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Abstract—In this paper, we study the performance of three
popular large-scale optimisation algorithms on the recently
proposed large-scale many-objective optimisation problems
(LSMOP). We briefly explain the three methods (MOEA/DVA,
LMEA and WOF) and give an overview of their use and
performance in the literature. For the Weighted Optimization
Framework (WOF), we propose a new transformation function
to eliminate the parameter needed in its previous version.
In our experiments, we compare the three algorithms on the
LSMOP1-9 functions with 2 and 3 objectives and up to 1006
decision variables. The special focus of our study is on the
convergence speed and behaviour, since MOEA/DVA and LMEA,
in contrast to WOF, need huge computational budgets to obtain
variable groups prior to optimisation. Our experiments show
that MOEA/DVA and WOF perform significantly better than
LMEA on almost all instances and WOF further outperforms
MOEA/DVA significantly in most of the 1006-variable problems,
in solution quality as well as convergence speed. In most instances
the WOF only needs 0.1% to 10% of the total evaluations
to outperform the final solution sets obtained by LMEA and
MOEA/DVA.

Index Terms—Multi-objective optimization, large-scale opti-
mization, variable Grouping, many-variable optimization, meta-
heuristic Framework, WOF, LMEA, MOEA/DVA, LSMOP

I. INTRODUCTION

In multi-objective optimisation, a variety of methods have
been proposed to deal with different kinds of optimisation
problems, among which, evolutionary algorithms and particle
swarm optimisation might be the ones most often used. In
recent years, with the advancement of the optimisation al-
gorithms, it became possible to solve more complex tasks,
and the area of handling a larger number of objective func-
tions and decision variables has become popular. This area
is often referred to as large-scale optimisation. When the
dimensionality of the search space, i.e. the number of vari-
ables, is increased, the performance of classical evolutionary
computation approaches often deteriorates. Finding optimal
solutions in problems with a large number of variables is
an ongoing challenge both in single- and multi-objective
optimisation. Concepts like Cooperative Coevolution [1] and
other approaches [2]–[5] have been proposed in the literature,
which usually involve a special mechanism for the division of
the variables into multiple groups.

As algorithms become more advanced, there is also a
special need to test and compare their performance. For this
purpose, a set of special problems, called LSMOP (Large-scale
many-objective problems) have been introduced. The LSMOP

benchmark function were proposed in 2016 by Cheng et al.
[6] and are specifically designed to test the search abilities of
algorithms in large-scale optimisation.

Although the field of large-scale optimisation has been
studied extensively in single-objective optimisation, the area
of multi- and many-objective problems with large numbers of
variables has only grown popularity within the last few years.
Most recently, three different algorithms (MOEA/DVA, LMEA
and WOF) to solve multi-objective large-scale problems have
been proposed, all of which differ from the classical single-
objective coevolutionary methods. These three have been
tested on a variety of test problems each, but no study so
far showed a direct comparison of these three on the recently
introduced LSMOP benchmark functions. In [4], the WOF
was not compared with LMEA, and was also never tested on
the LSMOP before. Further, LMEA and MOEA/DVA have
only been tested on the LSMOP benchmarks on 5-objective
instances with 500 decision variables in [5], but it is unclear
if the superior performance of the LMEA results from a good
way to deal with many-objectives or a good way to deal with
high-dimensional search spaces.

In this work we use the newly proposed LSMOP1-9 bench-
marks to compare the performance of the Weighted Optimiza-
tion Framework (WOF) that was proposed in [2] and [4] and
two other most recent large-scale optimisation algorithms, the
MOEA/DVA (Multi-objective Evolutionary Algorithm based
on Decision Variable Analysis) [3] and LMEA (Large-scale
Many-objective Evolutionary Algorithm) [5]. As a baseline,
the original SMPSO [7] is also used in the experiments, since
it is used as one of the components of the WOF.

The main contribution of this paper are as follows:
1) We compare the final solution quality of the three meth-

ods on the LSMOP benchmarks for different amounts
of decision variables.

2) Since especially LMEA and MOEA/DVA both use com-
putationally expensive ways (in terms of used function
evaluations) to achieve the variable groups, a special
focus of this work is to compare the convergence speed
to analyse how the algorithms make use of their com-
putational budget.

3) Additionally, we propose a new parameter-free transfor-
mation function for the Weighted Optimization Frame-
work, which can replace the function used in [4] and
therefore eliminate one of the parameters needed in the
original version.



The focus of this paper lies on many-variable problems, so
the experiments concentrate on different numbers of variables
(from 46 to 1006) and use only 2 and 3 objective functions.
Since a major drawback of many methods is the increased
amount of needed function evaluations due to initial variable
interaction analyses, our study will concentrate not only on
the final solution sets of the four algorithms, but specifically
deal with the analysis of convergence speed.

This article is structured as follows. In Section II, we briefly
explain the concept of multi-objective optimisation, followed
by a brief review of related studies on multi-objective large-
scale approaches. Section III will shortly explain the basic
concepts of the three used large-scale algorithms and give an
overview of their merits, disadvantages and performance in
the literature. Regarding the WOF, we also propose a new
parameter-free transformation function for the use in the WOF,
which will also be explained in Section III. Section IV gives
an introduction into the LSMOP benchmark problem. The
main goal of this paper, the experimental comparison of the
algorithms, will be done in Section V, with a special focus
not only on the final solution sets, but also on the convergence
speed. Finally, the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

Problems in nature and science often contain multiple con-
flicting objectives. These problems are called multi-objective
problems (MOPs) and can mathematically be formulated as:

Z : min ~f(~x) = (f1(~x), f2(~x), ..., fm(~x))T

s.t. ~x ∈ Ω ⊆ Rn
(1)

This kind of MOP maps the decision Space Ω = {~x ∈
Rn|~g(~x) ≤ 0} of dimension n to the objective space of
dimension m. A variety of metaheuristic algorithms have
been developed to find a non-dominated solution set for
approximating the true Pareto-front. Large-scale optimisation
usually deals with optimising MOPs that contain a large num-
ber (usually ≥ 200) of variables (also called many-variable
problems) or a large number (≥ 4) of objective functions
(many-objective problems (MaOP)).

In the following we give a brief overview of basic and recent
developments in the area of large-scale optimisation. The three
most prominent large-scale approaches used in this paper
and their performance and related literature are introduced
separately in Section III.

Even though a variety of large-scale optimisers have been
developed in recent years, as mentioned before most of them
concentrate on single-objective optimisation. An overview of
existing large-scale global optimisers for single-objective prob-
lems can be found in [8]. One of the most popular concepts is
Cooperative Coevolution (CC), which was first introduced into
the area of optimisation by Potter and De Jong in 1994 [1]. CC
aims to optimise several independent populations of subsets
of the n decision variables. New solution candidates have to
be formed by combining the variable values from different
subcomponents. However, genetic operators are only applied

within each subcomponent population. The concept of CC has
since been used in a variety of large-scale single-objective
algorithms [9]–[13].

For multi-objective optimisation, the concept of cooperative
coevolution was adapted in the CCGDE3 algorithm [14], com-
bining CC with the GDE3 optimiser. The CCGDE3 algorithm
was tested for the ZDT1-3 and ZDT6 [15] problems with up to
5000 decision variables, and performed well especially for the
high-dimensional instances. However, the concept of CC has
some drawbacks when applied to multi-objective problems.
The same ZDT experiments with up to 5000 variables were
repeated in [4], and it was also tested on up to 1000-
dimensional problems of the WFG [16], DTLZ [17] and
CEC2009 competition (UF) [18] benchmark families. The
results showed that CCGDE3 was significantly outperformed
by the WOF and in most instances even by classical (i.e. non-
large-scale) optimisation methods.

An earlier approach by Iorio and Li [19] combined the
concept of CC with the NSGA-II algorithm, and focused on
the ZDT problems for their analysis. However, only small-
dimensional instances of 10 and 30 variables were tested.

In [20], an optimisation problem based on a real world
application was introduced within a competition at the IEEE
Congress on Evolutionary Computation (CEC) 2015. This
problem involved up to 4864 decision variables, and its multi-
objective version has been used in [21] and [22]. However, the
first approach did not treat the problem in a black-box manner
and used derivative information from the objective functions.
Both approaches performed superior to the baseline provided
by the authors of [20], but were not tested any further on
established benchmark problems.

Concepts like CC usually require a scheme for variable
grouping, to divide the n decision variables into different sub-
components. A simple random grouping mechanism was for
instance used in [9]. Consideration for non-separable problems
for single objective functions was done in [10], where the
interaction of variables is taken into account by a learning
mechanism for finding the optimal division of variables. A
mechanism called Differential Grouping was developed in [23]
to find improved divisions of the variables in single-objective
CC algorithms. Other concepts and extensions to this approach
for variable grouping have also been proposed [24], [25].

For dealing with variable groups in multiple objectives,
special mechanisms have been applied (see Section III). In
contrast to the grouping mechanism used in single-objective
optimisation, which focus solely on interactions between
variables, modern multi-objective methods also decompose
based on the contribution to diversity of the population or
convergence towards the optimal front.

Grouping methods like the Differential Grouping and also
the multi-objective methods used in MOEA/DVA and LMEA
(see below) have the disadvantage of using a large com-
putational budget for finding the interactions and compose
variable groups using this information. More recently, this
issue was addressed by [26]. They introduced a random-based
dynamic grouping strategy called RDG to reduce the number



of evaluations used to obtain suitable variable groups. The
proposed grouping method was implemented into the same
Framework as the MOEA/DVA algorithm and was able to
outperform the original MOEA/DVA on 2- and 3-objective UF
and WFG problems with 800 and 1000 decision variables. The
experiments used 8 million and 10 million function evaluations
respectively. Although their method still used the original de-
composition into convergence- and diversity-related variables
proposed in [3], the major share of function evaluations that
MOEA/DVA uses in the variable interaction analysis were not
necessary any more in the new RDG-based grouping. Thus,
the optimisation algorithm was able to spend a larger amount
for the actual search.

Another approach to large-scale multi-objective optimisa-
tion was shown in 2016 in [27], where the authors tried to
include special consideration for large-scale problems into
existing genetic operators. Variable groups were directly used
within a polynomial mutation operator, without any further
change to the surrounding algorithm. In particular, the work as-
sumed that once a suitable separation of the variables is found,
they can be directly used by applying mutation operations on
all variables in a group simultaneously, while at the same time
keeping the direction and amount of mutation the same for
all of them. The experiments in [27] used different grouping
methods, most of which did not need any additional function
evaluations, on WFG problems with 1000 variables. They
showed that even with random groups, the performance of the
optimisation can be improved significantly by just applying
the changed mutation operator without any additional budget
spent for the grouping phase.

III. USED ALGORITHMS

In this work we will compare three recently developed large-
scale optimisation algorithms with each other. Each of them
will be explained here very briefly to give a short overview
for the later experimental analysis.

A. MOEA/DVA

The MOEA/DVA (Multi-objective Evolutionary Algorithm
based on Decision Variable Analysis) was proposed in 2016
by Ma et al. [3]. As previous methods based on cooperative
coevolution, it is based on dividing the variables into multiple
groups and then optimising the variables in these groups
independently. In comparison to previous single-objective op-
timisation methods and grouping mechanisms, the decision
variable analysis in MOEA/DVA was designed to identify not
only interaction between variables, but also the contribution
of a variable to convergence, diversity or both. By a control-
variable analysis and an interaction analysis, the vector ~x is
first divided into two groups, one that contains the distance-
variables, which are supposed to control the convergence or
closeness to the Pareto-optimal solutions, and another one
which contains the position-related and mixed variables, which
are expected to have an influence of the diversity of the
solution set. The distance-related variables are then further

divided by an interaction analysis into smaller subgroups of
interacting variables.

The actual optimisation phase of the MOEA/DVA starts
after these grouping steps are completed. Each group of vari-
ables is optimised independently by a suboptimiser, which is
based on differential evolution to create offspring values of the
selected groups’ variables. In the end of the optimisation, a so-
called uniformity optimisation is carried out, which optimises
the original problem as a whole without using groups, to obtain
a better spread of solutions.

An advantage of the MOEA/DVA is that it takes into ac-
count the special requirements of multi-objective optimisation,
i.e. the different goals of diversity and convergence during the
search. It was tested in [3] on several test problems of the
WFG, DTLZ and UF families with small numbers of decision
variables (24 and 30) with 2 and 3 objective functions and
showed good performance compared to other algorithms.

The disadvantage of the MOEA/DVA is that it largely
depends on the separation of the variables into groups. The
mechanism has been shown to work, but its complexity
requires it to use a major share of the computational budget for
the initial grouping phase. The complexity varies depending
on the problem, but rises roughly quadratically with increasing
numbers of function evaluations. In [4], MOEA/DVA needed
> 8,000,000 function evaluations for analysing the groups of
a 1000-variable problem.

The large-scale tests that were performed in the original
MOEA/DVA paper used 200 decision variables and were
limited to the 2-objective ZDT4 and UF1-6 and the 3-
objective DTLZ1, DTLZ3 and UF10 benchmarks. The maxi-
mum number of evaluations used were set between 1,200,000
to 3,000,000 depending on the test problem. MOEA/DVA out-
performed other popular algorithms in these tests, although it
must be noted that none of them was specifically designed for
large-scale problems. Instances with more than 200 variables
have not been tested. In [4] the MOEA/DVA was compared
with the Weighted Optimization Framework (WOF) on 1000-
variable instances of the UF1-10 and the WFG1-5 and WFG7
problems with two and three objectives. The results showed
that on most of the UF benchmarks, the MOEA/DVA per-
formed better than the WOF, although it needed a large com-
putational budget to do so (MOEA/DVA used over 8,000,000
evaluations just for the initial grouping phase). On the other
hand the WOF outperformed MOEA/DVA on all WFG prob-
lems and the UF10 problem and used only a small budget (<
1,000,000 evaluations) to do so.

B. LMEA

Similar to the MOEA/DVA, the LMEA (Large-scale Many-
objective Evolutionary Algorithm) was designed specifically to
deal with problems with many-objectives and large numbers
of variables [5]. It uses a clustering approach to decide if vari-
ables are related to convergence, diversity, or both. Similarly
to MOEA/DVA, the total number of decision variables are
first divided into convergence- and diversity-related variables.
After that, an interaction analysis is carried out only on the



convergence variables to further divide them into subgroups.
The different convergence-related groups are them optimised
separately with a convergence optimisation procedure, while
a different procedure is used to optimise the diversity-related
variables. The convergence-related groups and the diversity-
related groups are optimised in turns until the maximum
number of evaluations is used up. A drawback of LMEA is,
that similar to MOEA/DVA, it requires a very large amount
of function evaluations to obtain the variable groups.

The LMEA has been tested in [5] on large-scale instances
of the LSMOP benchmarks. 500 variables and 5 objectives
were used with 6,800,000 function evaluations. The best per-
formance for the LSMOP4 and LSMOP7 tests were obtained
by the MOEA/DVA while NSGA-III performed best on the
LSMOP6. In the LSMOP1-3, 5, 8 and 9, LMEA performed
best. LMEA was then further compared with other algorithms
on selected problems from the DTLZ, WFG and UF families
with up to 1000 decision variables and 10 objectives. It was
outperformed by MOEA/DVA on some instances DTLZ1 and
3 and all instances of the UF9 and 10 problems. However,
LMEA performed best on all instances of DTLZ5 and 6,
WFG3 and some instances of DTLZ1, 2, 3 and 7, showing
that it can work well on large-scale problems which including
many variables and many objectives at the same time.

C. Weighted Optimization Framework

The Weighted Optimization Framework (WOF) was de-
veloped recently in [2] and [4] and originally aimed to
overcome certain shortcomings of Cooperative Coevolution.
The methods essentially tries to reduce the dimensionality of
the problem by altering a large share of the decision variables
at the same time and by the same amount. This is done through
so-called transformation functions, which assign a weight-
value each to a group of decision variables. These weight-
values, the same amount as the number of variable groups, are
then subject to change through a separate optimisation step,
which alters the original solutions indirectly through applying
the weights in the transformation function.

The vector of n decision variables (x1, .., xn) is divided
into a number of γ groups, and each group is then assigned
a new variable wj , j = 1, ..γ. If a solution for the optimi-
sation problem is to be evaluated, the values of the decision
variables xi are combined (through a transformation function)
with the corresponding weight-variable wj that belongs to
the respective group of xi. By doing so, a new vector of
variables ~w = (w1, .., wγ) is introduced and can be optimised
independently of the values of ~x.

The WOF then uses this mechanism in the following way:
• Optimise the variables of ~x with a population-based

metaheuristic.
• From the current population of individuals, pick a number

of q solutions x′k, k = 1, .., q.
• For each k = 1, .., q: keep the values of x′k fixed and

use a metaheuristic to optimise the variables of ~w for the
given x′k. A transformation function Ψ(~w, ~x′k) is used for
the function evaluation.

• Apply the found weights to the original population of
solutions ~x.

• Eliminate duplicates and perform a non-dominated sort-
ing process of the union set of solutions from the parent
population and the weighted populations.

Through this process, the framework tries to exploit the
search abilities of existing metaheuristics by applying them
inside the framework, while by the dimensionality reduction
from n to γ variables, the algorithm can search in a much
smaller space much more efficiently. Since it is not guaranteed
that the optimal solutions are included in the smaller search
space (due to the grouping of variables which keeps their
relative ratios fixed), the optimisation of the weights ~w is alter-
nated with a normal optimisation of the original problem. For
the second half of the overall available function evaluations,
a normal optimisation is carried out to spread solutions.

The WOF needs a grouping mechanism, a transformation
function to apply a solution ~w to a solution ~x, and other
parameters that define how the solutions are chosen and how
many evaluations are used in which phase of the algorithm.
A detailed description can be found in [4]. In contrast to the
version of the WOF that was used in [4], in this work we
propose a new transformation function (see below) to eliminate
the need for the parameter p in the transformation function.
Additionally, our implementation of WOF differs from [4] by
frequently applying a restart on the optimisation algorithm in
the second half of the optimisation, which showed to increase
performance slightly. The selection of the used solutions x′k is
done in this work by reference directions instead of Crowding
Distance.

The Weighted Optimization Framework was used in the
literature to solve various benchmarks with different numbers
of decision variables. It has been tested in [2] and [4] on
the ZDT1-4, ZDT6, WFG1-9, UF1-10 and DTLZ1-7 functions
with 2 and 3 objectives and numbers of variables ranging from
40 to 5000. The results showed that WOF performed best
when a particle-swarm optimiser (SMPSO [7]) is used as the
optimiser for the subproblems. WOF-SMPSO outperformed
other algorithms and especially the CCGDE3 algorithm on all
tested problems significantly. As mentioned above, it was also
compared to MOEA/DVA on 1000-dimensional problems and
showed better performance of the WFG and UF10 problems,
while MOEA/DVA seemed to return better final solution sets
for the remaining UF instances.

D. The new Transformation Function

In this subsection we introduce a new transformation func-
tion for the WOF-algorithm. The best transformation function
used in [4] was the so-called p-Value-Transformation. The
major drawback of this function is that its performance is
dependent on a parameter p. Although a sensitivity analysis in
[4] showed that a value of p = 0.2 yields good results, it can
be of advantage to eliminate this parameter, so the algorithm is
more adaptive when dealing with unknown problem properties.
The p-Value method further has the drawback that small
values of p only cover parts of the domain [xi,min, xi,max],



TABLE I
PROPERTIES OF THE NINE LSMOP BENCHMARKS AS LISTED IN [6].

Modality Separability

LSMOP 1 Unimodal Fully Separable
LSMOP 2 Mixed Partially Separable
LSMOP 3 Multi-modal Mixed
LSMOP 4 Mixed Mixed
LSMOP 5 Unimodal Fully Separable
LSMOP 6 Mixed Partially Separable
LSMOP 7 Multi-modal Mixed
LSMOP 8 Mixed Mixed
LSMOP 9 Mixed Fully Separable

while too large values result in infeasible values and have to
be repaired afterwards. To eliminate these factors and make
the transformation parameter-free, we propose the following
transformation function in this paper:

Ψ(wj , x
′
i) := xi ={

x′i + (wj − 1.0) · (xi,max − x′i) if wj > 1.0

xi,min + wj · (x′i − xi,min) if wj ≤ 1.0

wj ∈ [0, 2]

where xi,min and xi,max are the respective lower and upper
bounds of the variable xi. The function Ψ computes the values
of a new transformed solution ~x from the two inputs ~w and
~x′, where ~x′ is the fixed solution picked within the WOF
algorithm to do the weight optimisation, and ~w is the solution
to the transformed subproblem as described above. Each new
variable xi, i = 1, .., n is computed between xi,min and xi,max
using the value of x′i as a center point. In the transformed
problem, the variables wi, i = 1, .., γ are optimised in the
interval [0, 2], where by transformation all values [0, 1] are
mapped to the interval [xi,min, x

′
i] in the original search space,

while all values (1, 2] are transformed to [x′i, xi,max].

IV. BENCHMARK PROBLEMS

The LSMOP problems were recently proposed in 2016
[6] to enable researchers to develop new methods for many-
variable and many-objective problems. The LSMOP test suite
allows to create problems with any numbers of decision
variables and objective functions. In comparison with the
DTLZ, WFG or ZDT problems, which were already examined
in the original paper of the Weighted Optimisation Framework
(WOF), the LSMOP problems address some shortcomings
of previous benchmark functions. They allow to specify the
separation into groups und the interactions between the groups
beforehand. As a result, the nine LSMOP are meant to test
specifically many-objective and many-variable optimisation
algorithms. The properties of the benchmarks have been
summarised in Table I.

V. EVALUATION

So far in the literature, the WOF has been evaluated exten-
sively of problems of the WFG, DTLZ, ZDT and UF bench-
marks, and WOF and MOEA/DVA have been compared to
each other in [4]. However, WOF has never been tested on the
LSMOP before, and its performance has not been compared to

TABLE II
SETTINGS OF THE EXPERIMENTS.

n = 2 Objectives

Variables Max. Evaluations

46 400,000
106 1,000,000
206 2,000,000

1006 10,000,000

n = 3 Objectives

Variables Max. Evaluations

52 400,000
112 1,000,000
212 2,000,000

LMEA. As mentioned earlier, LMEA and MOEA/DVA have
been compared in [5] on the LSMOP problems, but only in
many-variable instances with 5 objectives and only with 500
decision variables, where it remains unclear if the superior per-
formance of the LMEA results from a good way to deal with
many-objectives or a good way to deal with high-dimensional
search spaces. In most studies, a very large computational
budget was used, to enable the algorithms to find the variable
groups before optimising. This article will now compare the
three most prominent large-scale methods WOF, MOEA/DVA
and LMEA on the recently proposed LSMOP benchmarks with
up to 1000 variables. We will specifically pay attention to
the convergence speed and necessary function evaluations, as
this is a major drawback of MOEA/DVA and LMEA. Due to
limited space, and also to look into the ability to search high-
dimensional search spaces efficiently, the experiments in this
paper are limited to 2- and 3-objective instances.

A. Experiment Settings

We use SMPSO, WOF-SMPSO, MOEA/DVA and LMEA
to solve the LSMOP1 - 9 problems as proposed in [6]. The
number of decision variables have been set to 40, 100, 200 and
1000. Due to the nature of the LSMOP, the actual number
of decision variables increases slightly from these numbers
as listed in Table II. We perform the experiments with 2
and 3 objective functions. As a stopping criterion we use a
maximum number of function evaluations. Although the WOF
has been shown to deliver good performance after mostly just
100, 000 function evaluations, the LMEA and MOEA/DVA
algorithms usually need a lot of resources in the beginning to
perform the detection of the groups and interacting variables.
The total numbers of function evaluations have therefore been
set sufficiently large, and the analysis will include specifically
a convergence analysis with respect to the resources. The used
maximum evaluations for the different numbers of variables
and objectives are shown in Table II.

For implementation, we used the PlatEMO framework [28]
version 1.1. The size of the populations is set to 100. WOF
uses a standard linear grouping method like also seen in [14]
and [4], where the the variables are divided in evenly sized
groups by their index number in increasing order. The number
of groups is set to γ = 4 as in [4]. The distribution index
used in all operators is set to 20.0 and the probabilities for
Crossover and Mutation are set to 1.0 and 1/n. For all other
parameters, the standard values of the framework are used. In
particular, the parameters NCA and NIA in MOEA/DVA are
set to 20 and 6, respectively and the parameters nSel, nPer
and nCor of LMEA are set to 5, 50 and 5, respectively.



TABLE III
MEDIAN AND IQR VALUES OF THE RELATIVE HYPERVOLUME FOR THE 2- AND 3-OBJECTIVE PROBLEM INSTANCES AT THE END OF THE OPTIMISATION.

ALGORITHMS: S = SMPSO, M = MOEA/DVA, L = LMEA, W = WOF-SMPSO. AN ASTERISK INDICATES STATISTICAL SIGNIFICANCE TO THE
RESPECTIVE BEST PERFORMANCE MARKED IN BOLD. WORST VALUES ARE SHOWN IN ITALIC FONT.

m = 2 m = 3
n = 46 n = 106 n = 206 n = 1006 n = 52 n = 112 n = 212

L
SM

O
P1 S 0.997158 (0.000369) * 0.995913 (0.000581) * 0.994050 (0.000675) * 0.612617 (0.013406) * 0.935828 (0.028215) * 0.694618 (0.065900) * 0.537471 (0.199957) *

M 0.998416 (0.000155) 0.998360 (0.000077) 0.998293 (0.000076) 0.868933 (0.002032) * 0.988577 (0.000026) 0.994339 (0.000257) 0.994246 (0.000373)

L 0.991728 (0.002916) * 0.991257 (0.003259) * 0.987305 (0.003954) * 0.952396 (0.010203) * 0.981659 (0.022233) * 0.981506 (0.011202) * 0.979635 (0.012336) *
W 0.997246 (0.000227) * 0.996246 (0.000346) * 0.994899 (0.000373) * 0.989185 (0.000512) 0.975265 (0.004027) * 0.968194 (0.004572) * 0.965156 (0.008779) *

L
SM

O
P2 S 0.977772 (0.007519) * 0.940149 (0.010909) * 0.959985 (0.000671) * 0.989577 (0.000169) * 0.938898 (0.011117) * 0.963574 (0.003575) * 0.976048 (0.002034) *

M 0.995867 (0.002605) 0.997297 (0.001608) 0.991646 (0.004827) * 0.990796 (0.012254) * 0.929616 (0.011518) * 0.976347 (0.001372) 0.984112 (0.000824)

L 0.980717 (0.032344) * 0.927805 (0.067462) * 0.943442 (0.042121) * 0.984772 (0.002236) * 0.988458 (0.008301) 0.982496 (0.021853) 0.984515 (0.006158)

W 0.995365 (0.000690) 0.994914 (0.000267) * 0.995519 (0.000291) 0.995901 (0.000424) 0.966246 (0.005548) * 0.975680 (0.002984) 0.982336 (0.001909)

L
SM

O
P3 S — (0.019031) * 0.026166 (0.106319) * 0.098232 (0.221685) * 0.069957 (0.379810) * — (0.009068) * — ( — ) * — ( — ) *

M 0.571478 (0.029143) * 0.571483 (0.024274) * 0.544579 (0.035757) * 0.308656 (0.013741) * 0.835941 (0.027178) * 0.830749 (0.038641) 0.822223 (0.020408)

L 0.588475 (0.206361) * 0.433682 (0.210642) * 0.484623 (0.041020) * — ( — ) * 0.887771 (0.045559) 0.808182 (0.062720) 0.782965 (0.042430) *
W 0.752289 (0.148909) 0.843565 (0.302801) 0.852249 (0.050662) 0.854107 (0.014353) 0.709349 (0.147606) * 0.578484 (0.077048) * 0.563032 (0.068378) *

L
SM

O
P4 S 0.978572 (0.002372) * 0.985923 (0.000548) * 0.989931 (0.000250) * 0.979610 (0.003200) * 0.837533 (0.093105) * 0.789739 (0.039416) * 0.889981 (0.007085) *

M 0.902537 (0.129581) * 0.992031 (0.001571) * 0.994360 (0.143174) * 0.984978 (0.134924) * 0.975119 (0.011098) 0.982402 (0.004398) 0.984321 (0.004839)

L 0.930420 (0.026290) * 0.948497 (0.007787) * 0.968748 (0.004595) * 0.986383 (0.003790) * 0.969127 (0.005543) * 0.974915 (0.005478) * 0.980871 (0.003371) *
W 0.996395 (0.000445) 0.995942 (0.000278) 0.995881 (0.000337) 0.991220 (0.000278) 0.953765 (0.008068) * 0.928247 (0.011427) * 0.947201 (0.006167) *

L
SM

O
P5 S 0.997836 (0.000185) 0.998267 (0.001463) 0.998352 (0.000132) 0.947808 (0.012106) * 0.889906 (0.057415) * 0.889492 (0.028633) * 0.859168 (0.008126) *

M 0.933371 (0.065122) 0.998356 (0.000065) 0.998164 (0.000073) * 0.997031 (0.000366) 0.970910 (0.000041) 0.992158 (0.000219) 0.991968 (0.000164)

L 0.623078 (0.342157) * 0.622537 (0.354949) * 0.622269 (0.359490) * 0.621140 (0.000949) * 0.809378 (0.812623) 0.055737 (0.832416) * — (0.647225) *
W 0.997845 (0.000214) 0.997360 (0.000251) * 0.996570 (0.000299) * 0.990235 (0.000974) * 0.970729 (0.008997) 0.969194 (0.009013) * 0.955813 (0.006060) *

L
SM

O
P6 S 0.499103 (0.198168) * 0.635998 (0.042742) * 0.737872 (0.067805) * 0.894227 (0.048292) * — (0.067727) * — ( — ) * — (0.074227) *

M 0.089170 (0.644308) * 0.732793 (0.114792) * 0.453184 (0.238022) * 0.518881 (0.083398) * 0.567694 (0.398052) * 0.501164 (0.150629) * 0.312725 (0.173587) *
L 0.567038 (0.368610) * 0.421774 (0.180308) * 0.494176 (0.278794) * 0.589384 (0.252248) * 0.481575 (0.318471) * 0.287964 (0.186090) * 0.139251 (0.100901) *
W 0.973556 (0.015007) 0.981482 (0.005501) 0.983564 (0.004066) 0.985220 (0.001209) 0.751064 (0.060560) 0.648079 (0.072806) 0.568931 (0.012380)

L
SM

O
P7 S 0.502104 (0.185170) * 0.236499 (0.143781) * 0.172306 (0.476852) * 0.329575 (0.116564) * — (0.061470) * — ( — ) * 0.001773 (0.324819) *

M 0.348081 (0.123163) * 0.039310 (0.085930) * — ( — ) * — ( — ) * 0.441201 (0.108046) * 0.450487 (0.095433) * 0.465989 (0.218911) *
L 0.332273 (0.095046) * 0.121544 (0.024365) * 0.068287 (0.021105) * 0.017610 (0.022917) * — ( — ) * — (0.170825) * 0.002914 (0.041140) *
W 0.664462 (0.131310) 0.593654 (0.200199) 0.520557 (0.177585) 0.633649 (0.041245) 0.716272 (0.067339) 0.574404 (0.055991) 0.580269 (0.217147)

L
SM

O
P8 S 0.979034 (0.011255) * 0.973785 (0.006079) * 0.975941 (0.002743) * 0.983706 (0.000817) * 0.930338 (0.027131) * 0.927459 (0.006752) * 0.947592 (0.002899) *

M 0.994860 (0.003809) * 0.995512 (0.001678) 0.916581 (0.004540) * 0.928015 (0.069875) 0.978041 (0.002541) 0.973636 (0.001324) 0.978943 (0.001480)

L 0.925075 (0.003730) * 0.948258 (0.003115) * 0.968703 (0.002316) * 0.981594 (0.001470) * 0.911535 (0.084177) 0.939590 (0.015305) * 0.963754 (0.001969) *
W 0.996535 (0.001177) 0.996159 (0.003013) 0.986162 (0.010283) 0.990927 (0.001050) 0.970568 (0.003431) * 0.969253 (0.003122) * 0.973220 (0.005922) *

L
SM

O
P9 S 0.994420 (0.002451) 0.967781 (0.027580) * 0.938192 (0.027004) 0.968416 (0.000739) * 0.874485 (0.106297) 0.647234 (0.092079) * 0.743362 (0.029852) *

M 0.860342 (0.169826) 0.998427 (0.000339) 0.998372 (0.168985) 0.985415 (0.132166) * 0.896571 (0.092994) 0.987458 (0.000394) 0.987877 (0.000228)

L 0.833473 (0.028259) * 0.837786 (0.021204) * 0.841871 (0.012712) 0.843816 (0.003744) * 0.590870 (0.217942) * 0.568788 (0.030138) * 0.576258 (0.144947) *
W 0.779446 ( — ) * 0.779446 ( — ) * 0.779446 ( — ) * 0.991194 (0.069633) 0.726906 (0.000000) * 0.726906 (0.000000) * 0.726906 (0.000000) *

For each experiment we perform 21 independent runs and
report the median and IQR values of the relative hypervolume
[29] indicator. The relative hypervolume is the hypervolume
obtained by a solution set in relation to the hypervolume
obtained by a sample of the Pareto-front of the problem. The
used reference point for the indicator is obtained by using the
nadir point of our Pareto-front sample and multiply it by 2.0
in each dimension. This is done to make sure most of the
obtained solutions can contribute to the HV, even when the
sets are not close to the optimal front. Statistical significance
is tested using a Mann-Whitney-U Test and significance is
assumed for a value of p < 0.01.

For comparing the final solution sets, we report the final
hypervolume values after the complete amount of evaluations
(see Table II) in Table III. For the comparison of convergence
speed, we show the obtained hypervolumes throughout the
search, after 10, 000, 100, 000, 200, 000 500, 000, 1 Million,
2 Million, 4 Million, 7 Million and 10 Million function
evaluations for the 2-objective problems with n = 1006
variables.

B. Results - Final Solutions

First of all we will take a look at Table III, where we
see the final results for 2 and 3 objectives and the different

numbers of variables. The results shown in these tables are
obtained after the total amount of evaluations as given in
Table II. For small numbers of variables with n = 46 for
2 objectives best performance is obtained by WOF in 6 out
of 10 problems. MOEA/DVA perfroms best in 2 problems,
while on the LSMOP9, the original SMPSO gives the best
results. For the 3-objective results with n = 52 however,
MOEA/DVA performs best in 5 problems, while WOF and
LMEA can outperform the others in 2 problems each.

When the amount of variables is increased, we can see
for n = 206 and n = 212 that the best performance is
usually achieved by either the WOF or MOEA/DVA, where it
can be observed that in 3 objectives, MOEA/DVA performs
stronger than in 2 objectives, outperforming the others in
7 out of 9 problems. Striking are especially the results of
LMEA. The implementation of the LMEA in the PlatEMO
framework does not stop the algorithm in between the loops
for the subcomponents’ optimisation, so LMEA used in most
cases are larger budget than the other three algorithms. For
the 1006-variable instances, LMEA used roughly 10,800,000
evaluations, while the other three methods stopped after 10
Million evaluations. Even given this fact, and given that LMEA
performed much better than MOEA/DVA on the 5-objective



TABLE IV
RELATIVE HYPERVOLUME VALUES (RESPECTIVE MEDIAN RUNS) AFTER DIFFERENT AMOUNTS OF FUNCTION EVALUATIONS. K = 1000, M = 1,000,000.

THE PROBLEM INSTANCES HAD 2 OBJECTIVES AND 1006 VARIABLES. VALUES EQUAL TO ZERO ARE SHOWN AS DASHES.
m = 2, n = 1006 10k 100k 200k 500k 1M 2M 4M 7M 10M

L
SM

O
P1 SMPSO 0.020608 0.027808 0.037316 0.073282 0.103909 0.213880 0.327381 0.476864 0.612539

MOEA/DVA — — — — — 0.315173 0.554071 0.749464 0.868822
LMEA — — — — — — — — 0.922687
WOF 0.905159 0.957538 0.960146 0.962214 0.965050 0.970189 0.977507 0.987268 0.989059

L
SM

O
P2 SMPSO 0.987095 0.987555 0.987749 0.987930 0.988550 0.988831 0.989187 0.989389 0.989451

MOEA/DVA — 0.978912 0.979006 0.979279 0.979887 0.980620 0.981880 0.981952 0.990670
LMEA — — — — — 0.975905 0.983959 0.984492 0.984645
WOF 0.994938 0.996119 0.996113 0.995294 0.993867 0.994832 0.996170 0.995942 0.995774

L
SM

O
P3 SMPSO — — — — — — — — 0.069949

MOEA/DVA — — — — — — — 0.118299 0.292623
LMEA — — — — — — — — —
WOF 0.009615 0.442065 0.465900 0.471928 0.480294 0.643799 0.711779 0.825147 0.853998

L
SM

O
P4 SMPSO 0.972864 0.973209 0.973127 0.973519 0.973972 0.974535 0.977729 0.979514 0.979485

MOEA/DVA — 0.781135 0.785679 0.799552 0.818743 0.836755 0.847009 0.849992 0.984852
LMEA — — — — — — — — 0.983399
WOF 0.987622 0.990040 0.990261 0.988011 0.988532 0.989846 0.990470 0.991156 0.991093

L
SM

O
P5 SMPSO — — — — — — — 0.624287 0.947691

MOEA/DVA — — — — — — 0.396458 0.757481 0.996907
LMEA — — — — — — — 0.604419 0.620505
WOF 0.849223 0.897406 0.899551 0.913478 0.924259 0.939500 0.960709 0.984547 0.990112

L
SM

O
P6 SMPSO 0.600924 0.600751 0.600316 0.600534 0.826841 0.852634 0.866587 0.884579 0.894117

MOEA/DVA — — — — — — — — 0.518592
LMEA — — — — — — 0.583396 0.586062 0.589142
WOF 0.619623 0.945416 0.948054 0.949394 0.951907 0.955570 0.965410 0.981979 0.985098

L
SM

O
P7 SMPSO — — — — — — — — 0.329535

MOEA/DVA — — — — — — — — —
LMEA — — — — — — — — 0.017372
WOF 0.252052 0.344311 0.344321 0.344321 0.344321 0.475189 0.475297 0.505283 0.633570

L
SM

O
P8 SMPSO — — — — — — 0.873835 0.972120 0.983584

MOEA/DVA — — — — — — 0.386293 0.807462 0.927397
LMEA — — — — — — — 0.963716 0.980153
WOF 0.830327 0.907935 0.911661 0.920578 0.930974 0.950856 0.969057 0.987413 0.990804

L
SM

O
P9 SMPSO 0.099343 0.168975 0.221277 0.438552 0.964165 0.965278 0.967271 0.967816 0.968320

MOEA/DVA — — — — — 0.215045 0.655475 0.807842 0.985326
LMEA — — — — — — — — 0.836770
WOF 0.779420 0.800507 0.814752 0.834644 0.842857 0.847785 0.850620 0.990224 0.991104

instances in [5], it is outperformed significantly by the other
methods in our experiments in almost all problem instances.

To examine especially the performance for large-scale in-
stances, we are now looking on the 6th column of Table III,
with n = 1000 variables. In the final obtained hypervolume
values, WOF performed significantly better than MOEA/DVA
and LMEA in 7 out of 9 problems, is on par with MOEA/DVA
on the LSMOP8, and performs worse than it only on the
LSMOP5 problem.

Overall, when we take a look at the properties of the
different LSMOP functions, in Table I, we see that although
the WOF is the only of the three large-scale methods which
does not spend function evaluation on obtaining suitable
groups, it can outperform the other methods not only on
the fully separable LSMOP functions, but also achieves best
hypervolume values on the LSMOP3, 4 and 8, which are
neither fully nor partially separable. These results indicate that
sophisticated grouping mechanism might return good variable
groups, but the function evaluations spent for it might not
boost performance as much as spending the complete budget
on optimisation, like WOF does.

C. Results - Convergence

In this section we will take a look at the convergence
behaviour of the algorithms. To analyse this, we take a closer

look at the 2-objective problems with n = 1006 decision
variables. In Table IV we list the relative hypervolume values
that are obtained by each algorithm after certain numbers
of function evaluations. The numbers given are the values
obtained by the respective run with the median hypervolume
at the end of the 10 Million evaluations. The respective best
value for each column (per problem) is marked in bold font.
Values equal to zero are shown as dashes.

Table IV shows that the WOF has a major advantage
in terms of convergence speed compared to the other three
methods. After just 10,000 function evaluation, the WOF
method already obtained hypervolume values greater than 0
on all nine problems. With the exception of the LSMOP 3 and
7, WOF obtained a relative hypervolume of over 0.8 after just
100,000 evaluations on all problems and a value of > 0.9 of
the LSMOP1, 2, 4-6 and 8 problems after 500,000 evaluations.
The other three methods do in most cases not obtain any
hypervolume values, or values equal to zero before they spent
2 to 4 million function evaluations, since they either still do
the variable analysis or did not converge before.

The numbers in Table IV support the main drawback of
the MOEA/DVA and LMEA methods: their huge computa-
tional overhead to do the variable grouping before the actual
optimisation starts. The major advantage of WOF is that it
does not need any sophisticated separation into groups to be



able to achieve a high performance. Since the MOEA/DVA
and LMEA spend most of the available evaluations for the
analysis of variable interactions, the solutions created during
that process are not used to optimise the problem and advance
towards better solutions. The LMEA has not obtained any
positive hypervolume value prior to the 4 Million evaluations
mark for the LSMOP 1, 3-5 and 7-9. In the case of LSMOP1,
3, 4, 7 and 9 the LMEA did not obtain any hypervolume
before the 10 million mark. The picture of the MOEA/DVA
indicates the same issue. MOEA/DVA was not able to achieve
any positive hypervolumes before spending 2 to 4 Million
evaluations, and with the exceptions of LSMOP5 and 8 is
not able to compensate for this in the remainder of the search,
yielding worse performance in the end than WOF on 7 out of
9 problems.

In conclusion, the performance of LMEA cannot compete
with MOEA/DVA and WOF on almost all test instances. The
WOF does perform best significantly on the LSMOP bench-
marks overall, in terms of final performance, but also and more
importantly in terms of convergence speed. In most instances,
WOF only needs 0.1% to 10% of the total evaluations used
my MOEA/DVA to obtain suitable solution sets and higher
hypervolume values than LMEA and MOEA/DVA at the end
of their optimisation.

VI. CONCLUSION

In this work, we examined the performance of three recent
large-scale optimisation algorithms on the LSMOP benchmark
suite. We briefly introduced the methods and proposed a new
transformation function for the WOF. The results showed
that MOEA/DVA and WOF perform significantly better than
LMEA, and that WOF outperforms MOEA/DVA significantly
on the 1006-variable 2-objective problems, in solution quality
as well as convergence. Open work for the future is to tackle
the area of many-objective optimisation. LSMOP can also be
used as many-objective benchmarks, which is an important
topic for future work. LMEA, although significantly inferior
to the other methods in our 2- and 3-objective experiments,
already solved 5- and 10-objective problems in their original
paper, while WOF and MOEA/DVA still need to be tested on
many-objective instances.
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