPosition(object, park)
isAtPosition(agent, home)

isAtPosition(car, home)
far(agent, park)

isInCar(agent, car)

isAtPosition(object, park)
isAtPosition(agent, home)

isAtPosition(car, home)
far(agent, park)

S4S3

S3S2S1S0

Preconditions:...
Effects:...

Preconditions:...
Effects:...

Preconditions:...
Effects:...

Preconditions:...
Effects:...

GetOutOfCar(agent,park)Drive(agent, home, park)GetIntoCar(agent, home)

MoveTo(agent, home, object, park)
PickUp(agent, object, park)

Preconditions:
far(agent, park)

isAtPosition(car, home)

Preconditions:
close(agent, park)

MoveByCarMoveByFoot

Preconditions:
isNotAtPosition(agent, park)

Preconditions:
isAtPosition(agent, park)

MoveAndPickUpPickUp

PickUpAtPosition(agent, home, object, park)

Decomposition
Precondition fails

DecompositionPrecondition fails

Fig. 1. HTN planning example.

Following its example, many more games adopted this ap-

proach and have shown interesting agent behaviors especially

in terms of coordination of multiple agents. In this work, we

give some insights into games like Killzone 2 and 38 [12],

Transformers: Fall of Cybertron9 [13], Dying Light10 [14] and

PlannedAssault11 which is a web-based mission generator for

ARMA II12 [15].

Although there are some similarities between HTN and

STRIPS, they work in very different ways. Similarly to

STRIPS, the world state is described by a set of facts in

HTN. However, the main elements of HTN are tasks, which

do not stand on their own but build a network. As the name of

this approach suggests, this network represents a hierarchy of

the so called compound tasks and primitive tasks. Compound

tasks represent the higher levels of the network hierarchy and

can be decomposed into further tasks (either compound or

primitive). Primitive tasks are the leaves of the network and

contain operators which can be compared with the operators

of STRIPS. These operators are defined by preconditions

and effects. The four operators shown in Figure 1 are the

PickUp-operator described for STRIPS in section II-A and

the following three operators:

Operator : GetIntoCar(agent, position)

Preconditions:

isAtPosition(agent, position)

isAtPosition(car, position)

Effects:

Add List:

isInCar(agent, car)

8Killzone 3: Developer: Guerrilla Games, Publisher: Sony Computer En-
tertainment, 2011

9Transformers: Fall of Cybertron: Developer: High Moon Studios, Pub-
lisher: Activision, 2012

10Dying Light: Developer: Techland, Publisher: Warner Bros. Interactive,
2015

11PlannedAssault: plannedassault.com
12Arma II: Developer/Publisher: Bohemia Interactive, 2009

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

4

Operator : Drive(agent, startPosition, destinationPosition)

Preconditions:

isAtPosition(agent, startPosition)

isAtPosition(car, startPosition)

isInCar(agent, car)

Effects:

Delete list

isAtPosition(agent, startPosition)

isAtPosition(car, startPosition)

Add List:

isAtPosition(agent, destinationPosition)

isAtPosition(car, destinationPosition)

Operator : GetOutOfCar(agent, position)

Preconditions:

isAtPosition(agent, position)

isAtPosition(car, position)

isInCar(agent, car)

Effects:

Delete List:

isInCar(agent, car)

Additionally, there are methods used to describe how a

compound task can be decomposed. There may be multiple

methods able to decompose the same task providing different

ways of solving a task. Therefore, the methods – as well

as operators – have preconditions describing under which

circumstances they are applicable. Using the previous example

where an agent has to pick up an object, the uppermost

compound task shown in Figure 1 is PickUpAtPosition. This

task can be decomposed by one of the following methods:

PickUp, MoveAndPickUp and TeleportAndPickUp. Usually, a

method is described in the following way:

Method : MoveAndPickUp

Task: PickUpAtPosition(agent, agentPosition,

object, objectPosition)

Preconditions:

isAtPosition(agent, objectPosition)

Subtasks:

〈MoveTo(agent, agentPosition, object, objectPosition),

PickUp(agent, object, objectPosition) 〉

We sequentially check the preconditions of these methods

until a valid method is found by which the task can be further

decomposed. This process continues until all compound tasks

are decomposed and the plan contains only primitive tasks.

For example, assuming that the agent is currently at position

home and the object is at position park, the precondition

isAtPosition(agent, park) of the method PickUp fails. The

precondition isNotAtPosition(agent, park) of the next method

MoveAndPickUp holds, so that this method is used to further

decompose the task. The remaining methods (in this case

TeleportAndPickUp) are not checked anymore, unless we fail

to completely decompose the entire compound task with

the initially selected method. This way, the search space is

recursively pruned.

Environment Analysis

Continue
with

Domain
Creation

Relevant data
Analyze the world

(what data are relevant)

Select a
replanning
mechanism

Decide on the
predictability of the environment

Decide on
environment

changes

Decide on
internal data

Decide on
world

observability

World/
Environment

[non-deterministic]

[deterministic]

[static env.]

[dynamic
env.]

[agents have internal
(hidden)data]

[agents share
all data]

[fully
observable]

[partially
observable]

Fig. 2. Environment Analysis: aspects to consider about the environment.

Note that, theoretically, the methods can be checked in any

order. However, the most known approach to HTN is the

Simple Hierarchical Ordered Planner (SHOP) [16], variations

of which were used in most of the games mentioned in this

work. Here, the methods are usually checked in the order that

they are presented into the system. Thus, this order plays

an important role. If we were to change the order of the

methods presented in Figure 1 and put TeleportAndPickUp

before MoveAndPickUp, its precondition would be checked

first and it would hold. For this reason, the TeleportAndPickUp

would be used to decompose the task and the final plan would

be different.

Furthermore, the tasks are decomposed in total order in

SHOP. This means that the final plan consists of operators

which are listed in the same order, in which they will be

executed (as opposed to partial-order decomposition, both

of which are described in more detail in section VIII-F).

In our example, the plan consists of the following oper-

ators: GetIntoCar(agent, home), Drive(agent, home, park),

GetOutOfCar(agent, park), PickUp(agent, object, park). With

total order, these operators will be executed by the agent in

that very same order.

Every time that the planner reaches a primitive task, it

applies the effects of the task’s operator to its inner world

state representation by adding and deleting facts in a similar

way as in STRIPS. As shown in Figure 1, after the operator

GetIntoCar is applied, the planner’s world state changes from

S0 to S1, so that the preconditions of the Drive-operator are

checked in this new state. If the planner fails to continue

planning using a method, effects that were already applied

in this method are reversed and the planner backtracks to the

previous compound task. For example, if after applying the

effects of the operator GetIntoCar the operator Drive could

not be applied for some reason, the method MoveByCar would

fail and the effects of GetIntoCar would be reversed before

checking further methods of the compound task MoveTo.

Since both methods of this compound task failed, the method

MoveAndPickUp which led to this task would also fail and the

planner would try to decompose the initial task PickUpAtPo-

sition with the TeleportAndPickUp-method. Another detailed

description of the usage of an HTN in a game environment is

provided in [17].

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

5

III. ENVIRONMENT ANALYSIS

Every video game represents a unique environment. In this

section, we describe how the environment is analyzed in order

to create and execute plans. This process is summarized in

Figure 2.

A. Observability

The observability of the environment is one of the first

aspects to take into account. In contrast to most real-world

applications, it is often possible for a game agent to have full

observability of the game environment. Nevertheless, many

modern games try to limit it in order to reflect a more human-

like agent behavior. For example, a human player is not able

too see through walls and so neither should an agent.

B. Agent’s Internal Data

If the game does not grant full observability to the agents,

it is important to decide whether they can share environ-

mental information. Information sharing has to be done in a

way that makes sense (and its communicated accordingly) to

the player. Some games, such as F.E.A.R. [18], used verbal

communication between agents, which the player could also

hear. Due to these dialogues, some players of F.E.A.R. were

even thinking that the agents were following each others voice

commands [19].

Independently from whether or not the game world is fully

observable, some data about it has to be saved for the planner

to have a symbolic representation of the world. These data

can be abstracted to some extent, as long as it is sufficient

for the planner to make decisions and simulate changes in

the world. Saving information in a game is often done with

the help of blackboards [20], [21] which can be accessed by

one or multiple agents. That way it is possible, for instance,

to let commanders have different knowledge than soldiers, as

described in [22]. The content of a blackboard can either be

dynamic or static meaning that the types and the amount of

information saved in a blackboard either might change at run-

time or remain fixed throughout the game [23]. The squad-

based military simulation SquadSmart, which implemented an

HTN planner, contained a single blackboard that included

individual agent’s and global squad’s knowledge [24]. In

contrast, in F.E.A.R. each agent had his own blackboard

that was updated with only environmental facts it perceived

personally [18].

C. Environment Dynamics

Besides taking into consideration the observability of the

environment, it is also important to think about its dynamics.

In commercial games AI agents usually act in a dynamic

environment that is changed by multiple factors. Some of these

factors are deterministic (for example the change of the time

of the day), but some of them are non-deterministic and cannot

be modeled/precomputed in a reliable way (for example the

player actions). To be able to handle potential plan failures

that can occur due to uncertainties, it is very important to

consider re-planning strategies. More detailed descriptions of

re-planning strategies can be found in sections IX-C and IX-D.

Continue with
Goal Creation

Continue after
Environment

Analysis

Domain

Create the planning domain
Decide whether the domain

should be learned

Decide on domain compilation

Domain Creation

[specified by
a user]

[learned]

[specified in code]

[specified in a
Lisp-like domain

language]

Fig. 3. Domain Creation: aspects to consider about the planning domain.

D. Data Relevance

Once the dynamics of the environment are clear, it is impor-

tant to analyze which data are relevant for the planner. As Jeff

Orkin suggests: start with the minimal possible description

of a [world] state, and only make additions carefully while

monitoring performance [18].

IV. DOMAIN CREATION

Having an overview of the environment and its relevant data,

the planning domain can be created. A planning domain can

be regarded as a library where knowledge about a domain

(the game world) is represented using planner components de-

scribed in section II (operators with preconditions and effects,

facts about world states and methods in case of a domain for

an HTN planner). Therefore, developers should think about

how to create a planning domain in terms of readability

and extensibility. This process of analyzing important aspects

of domain creation is shown in Figure 3. Some possible

approaches are described in the following section.

A. Domain compilation

The planning domain contains important information about

the environment, the agent’s actions, their preconditions and

the effects that they have on the environment which need to

be represented as data structures and code functions, so they

could be used by a planner algorithm. One possible way to

do so is by defining the domain directly in the programming

language that is used by the planner. Another possibility is

the usage of an intermediary descriptive language that can be

compiled into code for the desired programming language.

Since planning domains are often created by programmers,

it is natural that they are defined in the code directly, as it

was done for Transformers: Fall of Cybertron [13]. Also for

Dying Light, all methods and activities of the HTN planner

were described by programmers directly in C++, whereas the

game designers only tweaked a few exposed parameters to

balance the game. These parameters were saved in a separate

data set for every agent [14]. Defining the domain directly in

code saves the effort of developing a domain compiler and

its related user interface. The disadvantage of this approach

is its lack of flexibility and the slower iteration times when

compared to a system where designers could directly modify

the domain.

An alternative way to define the domain is to use a

high-level language like Lisp [25] and compile the domain

automatically from this definition into code. The simulation

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

6

SquadSmart [24] and the HTN planner that won the Capture

The Flag AI Competition at AIGameDev.com [26], show

that this approach can be used successfully for the domain

compilation of HTN planners.

Although this technology might be very useful especially

for games with complex behaviors and large game worlds, it

is not widely used in the industry. Its major drawback is the

high difficulty level that is presented by the task of building a

planner compiler that is able to get custom domain definitions

as input [27].

B. Learning the Domain

An interesting approach to create a planning domain from

a researcher’s point of view is learning the domain instead

of being specified by the developer. Some learning methods

are applied to planning domains in the academia (for exam-

ple [28], [29], [30]). However, these approaches are tested

in very simple and mostly deterministic environments. Even

though the environments of commercial video games are much

more complex, learning a domain for these environments

might be an interesting challenge not only for developers but

also for researchers. A possible learning framework might

be provided by Learning Classifier Systems [31] which are

already used to learn behavior rules in games. Resulting plans

would be most likely very different from those defined by a

developer.

The disadvantage of this approach might be that the devel-

opers would not know whether such a domain would produce

the desired agent behaviors in all cases. Furthermore, the

description of a learned domain might be more difficult to

understand, debug and change for developers as it would

not necessarily correspond to the developer’s intended logic.

Another important aspect in this case are the presumably

long learning times that would be required after finishing all

parts of the game that a learning mechanism should take into

consideration in order to learn a planning domain. Since time

is usually a very limited resource in the process of game

development, thorough considerations have to be made before

deciding to adopt a learning process as part of building an

AI for an offline game. However, there is great potential in

learning planning domains for agents in online games. Such

domains could be learned using the available online telemetry

– for example re-play data of human players – and adapted

continually later on.

In addition to the planning domain, it is possible to learn

additional components of the planning algorithm even in very

complex environments. An interesting solution was applied

for the game Tomb Raider. Here, the domain for its GOAP

was defined manually but the action costs that were used as

heuristics for the planner were learned and adapted during

game play [10] (for more details see section VIII-G).

V. GOAL CREATION

Knowing the environment and the way in which to define

the planning domain, the next major topic to think about is the

definition of goals. No matter what kind of a planner is being

used in the end, plans are always created to achieve some

Continue with
Agents

Continue
after

Domain
Creation

GoalsDefine goals
Chose a goal

selection mechanism

Decide on
goal duration

Decide on goal
combination algorithm

Decide on the
amount of
concurrent

goals

Define
threshold

Decide on
goal

satisfaction

Goal Creation

[designer-crafted
decision-making

mechanism]

[priority
lists]

[given
by player]

[permanent/
durative]

[temporary]

[multi-objective
optimization]

[one]
(prioritized)

[multiple]

[partial
satisfaction]

[categorical]

Fig. 4. Goal Creation: aspects to consider about the agents’ goals.

goals or bring the game world into a certain goal state. There

are several ways to define and select goals. In the following

section we describe some of the main aspects to consider at

this point and show the decision process in Figure 4.

A. Goal Satisfaction

Some of the goals that an agent should achieve, can be

defined as categorical goals such as ”move to point A.” As

long as the agent is not at point A, he should create and follow

a plan that would bring him there. However, sometimes it is

sufficient if a goal is satisfied to a certain degree. For example,

an agent would need to collect a sufficient amount of health

potions.

There are several ways how to handle partial satisfaction of

goals. Developers could define some thresholds to say when

a certain goal is sufficiently satisfied and a new goal can be

selected. Usually, these values would be defined and tweaked

by game designers. To bring some variety into agent’s behavior

these thresholds might be defined in a fuzzy way.

B. Goal Duration

In our previous example the temporary goal ”move to point

A” is satisfied as soon as the agent reaches point A. However,

often, it is desired that the agent ”follows the player,” ”stays

in his view” or simply ”stays alive as long as possible.” These

goals cannot be declared as satisfied at any certain point of

time. They are durative or permanent and can only be aborted

in favor of other goals. When creating a planning domain and

deciding on the planner type, it is important to think about

how to handle such goals as well as how to handle persistent

actions (see section VII-B). This decision does not only have

an impact on the goal selection mechanism, which is described

in section V-D, but also on the frequency of plan re-evaluation

and re-planning (section IX-C).

C. Number of Concurrent Goals

Another important factor is the number of goals that can be

pursued by an agent at the same time. Often it is important

to follow multiple goals simultaneously, for example while an

agent should ”move to point A” he should also ”stay in cover.”

Sometimes these goals can even be competing. For example it

could be problematic for an agent A to ”stay outside the view

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

7

of agent B” and ”stay inside the player’s view” if the player

is close to agent B.

Although there are several academic approaches for multi-

objective optimization, many of which are described in [32],

[33], accepting multiple goals in practice leads to additional

challenges because, in contrast to academic problems, a game

agent’s goals usually cannot be mathematically described by

objective functions. Thus, at this point, developers need to

decide how to represent combined goals in a planning domain

and how to create plans for them. Often objectives/goals

cannot be represented by a measurable value. Moreover, not

every planner type allows to combine goals or create new

ones. For example, in a Hierarchical Task Network, goals

are represented by high-level tasks. Those tasks are then

decomposed into lower-level tasks which together create a

plan. Thus, plans can only be created for those goals/tasks that

have a pre-defined decomposition, meaning that no combined

goals can be decomposed.

A possible solution for this problem is the simultaneous

use of multiple domains. As described in [13], characters of

Transformers: the Fall of Cybertron used different planning

domains for their upper and their lower body. That way,

the lower body handled navigation-related actions and the

upper body could play additional animations, for example

the character could shoot at a target while moving towards

a target position. However, this solution carries many risks,

since not all action combinations for the different body parts

might make sense and would require some workarounds.

Furthermore, it is difficult to ensure that both planners/domains

are synchronized [17].

Otherwise, a game agent might be restricted to follow

only one single goal at a time, like it was done in F.E.A.R.

The relevance of the current goal was re-evaluated whenever

a significant change in the environment happened and the

planner selected the next goal [19]. Some care has to be taken

at this point for those cases when two successive goals could

lead to unnatural character behavior, such as rapid oscillations.

One potential solution to this problem is giving agents some

hysteresis buffer in the form of a log of past goals. This

information could be used to bias the planner to stick to certain

goals, assuming the oscillations are triggered because multiple

goals are equally relevant.

D. Goal Selection

Knowing how many and what kind of goals the game agents

should be following, it is important to create a system that is

responsible for goal evaluation and selection. If game agents

are supporting the player, it might be possible to allow the

player to assign them certain tasks that could be passed to the

planner in order to create appropriate behaviors.

In many cases however, agents do not get orders from

human players. Instead, they should be able to select their

goals autonomously taking multiple facts into account. A

simple way to create a goal selection mechanism is to create

a pool of possible goals such as patrol an area, kill an

enemy, collect ammo and select the most relevant goal through

prioritization. For example, the default goal might be to patrol,

Continue with
Actions

Select a
re-grouping
approach

Decide on the team size Decide on the coordination type

Decide on the
types of agents

Decide on the
number of agents

Continue after
Goal Creation

Agents

[variable][fixed]

[cooperating]

[competing]

[heterogeneous]

[homogeneous]

[multiple]

[one]

Fig. 5. Agents: aspects to consider about plan-executing agents.

but when the agent sees an enemy he should try to kill him,

unless he lacks ammo, which he should then try to collect

first. Priorities could be either read out from a prioritized list

of goals or a more complex decision-making mechanism that

could be defined by designers. In Tomb Raider, a designer-

authored graph was used for goal selection that took into

account the agents’ motives, action availability and costs [10].

Similarly to actions (see section VIII-G), goals might get

costs or weights and might be selected using a heuristic.

Also situational goals might be defined, so that the selection

mechanism would only take those goals into account which

are applicable in the current situation. For example, in Shadow

of Mordor, agents were assigned alertness levels like alert,

suspicious, ambient and goals were sorted and selected based

on these [10]. A similar approach was implemented for the

game DEMIGOD through so-called master goals [34]. These

represented the upper levels of a goal hierarchy and depending

on their current weights, only certain sub-goals on the lower

levels of the goal hierarchy could be selected.

Having a squad-like hierarchy of agents might also allow

orders to be sent from higher hierarchy levels to the lower

ones. With this approach, different goal selection mechanisms

might be implemented at different levels of the hierarchy

whereby more abstract goals might be selected at higher levels

and passed as orders to lower levels. For example in the game

F.E.A.R., a global squad coordination system created squads

dynamically and passed orders to the squad members. These

orders were regarded as goals by the agents. Every agent then

re-evaluated and prioritized his current goals deciding whether

to follow the orders or his own goals [7].

VI. AGENTS

One of the most important aspects to consider for plan cre-

ation are the agents that should execute the plans. Depending

on the number of agents, their abilities and whether or not

their actions should be coordinated, the basic structure of the

planner can vary a lot. Some major questions regarding game

agents are shown in Figure 5 and described in the following

section.

A. Number of agents

There are multiple games that implement an AI for a

single buddy character that supports the player. However,

especially because of their ability to provide better tactics and

coordination, planners are predominantly used in multi-agent

games. This approach also introduces other problems however,

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

8

which is why in the next sections, we concentrate on the issues

that are important for multi-agent planning.

When deciding on what planner to use in a game, it is

important to take into account not only the number of game

agents in general, but especially the number of concurrently

active agents that could use the planner at the same time. For

Transformers: Fall of Cybertron, there were up to 17 agents

using the HTN planner concurrently [13]. As Eric Jacopin

describes in his GDC13 talk, the GOAP planners in the games

F.E.A.R. and Rise of Tomb Raider were used by a relatively

low number of agents. In both games, on average 3 agents

(maximum 15 for F.E.A.R. and 12 for Tomb Raider) were

active simultaneously [10], [35]. For Killzone 3, the average

number was 5 and the maximum number 10 [35]. In contrast

to these games, in some scenes of Shadow of Mordor the

player could see up to 400 active agents. However, creating

new plans for all these agents at the same time would be

too costly and still remains an unsolved problem in multi-

agent planning. In order to avoid this problem in the game, an

upper limit of 50 NPCs that could use the planner concurrently

was introduced [10]. Though, this is not an optimal solution

and developers have to take into consideration that NPCs still

need to do something while waiting for a plan, or otherwise

the scene will look unnatural.

B. Types of Agents

Creating a planning domain for a game where all agents

are of the same type and have the same abilities, thus are

homogeneous, is already a difficult task. In most video games

however, the agents are heterogeneous. Thus, they represent

a variety of different agent types, be it members of a combat

group that are on different levels of the command hierarchy,

zombie types with different degrees of decay or even agents of

the same type that have different abilities depending on their

equipment. When creating a planning domain, an important

decision is how to represent in the planner the different

types of agents and their abilities. Typical approaches involve

creating a separate domain (or domain parts) for every agent

type and ensure that the planner uses the appropriate domain

(or domain part) for each of them. This approach is well

applicable when the agent type does not change over time, so

that there is no need to check for the type in every planning

step. This was done for example in Transformers: Fall of

Cybertron where agents of different types used different task

domains [13] and F.E.A.R. which used different action sets to

represent heterogeneous agents, so that they could accomplish

the same tasks in different ways [18]. Alternatively, it is also

possible to use only one domain and use the agent type as a

precondition for a task/action in order to assign actions to the

right agent types. This approach is more suitable if the agent

type can change over time depending on the agent’s current

role (in a team) or his equipment.

C. Coordination Type

Having multiple agents in a game usually means that

some kind of coordination between them is desired. Their

13Game Developers Conference: www.gdconf.com

behaviors should be either cooperative or competitive. Often,

game agents are the player’s enemies and require coordina-

tion of their actions against the player. They belong to one

group of agents. In some games however, the player might

get some support from other Non-Player-Characters (NPCs),

which should behave cooperatively towards the player and

each other.

An engineer working on a planner needs to answer the

question how to achieve these types of coordination. An

HTN planner for example, allows for cooperation between

multiple agents by definition. It is possible to create task

decompositions that require several agents to perform different

actions simultaneously. For example the task TransportGroup

would require one agent to TakeDriversSeat and multiple

agents to TakeSeat. Then, the driver would DriveToDestination

and every agent would have to GetOff of the vehicle at the

destination.

However, this kind of coordination is hard to achieve with a

STRIPS-like planner only since it creates a plan as a sequence

of actions and does not deal with concurrent actions and their

joint effects. So, some additional coordination mechanism is

required to take care of the group behavior. For that purpose,

some academic approaches modify the STRIPS-representation

of actions allowing for concurrency [36]. However, these

approaches require the usage of non-linear planning algorithms

instead of the original STRIPS to be able to plan with con-

current actions. Instead, games that use STRIPS-like planners

usually implement an additional upper-level coordinator that

assigns certain goals to different agents, which then use the

planner to achieve these goals. This approach has shown good

results in F.E.A.R. [18] as well as in Dirty Harry [37] which

used versions of the GOAP planner. Moreover, according to

Jeff Orkin, the combination of the central squad coordinator

and the GOAP planner in F.E.A.R. led to interesting emergent

behaviors. For example, if the squad coordinator ordered two

agents to move into cover positions close to the player and

there were obstacles (walls) between the agents and the player,

the agents would move to the cover positions from different

sides. To the player, it appeared as if the agents were executing

a coordinated pincer attack, even though they were just moving

to closer positions simultaneously [7].

Additional requirements and problems arise when agents

should compete with each other instead of cooperating. This

can be the case for example in RTS (Real Time Strategy)

games where multiple factions compete against each others’

and the player’s faction. Other examples are sports and race

games where multiple factions compete trying to achieve the

same goal. In these cases, every faction should take into

consideration the possible actions of other factions and try

to maximize its own reward or to come closer to the goal

preventing its competitors from doing so. Thus, the decisions

of every faction depend strongly on the actions of other

factions, which results in even more uncertainty being added to

the planning problem. For that reason, it is important to think

about whether or not a planner should be used in such cases, or

whether a reactive approach would be more appropriate to use.

Planning with a high level of uncertainty would require some

kind of reasoning approach about the competitors’ actions in

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

9

order to be able to counter them.

D. Varying Team Size

Another important aspect when planning for groups of

agents, is the size and structure of these groups and the

question of how to handle structural changes. NPCs in a game

might be killed, more of them could spawn or they could get

more help from nearby comrades. Developers should think

about how to take care of agents’ deaths and respawns not

only in terms of game design but also in terms of re-planning

and group re-organization.

When implementing the coordination mechanism – no mat-

ter whether it is the planner itself or some upper-level squad

manager – these changes should be taken into account. If a

planning domain is designed for a certain number of agents

in a group, the planner won’t be able to find a plan under

different circumstances. Even in a football game where the

team size is expected to be 11, a player might get a red card

and be disqualified. It is important to allow the planner to

handle different sizes and types of groups.

Furthermore, imagine the following situation: group A is

split up spatially in two rooms. Three members of group

A meet members of group B in the room they enter. Both

groups are in the same faction and could cooperate against

their common enemy. Since they are already in the same room,

it might make more sense to re-organize the groups and put

the three members of group A with those agents from group B

into one combined group. For that purpose, the coordination

mechanism should be able to recognize the spacial change and

re-assign the agents.

Exchanging the group members dynamically might also

mean that the types of agents in a group could change. Thus,

plans should also change accordingly to the new agents’ skills.

Such a case would also be in games where the player can

pick NPCs as supporters/members of his team. Also, here the

planner should provide plans for any number and combination

of agent types.

A good example solution for these problems is the dy-

namic squad manager of Killzone 2 [12]. Being a team-based

game, its bot-squads were re-organized based on the agents’

objectives or their distances to the different squad centers.

If necessary, new squads could be created and removed at

runtime with all free agents being distributed into sensible

squads. For that purpose, the types of the agents to select for

a squad were defined in a global policy.

VII. ACTIONS

Another important factor to think about when creating a

planner are the actions that can be performed by the agents.

The types of the actions strongly depend on the planning do-

main and the planning problem. In games, a lot of actions can

be represented by simple animations, whereas other actions are

more complicated and cause more uncertainty. In the following

section, we describe some aspects of actions that need to be

considered when creating a planner and show them in Figure 6.

Actions

Continue with
Plan Creation

Decide on
action durations

Decide on the strategy
to handle multiple outcomes

Decide on the number
of possible outcomes

Continue after
Agents

[temporary]

[permanent/
durative]

[conditional
planning]

[reasoning/
likelihood]

[use
distribution
/heuristics]

[multiple]

[one]

Fig. 6. Actions: aspects to consider about the agents’ actions.

A. Determinism of Actions

Planning in a non-deterministic environment is a difficult

task. It gets even more difficult when more non-determinism

comes from stochastic actions. In a video game domain, some

actions might have multiple outcomes instead of a clear one.

This might be caused by some predefined randomness of the

action itself or some external sources. For example the agent

could throw a grenade and it could either hit or miss a moving

target.

In classical planning, there are different possibilities for

handling multiple action outcomes in the planning process.

Most of them try to predict the actual outcome in some

way and prevent a possible plan failure. One way is to use

a predefined distribution of the probabilities of the different

outcomes and plan only for the most probable outcome.

Also, there are some ways to use more complex likelihood

computations applying some reasoning approach.

For example, Cased Based Reasoning (CBR) could be

applied to reason about future action outcomes from past ex-

periences. Reasoning techniques like CBR can also be applied

for things such as selecting strategies for Real Time Strategy

(RTS) games as described in [38] and [39]. However, in order

for CBR to deliver more reliable predictions, a sufficiently

large case library would be required.

Another way of reasoning are Bayesian Networks. Using

this approach, developers would need to represent the con-

ditional (in-)dependencies between all corresponding world

state variables, so that knowing the state of the world before

applying an action could provide the likely outcome of it. Fur-

ther details regarding the possible use of Bayesian Networks

in a game environment can be found in [40]. Creating the

right network, however, is a very complex task and requires

thorough considerations to be made in advance. This and

the added debugging complexity, are reasons why Bayesian

Networks do not find much support in commercial games.

Another possibility to handle multiple action outcomes

which comes from academia is conditional planning [41]. Here

the planner does not decide which outcome is the most likely

one, but instead creates plans for all possible outcomes. Thus,

every branch gets a condition denoted under which it might

be executed. When a plan fails, plan recovery may be used

to take another plan branch. The obvious disadvantage of

this approach is that the branching factor might grow very

fast if multiple actions with multiple outcomes would have

to be executed in one plan. Due to its complexity and lack

of deterministic planning execution time, most planner-based

commercial games do not support multiple action outcomes

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

10

and prefer to build a new plan whenever the selected one

fails. In this case, when executing the corresponding action,

the agent should check whether its actual effects match the

outcome that the planner planned for. Thus, using effects

and preconditions (see VIII-B) in an accurate way might help

detecting plan failures and trigger re-planning. As we describe

later in section IX-C, re-planning is done very often in the

games mentioned in this work. Due to short planning times

and frequent plan re-evaluation this approach works well for

games like Killzone 2 or Transformers: Fall of Cybertron.

B. Action Durations

Most actions of a video game agent have a clear end point,

at which they can be regarded as completed. Many of these

actions can be represented by an animation, such as the action

PickUp(agent, object, position). When the PickUp-animation

ends, the agent may continue with the next action from his

plan. For example, the majority of the agents’ actions in the

game Dying Light were animations [14].

However, there are also many cases where an agent should

perform a certain task for some time until this task is aborted

or the agent gets a new goal, as already mentioned in sec-

tion V-B. In general, such tasks never complete on their own.

A good example of such a task is patrolling, where an agent

should walk around until he sees something suspicious or his

watch ends. So, an additional aspect that needs to be taken into

consideration when designing the plan creation and execution

processes is the handling of such persistent actions.

An important question to be answered about the plan

creation process, is how to avoid creating the same plan over

and over again while executing a persistent action and at the

same time to allow re-planning in general. The game Tomb

Raider for example, used a GOAP planner and heuristics

to select plan candidates [42],[10]. Hereby, persistent actions

got some kind of remaining costs. Implementing an accurate

maintenance of these costs prevented the planner from creating

the same plan over and over and re-planning could still take

place. At this point, the re-planning strategy (see section IX-C)

plays an important role. Also, the planner domain should not

be designed in such a way that persistent actions might be in

the middle of a plan. Since a plan task is only executed when

its predecessor completes, any task following a persistent task

would never be executed. Only the creation of a new plan

(which is possibly triggered by an event) might provide the

agent with new tasks.

Another important aspect is the handling of durative actions

and the possibility of planning in time. Imagine, there are

multiple agents that are supposed to perform a group task with

every agent getting his own sequence of actions to execute. For

example, a group of agents has to collect some objects in a

level and bring them back to a specific place. As preconditions

of the actions, the planner considers only the objects’ and the

agents’ positions. It assigns the objects to the closest agents

and thus plans only in space. However, some agents might

be faster than others and should get more objects assigned

than the slower agents (even if they might be closer to some

objects). If the planner does not consider the time, it might

provide a plan that actually takes longer, because the slower

agents would still be collecting their objects while the faster

ones would run out of tasks.

There are multiple approaches that might be applied to

prevent this problem. One possibility to actually plan in time

is adding time into costs computations while planning. This

approach requires some heuristics to be used to select plan

candidates which could contain the durations of tasks. The

usage of heuristics in combination with STRIPS-like planners

in general is possible, however, it is a more complicated task

when using HTN, as described in section VIII-G. In most

cases, the duration of a higher-level task of an HTN is regarded

as the sum of its lower-level tasks’ durations. So, in order to

compare the high-level tasks’ costs it would be necessary to

decompose all of them and compute the costs of all of their

children, which would increase the computational costs.

Furthermore, using time as a heuristic – be it in combination

with an HTN or a STRIPS-like planner – is not that easy

because it is not always possible to know the exact duration

of every task. So, in many cases approximations would be

needed. For example, the duration of a GoTo task could be

approximated through the agent’s speed and the path length,

whereas the duration of a PickUp task could be set to the

length of the corresponding animation. For some actions, how-

ever, approximating their duration might even be impossible,

so that some work-arounds would be needed at this point.

An interesting approach from the academia is the combi-

nation of HTN with STN (Simple Temporal Networks)[43].

This approach uses HTN with temporal planning, allowing to

define temporal preconditions such as task A has to begin/finish

before/during/after task B. Such an approach could possibly

solve the problem described above, where the faster agents

would finish before the slower ones and could get more tasks

to perform. Although this approach is in an early research

stage and was, to our knowledge, not applied in any video

game, it might be an interesting solution to investigate.

An alternative solution to using temporal planning in games

is – as we call it – the re-plan-and-execute approach. To

avoid all the complications described above, many games re-

plan periodically and execute the plan steps immediately. The

emphasis hereby lies on the re-planning that is performed

very often. That way, the planner always has the most recent

information and can change the plans if needed. For example

Killzone 2 re-planned five times per second [44] as described

in more detail in section IX-C. Solving the problem with

planning in time might be even the main reason to re-plan

periodically.

For the example described above, using this solution, there

would be no need to create the full plan assigning all the

objects to the right agents in advance. Instead, it would be

enough to assign the closest objects to all agents first. Then,

all agents would start to execute the first task and thus would

be occupied for some time. Since the plan would re-plan on

a regular basis, at the point when one of the faster agents

would finish his tasks, the planner would assign him to the

next object, as he would be the available one, preferring him

to the slower (occupied) agents.

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

11

VIII. PLAN CREATION PROCESS

When it is clear how all the components of the planner are

defined, it is time to decide on some final aspects concerning

the plan creation process. In this section, we describe aspects

to take into consideration in order to acquire knowledge about

the world state, to evaluate world states and to propagate

changes during the planning. Additionally, we discuss some

optimization strategies for the planner to work more efficiently.

These aspects and processes are shown in Figure 7.

A. Precondition Evaluation

Since most planners use preconditions for actions, it is

important to think about not only how to define them, but

also how to evaluate them. Depending on the definition of

the preconditions, the evaluation complexity might vary a

lot. The expressiveness of the preconditions might play an

important role as well during the domain creation as during

action evaluation.

One possibility for defining and evaluating preconditions is

to follow the example of the original STRIPS (see II-A) and

SHOP (see II-B) describing the preconditions as first-order

predicates and using a theorem prover. According to Alex

Champardard, Guerrilla Games applied this method for the

game Killzone [44]. Also, the game Final Fantasy XV14 used

this approach to represent preconditions of rules for coordina-

tion of multiple ambient NPCs [45], [46]. Using this approach,

it would be possible to express complex dependencies in

the world. However, it would either require additional effort

to build a theorem prover or an existing library/middleware

program would be needed.

To achieve a more efficient precondition evaluation mech-

anism, developers might also think about representing the

preconditions by data structures that are used in the game

itself or by structures more suitable for direct comparison

instead of using logical predicates [47]. For example, the world

state might be represented as a bit array and fast bit-wise

comparisons between the desired world state and the current

one might be executed. As already mentioned in section II-A,

this approach was used in F.E.A.R., where preconditions,

effects and the planner’s world state were represented by fixed-

size arrays. Also, the game Transformers: Fall of Cybertron

used simple preconditions in the form of conjunctions of

boolean values [13]. This approach might be more efficient

and thus more appropriate for video games, according to Dana

Nau [44].

Although using only boolean values is less expressive it

might significantly decrease the flexibility of the planner.

So, in order to be able to perform more complex checks,

it might be useful to call external evaluation functions that

might be defined in some subsystems instead of the planner

itself. The game F.E.A.R. applied this method additionally to

the fixed-size array representation of preconditions in their

implementation of GOAP [7]. Here, they introduced procedu-

ral preconditions which required external functions to perform

precondition checks such as, for example, ray-casting or path

evaluation.

14Final Fantasy XV: Developer: Square Enix, Publisher: Square Enix. 2016

Additionally, to the evaluation strategy, developers might

think about how to save the binded values of preconditions

which were found to be true. These values, assigned to

condition variables could be used later during plan execution

for plan re-evaluation. Knowing which values were assigned

originally, it could be simple to check whether or not the

current world state still fits these values and whether the plan

can be continued.

B. Effects and World State Propagation

In addition to preconditions, most planners implement ef-

fects. An effect of an action/task is defined in the planning

domain and specifies how this action changes the state of the

world. Usually, these effects are denoted in add and delete lists

(as described in section II-A). In general, effects are used to

have a planner-internal simulation of the actions of the plan.

They allow the planner to see how the world would change

applying the plan and to create further plan steps by checking

the preconditions in the changed world state. Thus, with their

usage it is often possible to create more precise plans and to

plan further ahead in time. The game Transformers: Fall of

Cybertron used such a simulation approach in its version of

the HTN planner [13]. The effects of its primitive tasks could

change the world state and these changes were propagated

during the planning process.

Nonetheless, because of the very dynamic and non-

deterministic nature of video games, it is very difficult to

predict whether the world state during actual plan execution

will be the same as it was predicted during plan creation. It

is possible that when an action will be performed, its effects

won’t be applied because of some outer disturbances. In that

case, some sort of re-planning is required (see section IX-D).

For this reason, developers might decide to save the costs

of effect propagation. If no propagation were applied, the plan

would be created on the current world state which would

mean that it would not be possible to validate future actions

correctly. Thus, only short plans could be created without

being able to chain multiple actions. More specifically, using

a STRIPS-like planner, it would mean that only plans of one

action could be created since such planners rely on the pre-

conditions and effects of single actions. On the one hand, that

would mean that more complex goals that would require longer

plans could not be accomplished, basically removing the

planner’s ability to reason into the future. On the other hand,

it would speed up the planner a little because of the smaller

plan size. Furthermore, it might be acceptable if re-planning

is performed often enough anyway or if not many actions

actually do change the world state (such as just performing

a simple animation). However, before applying this approach,

developers should take into consideration which actions do

have effects on the world and then determine the trade-offs

between the agents accomplishing complex goals and the

possible performance improvement of the planning algorithm.

For example, there was no world state propagation in the game

Dying Light because its plans were re-evaluated periodically

and only two of its goals changed the world state [14]. Also,

according to Alex Champandard, both Killzone 2 and 3 did

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

12

Continue
with
Plan

Execution

Decide on
plan

search
direction

Decide on
pruning
strategy

Decide on
interaction
frequency

Decide on
information

flow

Decide on the
world state
propagation

Decide on
complexity of
preconditions

Continue
after

Actions

Decide on
plan

refinement
strategy

Decide on
topology

of the planner

Plan Creation Process

heuristics

hierarchy

backward

forward

total
order

partial
order

indirect

directdecentralized

centralized

without
propagation

with
propagation

external
functions

code structures

first-order predicates

Fig. 7. Plan Creation Process: aspects to consider about the planning process itself.

not propagate the world state changes in their versions of the

HTN planner [14].

Alternatively, it is possible to define reversible effects as

described in [44]. This way, instead of copying the complete

world state for every plan step and to denote changes in it,

one copy of the world state would be enough. Effects could

be applied to this world state and if needed, for example in

case of a plan failure, they could be reversed.

C. Topology of the Planner

When implementing a multi-agent game, engineers should

decide on the topology of the planner. If plans should be

created for only one agent or no coordination between the

agents is required, a distinct decentralized planner can be

implemented for every agent. In this case, every agent would

have his own knowledge about the other agents that he would

gain, for example, through perception.

However, a decentralized planner can still be used even if

coordination between the agents is desired. In this case, every

agent would get his own planner and some kind of information

flow would be required to signal to other agents the state of an

agent’s current plan in order to achieve a coordinated behavior.

Agents should especially be able to inform their cooperators

about (potential) plan failures. Therefore, developers should

think about how to implement communication between the

agents in a proper way. Especially in the case of video games,

performance plays a big role and should not suffer from the

reliance on high information exchange rates.

One way to prevent this case is, for example, the imple-

mentation of local-only communication, where agents would

only talk to agents that are inside a limited radius. Another

solution could be a hierarchical communication system where,

for example, soldiers could only forward their knowledge to

commanders and commanders would pass orders to soldiers,

limiting the communication to 2 hierarchy levels as described

in [22].

Alternatively, a single coordination system might be imple-

mented on top of multiple decentralized planners. This system

could handle the communication between agents and assign

goals to them and their planners would take care of their

behaviors. That way, less effort would be needed to achieve in-

teresting coordinated behavior than without a coordinator . As

described in [48], a central squad coordination provides good

synchronization and coordination between agents on a strate-

gic level, but it might have troubles with handling individual

needs of members. Therefore, an additional decision-making

mechanism might be implemented for every agent in order

to prioritize between individual needs and squad-level tasks

and make decisions on a tactical level. Although a completely

decentralized approach could theoretically be implemented to

provide coordinated behavior between multiple game agents, a

centralized approach might be much more efficient and much

easier to implement. As already discussed in section VI-C,

when using a centralized planner such as HTN, coordination

can be directly defined in its planning domain. A big advance

of a centralized coordinator/planner in a video game is the

ability to debug the created plans and understand why some

certain behaviors occur. In this case there is only one source of

the agents’ knowledge/orders in contrast to the decentralized

case with local communication between agents where any

piece of information might come from many sources. As Jeff

Orkin describes in [18], it was easier to implement and debug a

GOAP planner combined with a squad coordinator in F.E.A.R.

than just having agents try to collaborate locally.

D. Information Flow

The way information between agents is organized is strongly

dependent on the topology of the planner. Having a centralized

planner or some central squad manager usually implies that

this system is responsible for decision making and therefore

needs to have access to all the information. Thus, there is no

need to have any kind of direct information flow between the

agents. It is sufficient to store and share the knowledge indi-

rectly in some central memory (as described in section III-B).

It might be a different case when using a completely

decentralized approach. If every agent had his own planner

without any central coordination system, direct exchange of

information could be a possible option. However, as already

described in the previous section, communication should not

unnecessarily affect the performance of the game, so that

some approaches might be needed to limit things like the

communication radius of the agents.

E. Interaction Frequency

Similar to the topology of the information flow, interaction

frequency is another important aspect to take into consid-

eration. In order to create more reliable plans, a planner

should always have the most recent knowledge about the world

state. Thus, it is important to find a balance between keeping

the planner up-to-date and avoiding unnecessarily frequent

information exchange.

Again, depending on the topology of the planner, the

interaction might take place either between multiple agents

and a central planner or between different agents (and their

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

13

individual planners). In the first case, it is important to think

about both when the agents should update the planner’s knowl-

edge and when exactly it will be needed/read out. Usually,

information about the world state is needed whenever a plan

is re-evaluated. Thus, this rate depends on the re-evaluation

frequency which is discussed in more detail in section IX-C.

However, this does not imply that this information should

be updated at the moment of re-evaluation. In some cases, it

might make sense to update the world state in-between the plan

evaluation queries (e.g. whenever sensors detected a change)

and only to read out the information when needed, as was

done in F.E.A.R.[8]. Such time-slicing might save some costly

checks to be done on-demand.

In the case of decentralized planners, another important

point in addition to the aspects mentioned above, is how often

agents should exchange knowledge with each other. Develop-

ers should also keep in mind aspects like whether or not the

interaction should be bi-directional, whether knowledge ex-

change in both directions should be synchronized and whether

the knowledge should be spread between the agents in a certain

order. These aspects may have an impact on how often a

planner of a single agent should re-plan and thus, depending on

the number of agents, on the required computational resources.

For example a very inefficient way would be to re-plan every

time after an agent gets new information from another agent.

Getting first the information from all agents in a synchronized

way and only then create a plan might be a more efficient

approach. Additionally, depending on the direction and the

order of interactions, some data might accidentally get lost and

thus, an agent’s knowledge about the world might be wrong

and plans created upon it would fail.

F. Search Direction and Plan Refinement strategy

Using a planner means dealing with a search problem that

consists of the planning domain, the initial world state and

the goal which is represented either as a goal world state

(for a STRIPS-like planner) or as a goal (compound) task

(for an HTN planner). Depending on the planning technique,

developers might distinguish the search approaches either by

the search direction or by the decomposition order [49, Chap-

ter 11]. Whenever using a search algorithm like for example

A*, developers have the choice between forward search and

backward search. In planning, forward search would start at

the initial world state and select tasks whose preconditions

are satisfied in that world state. This approach would create

tasks in the order that they should be executed. However, due

to the combinatorics problem, without applying any pruning

strategies (see section VIII-G), the following two problems

might arise: first, the search might become very exhaustive

and second, it might not necessarily lead to the goal state [8].

Backward search can solve the second problem at this point,

starting with the goal world state and searching for tasks

whose effects could satisfy the goal. This approach is generally

used by STRIPS-like planners. However, this approach has

the disadvantage of potentially still being too exhaustive as

well. Here, with every new task that is added to the plan, new

sub goals might be added for the search algorithm to satisfy.

At this point, however, it is easier to find pruning strategies

that might help prevent the growth of the search space. Some

optimization strategies for both search directions are described

in the next section.

In some cases, like for example when using an HTN, it is

more suitable to think about the decomposition order of tasks

rather then the direction of the search. Most of the games

that used an HTN, like Killzone 2 or Transformers: Fall of

Cybertron followed the SHOP approach and applied total-

order forward decomposition [44], [13]. As already mentioned

in section II-B, using total-order decomposition means that

the tasks are decomposed in the order they are defined in

and added to the plan in the same order, that they will be

executed later. This is more intuitive and similar to human

reasoning. Total-order HTNs combine the advantages of both

forward search, taking only those actions into consideration

that are applicable in the current state, and backward search,

considering only actions that are relevant for the goal state [6,

Chapter 11.3].

An alternative possibility, that is used less often in context

of HTNs, is partial-order decomposition. In this case, the final

plan may interleave subtasks from different tasks as described

in [50]. With this approach, it is possible to define and consider

the order of only some certain tasks without constraining the

order for others. That way, the decomposition of more critical

tasks can be preferred to others and potential plan failures in

later steps of the plan can be recognized earlier. For example,

if we have a method that decomposes into the following

two compound tasks: Re-group and MoveAsGroup, it might

make more sense to first check the more expensive/critical

preconditions of the MoveAsGroup-task. If the path-finder

fails to find a path for this task, we would save the time

checking the preconditions and decomposing the Re-group-

task and could use a different method instead. Of course,

without having simulated the changes in the world caused

by the Re-group-task, our assumptions for the MoveAsGroup-

task would be less accurate. So, at this point, developers can

decide whether they need more accurate plans or whether it is

enough to have less accurate plans but a faster plan creation

process. The partial-order decomposition approach was, for

example, used by the mission generator PlannedAssault for

the game ARMA II which tried to make high-level decisions

first decomposing more critical tasks before going into detail

with single branches [15].

G. Optimization Strategies

As already described in the previous section, any search

algorithm used for a planner might have both advantages

and disadvantages. In order to optimize the search, however,

there are different strategies that developers might take into

consideration. In general, the usage of action preconditions

in a planner already leads to an optimized search in terms

of the size of the search space. This way, when trying to

find a sequence of actions that leads to the current goal, the

planner takes into account only those actions for which the

preconditions are true, skipping infeasible combinations. Thus,

an accurate definition of preconditions plays an important role

in the development process of a planner.

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

14

Additionally, developers might introduce further limitations

on the search space which would exclude some actions or

goals in certain situations. For example, in the game Shadow

of Mordor, agents were assigned specific roles that instructed

the planner to only create plans limited to the current role – for

example an investigator would only investigate conspicuous

objects – ignoring other actions during the search process [10].

In addition to the size of the search space, the search can be

optimized in terms of the quality of the delivered plans. Alex

Champardard distinguishes between two main approaches for

search optimization [51]. One approach includes the usage of

heuristics, the other one includes hierarchy.

A flat planner like STRIPS searches through all actions for

a sequence that results in a feasible plan. Using preconditions

and effects, the planner can identify which actions should

follow one another. Since multiple actions might lead to sim-

ilar effects that would match another actions’ preconditions,

multiple plans might be valid at the same time.

In order to select better plans from all the valid ones, actions

could be evaluated for their costs as part of heuristics com-

putations. Using a good heuristic and a breadth-first approach

in a planner might lead to optimal solutions since all possible

solutions would be considered. Although it might also lead to

a higher memory consumption [51].

Defining a heuristic is a complex task that the developers

should be aware of. There are different ways to define action

costs. For example, the game F.E.A.R. used the number of un-

satisfied preconditions as heuristics for A* [19]. Additionally,

different agent types might get different costs for the same

action based on their stats and abilities. Also, these costs might

change depending on some outer influences, as in the game

Tomb Raider where there were the so called situational costs

implemented for actions which were adapted during game

play [10]. This was done by tracking the success rates of goals

and actions for each agent type and saving them with game

data. This way, it was possible to have different costs and thus

different plans for different agent types. An important decision

to be made in this case, is whether or not the learned values

should be saved until the end of the game. Doing so could

mean that boss enemies could exhibit very advanced behaviors

which in turn could over-strain the player. To prevent this, the

learned action costs could be reset at certain intervals [10].

The second approach involves hierarchy instead of heuris-

tics. Here, the search space contains partial plans instead of

single actions and it is limited to predefined solutions. This

approach corresponds more to human reasoning, decomposing

a problem into its subproblems. However, the quality of gener-

ated plans strongly depends on the definition of the hierarchy,

to a point that generated plans might be suboptimal. A good

knowledge of the domain is required to create sufficient task

networks. Also, depending on the decomposition order of

the hierarchy, better plan candidates might accidentally be

discarded from the search. On the other hand, for games, it

is often not necessary to have the optimal plan, usually it is

enough to execute some plan that is feasible and leads to the

goal. Furthermore, hierarchical planners apply the depth-first

approach which usually leads to a lower memory usage and

a higher speed, since it does not require comparing multiple

plan candidates, as is the case when using a heuristic and

breadth-first search [51].

Instead of deciding on whether to use the heuristics ap-

proach or the hierarchical one, developers might also think

about hybrid solutions. For example while creating mission

plans for the game ARMA II, the mission generator PlannedAs-

sault used an HTN planner combined with A* [15]. Here, all

methods that were able to decompose a compound task in

the hierarchy were applied and provided new plan candidates.

The duration from the start of every plan to its end was used

as the cost function. The best (shortest) alternative of the

generated plans was then added to the open list of A* and

further decomposed. Although this approach worked well for

mission generation for ARMA II, where plans were generated

offline (before the game session start) and planning took up

to 2 minutes, it might be insufficient in terms of performance

for planning in real-time where a planner might have only a

few milliseconds to come up with a plan. Another alternative

way of mixing the two approaches could involve heuristics

and breadth-first search only at lower levels of a hierarchical

planner and a depth-first search at higher levels.

Besides the optimization of the plan quality and the size of

the search space, developers might also think about improving

the general performance of the planner through time slicing. In

some cases, the creation of a complete plan might take a long

time and cause performance drops in the game. In order to pre-

vent such drops, the planning process might be distributed over

multiple frames [8]. Therefore, there should be a possibility of

stopping the planner and continuing completion of an existing

partial plan later. This way agents could start executing actions

that the planner already created, while the planner would still

finish creating the current plan. Partial planning was used in

the game Transformers: Fall of Cybertron[13]. More detailed

descriptions of how to use time slicing with HTN can be found

in the description of the simulation SquadSmart[24] and the

HTN planner implemented by the winner of the Capture The

Flag AI Competition[26].

IX. PLAN EXECUTION PROCESS

Besides the implementation of a planner that creates a plan,

another very important system is the plan executor that is

responsible for plan execution. Since these two processes take

place at different points of time, there are many things that

can happen in-between and cause a plan failure - especially

in such a dynamic environment as a game world. For this

reason, there are many aspects that should be handled with

care when implementing a plan executor. These aspects like

plan re-evaluation and re-planning are shown in Figure 8 and

described in the following section.

A. Reactive Behavior

Having a game agent following a long-term plan without

failures is the ideal situation. However, game environments

are very dynamic, many entities and forces affect them and

game agents need to react properly to changes and unexpected

events. Reactive behaviors that could be easily implemented

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

15

Continue
after
Plan

Creation

(Unexpected)
external events

Decide which
events are relevant

Execute plan

Decide on the frequency
of plan re-evaluation

and re-planning

(Partial)
plan failure

Re-evaluate
plan

Decide what to re-plan

Re-plan

Reactive Behaviour

PlanCreate plan(s)

Plan Execution Process

optimized
strategy

every frame

no failure

failure
occured

complete planfailed part

Fig. 8. Plan Execution Process: aspects to consider about the process of plan execution.

with State Machines or Behavior Trees are not directly pro-

vided by planners. So, in order to provide such a behavior,

developers should think about some additional strategies.

One solution could be the mixed usage of planners and State

Machines (as it was done in F.E.A.R [8] see section II-A)

or Behavior Trees. For example, the primitive tasks of a

planner could be implemented as Micro-Behavior Trees. This

way, a planner could provide a plan which would contain

the task Goto. While executing this task, the agent would

use a Behavior Tree which would contain some logic for

jumping over obstacles, ducking or looking at some target

point. A novel solution from the research area of robotics that

is described in [52] even proposes to create Behavior Trees

automatically using the Hybrid Backward Forward (HBF)

algorithm [53]. This approach allows for interleaving planning

and acting, combining the advantages of the HBF planner

which is able to plan in infinite state spaces and the reactivity

of Behavior Trees during execution. For this reason, it shows

promise for planning in game environments. An alternative

solution would be the creation of new plans (re-planning)

whenever necessary. Important aspects of this approach are

described in next sections.

B. Extent of Plan Re-evaluation

Usually, while following a plan, this plan should be re-

evaluated in order to recognize any changes and prevent a plan

failure. One important question hereby is: what to re-evaluate?

Since re-evaluating the whole plan is usually too costly –

especially in the context of video games – in most cases, only

the current and the next plan steps are re-evaluated. Thus, if

an agent is already in the middle of the plan and finishes one

plan step, he should check whether the preconditions of the

next task/action still hold before performing this action. This

approach would at least make sure that the agent does not fail

in the directly following action.

However, in some cases, the plan could fail in some later

steps, even though the next step to perform would be still valid.

So, in order to foresee plan failure earlier and to re-plan, it

might make sense to re-evaluate more than one step ahead.

This approach is applied in different planning areas and might

be interesting to use in the field of planning in video games as

well. Thereby, developers should take into consideration the

costs of re-evaluation in relation to the available resources and

for example the duration of single plan tasks. For example, if

the current task takes a lot of time (like going to a certain

position), there might be too many events/changes happening

in this time, so that the re-evaluation of the next action might

again become less reliable.

C. Frequency of Plan Re-evaluation and Re-planning

Besides thinking about what to re-evaluate, it is also im-

portant to decide on how often to perform the re-evaluation

and when to re-plan. Since many preconditions of tasks may

require information, for example, from the sensory system

and thus would need some costly ray-casting, re-evaluating

the plan in every frame usually would be a bad option. For

the same reason, re-evaluating the next task when an agent

finishes one task, might lead to undesired delays.

One possibility to prevent such delays is performing re-

evaluation on certain events instead of doing it periodically.

For example, whenever a sensor perceives some important

change it could send a corresponding signal to the plan

executor to check the preconditions of the current task and to

re-evaluate the main goal of the agent. In case one, all or only

some of the preconditions of a plan step did not hold anymore

or the goal changed, re-planning should be performed. This

approach was used in the game Dying light [14] where if the

character was hit, for example, the goal changed from attack

to react with pain. Then, a new plan was created replacing the

old one. Additionally, a new plan was created whenever the

previous one finished. Goal re-evaluation on events was also

implemented in F.E.A.R. [19]. Also, SquadSmart [24] and the

game Dirty Harry [37] re-planned after certain events.

An alternative solution is proposed by Jeff Orkin in [19].

To not perform some costly computations on-demand, the

different checks of subsystems could be distributed over mul-

tiple frames (as already mentioned in section VIII-E) and the

results of these checks could be saved in a working memory.

This way, the re-evaluation of preconditions could be done

whenever needed, but instead of querying the systems for

information, the latest results could be directly read out from

the working memory.

However, re-planning on a regular basis might make sense

and even be necessary in some cases, like for example, if

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

16

there were no effects implemented in the planner and changes

in the world state were not propagated during the planning

process as discussed in section VIII-B. In this case, the whole

plan would be build upon the initial state, so that the world

state might quickly become very different from the initial state

which could lead to plan failures. Re-planning periodically and

very frequently might prevent this problem. This approach

was used in Killzone 2 which did not propagate changes in

the world state. Here new plans were created 5 times per

second for every character [44]. As an additional side-effect

of re-planning periodically, plan re-evaluation might become

unnecessary.

D. Re-planning strategy

Often, when a plan step fails, the rest of the plan can still be

valid. So, it might make sense to only re-plan the failed part

of the plan instead of creating a whole new plan. In academia,

there are multiple repairing approaches that allow for partial

re-planning. These approaches are especially valuable if, for

example, full re-planning takes a lot of resources, created plans

are very long or there are other good reasons to keep existing

plans.

In video games however, plans are often very short and

the planning processes are already optimized so much, that

creating a new plan is not a major problem, especially since

many actions are represented simply by animations. In this

context, it might even become more complicated to re-pair

existing plans modifying their parts than creating new ones.

According to Dana Nau, one of the pioneers in planning

in academia, performing a complete re-planning might be

actually the best solution for games [44]. So, at this point,

developers should think about whether there is any good

reason to keep existing plans and whether it is worth adding

a repairing technique to the planner. As already mentioned,

games like Transformers: Fall of Cybertron and Killzone 2

applied full re-planning whenever needed [44].

Another important issue related to re-planning is the abor-

tion of running actions and a smooth transition to the new plan.

In contrast to applications from other industries, in games,

it is important to have a naturally looking agent behavior.

Thus, some additional mechanisms should be implemented in

order to prevent agents from switching between very differ-

ent actions, especially if certain actions cannot be instantly

aborted. Killzone 2 for example, implemented so-called con-

tinue branches in its HTN [12]. These (backup-)branches were

switched to when an agent’s current plan became obsolete,

making it do something seemingly relevant while waiting for

a new plan. How an action should be finished using such a

branch could be defined for every action separately.

X. TOOLS

Similar to many other systems in game development, the

planner and its domain might change a lot throughout the

development process. Designers might ask for more actions,

different conditions or effects. In order to be able to introduce

changes easily, it might be very helpful to develop editor

tools that would allow to tweak planner parameters and define

actions. Of course, developing such a tool always leads to

additional costs. However, depending on how many different

developers should work with the planning domain and whether

the planner should be re-used for further projects, the de-

velopment time might be worth it. Furthermore, in order to

introduce heterogeneous agents, it might be a great help to

use a user-friendly tool for assigning various attribute values

to different agents. Such a tool was, for example, used for

the development of the game Dirty Harry where designers

could assign different goals, action sets and attribute values to

different types of agents [37].

Another very important tool for game development in

general and especially for a planner is a proper debugging

tool. It is already a big problem to understand why an agent

is behaving in a certain way when using reactive Behavior

Trees, but it is even a bigger problem to understand a behavior

caused by a long-term planner. Since a planner does not only

take into account the current state of the world, but also

makes assumptions about future world states, it is not trivial

to track back its search process and understand what exactly

caused an undesired behavior. Similar problems arise in the

area of robotics [54] where generating plans that are easy to

understand by humans is a challenging task that needs to be

solved.

Since the world state of a game changes very quickly and

the amount of variables used by a planner might be enormous,

a simple run-time debugger might not be sufficient at this

point. Additional ways to record and playback the gameplay

might help to reproduce certain game situations and step

through the plan creation process [37]. Even more helpful

could be some sort of history to record the agents’ goals, the

statuses of each agent’s plan and executed actions.

XI. CONCLUSION

Some of the recent commercial video games have used

a planning system to define complex agent behavior. Most

of them have implemented their own version of either the

Stanford Research Institute Problem Solver (STRIPS) or the

Hierarchical Task Network (HTN). In this work, we have given

an overview of the planner implementations in some of these

games and analyzed them in terms of different components

of a planner. We defined seven areas that are important to

focus on when implementing a planner and identified problems

that might arise in these areas. Showing possible solutions to

these problems, we have tried to answer questions such as:

how to handle high dynamics of a game world preventing

plan failures, how to define a planner domain, how to achieve

coordination between multiple agents and how to create plans

for heterogeneous agents. Furthermore we discussed how to

optimize the search in a huge search space.

Even though both HTN and STRIPS have shown good

results in some games, they still required extensive modifi-

cations in order to combine long term planning with natural

looking reactive agent behavior. In our opinion, the blending

of planning and execution still remains a major problem in

many real-time environments and is the main reason for the

low adoption rate of planners in games. With this paper, we

2475-1502 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2017.2782846, IEEE
Transactions on Games

17

hope to provide an insight into this and other problems that

developers of planners had to face in the past and to motivate

academics to do more research that would resonate with the

needs of developers.

REFERENCES

[1] S. Rabin, “#define game ai,” 2009. [Online]. Available: http:
//gdcvault.com/play/1366/\(307\)-define-GAME

[2] D. S. Nau, “Current trends in automated planning,” AI magazine, vol. 28,
no. 4, p. 43, 2007.

[3] D. E. Wilkins, “Practical planning: extending the classical ai planning
paradigm,” 2014.

[4] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving,” Artificial intelligence, vol. 2,
no. 3-4, pp. 189–208, 1971.

[5] R. A. Girle and M. Fitting, “First-order logic and automated theorem
proving,” 1998.

[6] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004.

[7] J. Orkin, “Three states and a plan: the ai of fear,” in Game Developers
Conference, vol. 2006, 2006, p. 4.

[8] ——, “Applying goal-oriented action planning to games,” AI Game
Programming Wisdom, vol. 2, no. 2004, pp. 217–227, 2004.

[9] A. Champandard, “Planning in games: An overview and
lessons learned.” [Online]. Available: http://aigamedev.com/open/review/
planning-in-games/

[10] P. Higley, “Goal-oriented action planning: Ten years old and
no fear!” [Online]. Available: http://www.gdcvault.com/play/1022019/
Goal-Oriented-Action-Planning-Ten

[11] I. Georgievski and M. Aiello, “An overview of hierarchical task network
planning,” arXiv preprint arXiv:1403.7426, 2014.

[12] R. Straatman, “Killzone 2: Multiplayer bots.” [Online].
Available: http://files.aigamedev.com/coverage/GAIC09 Killzone2Bots
StraatmanChampandard.pdf

[13] T. Humphreys, “Planning for the fall of cybertron: Ai in
transformers.” [Online]. Available: http://aigamedev.com/premium/
interview/planning-transformers/

[14] M. Kurowski, “Dying lights zombies and htn planning in open
worlds.” [Online]. Available: http://aigamedev.com/premium/interview/
dying-light/

[15] W. Van der Sterren and A. Champandard, “Plan-space hierarchical
heuristic search for planned assault in arma ii.” [Online].
Available: http://aigamedev.com/members/access.php?article=/premium/
interview/planned-assault/

[16] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila, “Shop: Simple
hierarchical ordered planner,” in Proceedings of the 16th international
joint conference on Artificial intelligence-Volume 2. Morgan Kaufmann
Publishers Inc., 1999, pp. 968–973.

[17] T. Humphreys, “Exploring htn planners through examples,” Game AI
Pro: Collected Wisdom of Game AI Professionals, vol. 149, 2013.

[18] A. Champandard, “Assaulting f.e.a.r.s ai: 29 tricks to arm your game.”
[Online]. Available: http://aigamedev.com/open/review/fear-ai/

[19] J. Orkin, “Agent architecture considerations for real-time planning in
games.” in AIIDE, 2005, pp. 105–110.

[20] D. Isla and B. Blumberg, “Blackboard architectures,” AI Game
Programming Wisdom, vol. 1, no. 7.1, pp. 333–344, 2002.

[21] J. Orkin and J. Kelly, “Simple techniques for coordinated behavior,” AI
Game Programing Wisdom, vol. 2, 2004.

[22] J. Reynolds, “Tactical team ai using a command hierarchy,” AI Game
Programming Wisdom, vol. 1, pp. 260–271, 2002.

[23] A. Champandard, “Using a static blackboard to store world
knowledge.” [Online]. Available: http://aigamedev.com/open/article/
static-blackboard/

[24] P. Gorniak and I. Davis, “Squadsmart: Hierarchical planning and coor-
dinated plan execution for squads of characters.” in AIIDE, 2007, pp.
14–19.

[25] G. Steele, Common LISP: the language. Elsevier, 1990.

[26] A. Shafranov and A. Champandard, “Planning domains and compiling
htn to c++.” [Online]. Available: http://aigamedev.com/premium/
interview/plan-compilation/

[27] A. Champandard, “Hierarchical planning and coordinated plan execution
for squads of characters.” [Online]. Available: http://aigamedev.com/
open/review/hierarchical-planning-coordinated-execution/

[28] M. A. Leece, “Unsupervised learning of htns in complex adversar-
ial domains,” in Tenth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2014.

[29] C. Hogg and U. Kuter, “Learning methods to generate good plans:
Integrating htn learning and reinforcement learning.” 2010.

[30] H. H. Zhuo, H. Muñoz-Avila, and Q. Yang, “Learning hierarchical
task network domains from partially observed plan traces,” Artificial
intelligence, vol. 212, pp. 134–157, 2014.

[31] K. Shafi and H. A. Abbass, “A survey of learning classifier systems
in games [review article],” IEEE Computational Intelligence Magazine,
vol. 12, no. 1, pp. 42–55, 2017.

[32] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimization,
vol. 26, no. 6, pp. 369–395, 2004.

[33] J. Branke, K. Deb, K. Miettinen, and R. Słowiński, “Multiobjective
optimization: Interactive and evolutionary approaches,” 2008.

[34] D. Staltman, “Demigod’s ai from role-playing to real-time
strategy.” [Online]. Available: http://aigamedev.com/premium/interview/
demigod-role-playing/

[35] E. Jacopin, “Game ai planning analytics: The case of three first-person
shooters.” in AIIDE, 2014.

[36] C. Boutilier, R. I. Brafman et al., “Planning with concurrent interacting
actions,” in AAAI/IAAI, 1997, pp. 720–726.

[37] D. Iassenev, M. B., J. Orkin, B. Pfeifer, and A. Champandard,
“Special report: Goal-oriented action planning.” [Online]. Available:
http://aigamedev.com/premium/report/goal-oriented-action-planning/

[38] B. G. Weber and M. Mateas, “Case-based reasoning for build order in
real-time strategy games.” in AIIDE, 2009.

[39] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning
and execution for real-time strategy games,” in International Conference
on Case-Based Reasoning. Springer, 2007, pp. 164–178.

[40] P. Tozour, “Introduction to bayesian networks and reasoning under
uncertainty,” AI game programming wisdom, vol. 1, pp. 345–357, 2002.

[41] J. Blythe, “An overview of planning under uncertainty,” in Artificial
intelligence today. Springer, 1999, pp. 85–110.

[42] C. Conway, “Goap in tomb raider,” 2015. [Online]. Available: http:
//www.gdcvault.com/play/1022020/Goal-Oriented-Action-Planning-Ten

[43] L. A. Castillo, J. Fernández-Olivares, O. Garcia-Perez, and F. Palao,
“Efficiently handling temporal knowledge in an htn planner.” in ICAPS,
2006, pp. 63–72.

[44] C. A. Nau, Dana, “Inside hierarchical task network planners.” [Online].
Available: http://aigamedev.com/premium/interview/htn-planners/

[45] H. Skubch, “Not just planning: Strips for
ambient npc interactions in final fantasy xv,”
2015. [Online]. Available: https://archives.nucl.ai/recording/
not-just-planning-strips-for-ambient-npc-interactions-in-final-fantasy-xv/

[46] ——, “Ambient interactions: Improving believability by leveraging rule-
based ai,” Game AI Pro, vol. 3, 2017.

[47] A. Champandard, “Summary of strips: A new approach to the applica-
tion of theorem proving to problem solving.” [Online]. Available: http:
//aigamedev.com/open/article/strips-theorem-proving-problem-solving/

[48] W. Van Der Sterren, “Squad tactics: Planned maneuvers,” AI Game
Programming Wisdom, pp. 247–259, 2002.

[49] S. J. Russell and P. Norvig, “Artificial intelligence: A modern approach,”
2002.

[50] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell, “Total-
order planning with partially ordered subtasks,” in IJCAI, vol. 1, 2001,
pp. 425–430.

[51] A. Champandard, “Heuristic vs. hierarchy: Domain knowledge
for planners.” [Online]. Available: http://aigamedev.com/open/article/
heuristic-hierarchy/

[52] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended
reactive planning and acting using behavior trees,” arXiv preprint
arXiv:1611.00230, 2016.

[53] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Backward-forward
search for manipulation planning,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp.
6366–6373.

[54] R. Alterovitz, S. Koenig, and M. Likhachev, “Robot planning in the real
world: research challenges and opportunities,” AI Magazine, vol. 37,
no. 2, pp. 76–84, 2016.

