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Clique Tree Representations



Problems
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The propagation algorithm as presented can only deal with trees.

Can be extended to polytrees (i. e. singly connected graphs with
multiple parents per node).

However, it cannot handle networks that contain loops!



Idea
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Main Objectives:

Transform the cyclic directed graph into a secondary structure without cycles.

Find a decomposition of the underlying joint distribution.

Task:

Combine nodes of the original (primary) graph structure.

These groups form the nodes of a secondary structure.

Find a transformation that yields tree structure.



Idea (2)
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Secondary Structure:

We will generate an undirected graph mimicking (some of) the conditional inde-
pendence statements of the cyclic directed graph.

Maximal cliques are identified and form the nodes of the secondary structure.

Specify a so-called potential function for every clique such that the product of all
potentials yields the initial joint distribution.

In order to propagate evidence, create a tree from the clique nodes such that the
following property is satisfied:

If two cliques have some attributes in common, then these attributes have
to be contained in every clique of the path connecting the two cliques.
(called the running intersection property, RIP)

Justification:

Tree: Unique path of evidence propagation.

RIP: Update of an attribute reaches all cliques which contain it.



Prerequisites
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Complete Graph

An undirected Graph G = (V,E) is called complete, if every pair of (distinct) nodes
is connected by an edge.

Induced Subgraph

Let G = (V,E) be an undirected graph and W ⊆ V a selection of nodes. Then,
GW = (W,EW ) is called the subgraph of G induced by W with EW being

EW = {(u, v) ∈ E | u, v ∈ W}.

A B

C D

E

Incomplete graph

A B

C

E

Subgraph (W,EW )
with W = {A,B,C,E}

A B

C D

Complete (sub)graph



Prerequisites (2)
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Complete Set, Clique

Let G = (V,E) be an undirected graph. A setW ⊆ V is called complete iff it induces
a complete subgraph. It is further called a clique, iff W is maximal, i. e. it is not
possible to add a node to W without violating the completeness condition.

a) W is complete ⇔ W induces a complete subgraph

b) W is a clique ⇔ W is complete and maximal

A B

C D

E F

3 cliques

C3 = {E,F}
C2 = {B,D,E}
C1 = {A,B,C,D}



Prerequisites (3)
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Perfect Ordering

Let G = (V,E) be an undirected graph with n nodes and α = 〈v1, . . . , vn〉 a total
ordering on V . Then, α is called perfect, if the following sets

adj(vi) ∩ {v1, . . . , vi−1} i = 1, . . . , n

are complete, where adj(vi) = {w | (vi, w) ∈ E} returns the adjacent nodes of vi.
A B

C D E

G F H

1 6

2 3 5

48 7

α = 〈A, C, D, F, E, B, H, G〉

i adj(vi) {v1, . . . , vi−1} ∩ adj(vi)
1 {C} ∅ ∩ {C} = ∅ complete
2 {A,D,F} {A} ∩ {A,D,F} = {A} complete
3 {C,B,E, F} {A,C} ∩ {C,B,E, F} = {C} complete
4 {G,C,D,E,H} {A,C,D} ∩ {G,C,D,E,H} = {C,D} complete
5 {B,D,F,H} {A,C,D, F} ∩ {B,D, F,H} = {D,F} complete
6 {D,E} {A,C,D, F,E} ∩ {D,E} = {D,E} complete
7 {F,E} {A,C,D, F,E,B} ∩ {F,E} = {F,E} complete
8 {F} {A,C,D, F,E,B,H} ∩ {F} = {F} complete

α is a perfect ordering



Prerequisites (4)
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Running Intersection Property

Let G = (V, E) be an undirected graph with p cliques. An ordering of these cliques
has the running intersection property (RIP), if for every j > 1 there exists an i < j
such that:

Cj ∩
(
C1 ∪ · · · ∪ Cj−1

)
⊆ Ci

ξ = 〈C1, C2, C3, C4, C5, C6〉

j i
2 C2 ∩ C1 = {C} ⊆ C1 1
3 C3 ∩ (C1 ∪ C2) = {D,F} ⊆ C2 2
4 C4 ∩ (C1 ∪ C2 ∪ C3) = {D,E} ⊆ C3 3
5 C5 ∩ (C1 ∪ C2 ∪ C3 ∪ C4) = {E,F} ⊆ C3 3
6 C6 ∩ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5) = {F} ⊆ C5 5

ξ has running intersection property



Prerequisites (5)
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If a node ordering α of an undirected graph G = (V,E) is perfect and the cliques of
G are ordered according to the highest rank (w. r. t. α) of the containing nodes, then
this clique ordering has RIP.

Clique Rank
{A,C} max{α(A), α(C)} = 2 → C1
{C,D, F} max{α(C), α(D), α(F )} = 4 → C2
{D,E, F} max{α(D), α(E), α(F )} = 5 → C3
{B,D,E} max{α(B), α(D), α(E)} = 6 → C4
{F,E,H} max{α(F ), α(E), α(H)} = 7 → C5
{F,G} max{α(F ), α(G)} = 8 → C6

How to get a perfect ordering?



Triangulated Graphs
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Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical
start and end node but with any other node occurring at most once) of length greater
3 has a chord.

A

B C

D

not triangulated

A

B C

D

triangulated

A

B C

E

D

not triangulated

A

B C

E

D

no chord for 〈A,B,E,C〉



Triangulated Graphs (2)

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 268

Maximum Cardinality Search

Let G = (V,E) be an undirected graph. An ordering according maximum cardinality
search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers
are assigned the node that is connected to most of the nodes already numbered gets
assigned number n + 1.

A B

C D E

G F H

1 6

2 3 5

48 7

3 can be assigned to D or F

6 can be assigned to H or B



Triangulated Graphs (3)

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 269

If an undirected graph is triangulated, then the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement. The optimization
problem that is related to the triangulation task is NP-hard. However, there are good
heuristics.

Moral Graph (Repetition)

Let G = (V, E) be a directed acyclic graph. If u,w ∈ W are parents of v ∈ V connect
u and w with an (arbitrarily oriented) edge. After the removal of all edge directions
the resulting graph Gm = (V,E′) is called the moral graph of G.



Join-Tree Construction (1)

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 270

A BC D

EF

G H

Given directed graph.



Join-Tree Construction (2)
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A BC D

EF

G H

• Moral graph



Join-Tree Construction (3)
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A BC D

EF

G H

• Moral graph

• Triangulated graph



Join-Tree Construction (4)
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A BC D

EF

G H

1 62 3

54

8 7

• Moral graph

• Triangulated graph

• MCS yields perfect ordering



Join-Tree Construction (5)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP



Join-Tree Construction (6)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP
• Form a join-tree

Two cliques can be connected if
they have a non-empty intersec-
tion. The generation of the tree
follows the RIP. In case of a tie,
connect cliques with the largest in-
tersection. (e. g. DBE—FED in-
stead of DBE—CFD) Break re-
maining ties arbitrarily.



Example: Expert Knowledge
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Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an ex-
planation for increased total serum calcium. In turn, either of these could
explain a patient falling into a coma. Severe headache is also possibly
associated with a brain tumor.

Special case:

The patient has heavy headache.

Query:

Will the patient fall into coma?



Example: Choice of State Space
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Attribute Possible Values

A metastatic cancer dom(A) = {a1, a2} ·1 = existing

B increased total serum calcium dom(B) = {b1, b2} ·2 = notexisting

C brain tumor dom(C) = {c1, c2}
D coma dom(D) = {d1, d2}
E severe headache dom(E) = {e1, e2}

Exhaustive state space:

Ω = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

Marginal and conditional probabilities are of interest for the user!



Example: Qualitative Knowledge
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P (e1 | c1) = 0.8
}
headaches common, but more common if tumor present

P (e1 | c2) = 0.6

P (d1 | b1, c1) = 0.8




coma rare but common, if either cause is present
P (d1 | b1, c2) = 0.8
P (d1 | b2, c1) = 0.8
P (d1 | b2, c2) = 0.05

P (b1 | a1) = 0.8
}

increased calcium uncommon,
but common consequence of metastasesP (b1 | a2) = 0.2

P (c1 | a1) = 0.2
}
brain tumor rare, and uncommon consequence of metastases

P (c1 | a2) = 0.05

P (a1) = 0.2 } incidence of metastatic cancer in relevant clinic



Example (1)
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A

B C

D E

Example: Metastatic Cancer

Dependencies

A

B C

D E

Moralization/Triangulation MCS, hyper graph



Example (2)
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Quantitative knowledge:

(a, b, c) P (a, b, c)
a1, b1, c1 0.032
a2, b1, c1 0.008

... ...
a2, b2, c2 0.608

(b, c, d) P (b, c, d)
b1, c1, d1 0.032
b2, c1, d1 0.032

... ...
b2, c2, d2 0.608

(c, e) P (c, e)
c1, e1 0.064
c2, e1 0.552
c1, e2 0.016
c2, e2 0.368

Decomposition:

P (A,B,C,D,E) = P (A)P (B | A)P (C | A)P (D | BC)P (E | C)

=
P (A,B)P (B,C,D)P (C,E)

P (BC)P (C)



Example (3)
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Marginal distributions in the HUGIN tool.



Example (4)
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Conditional marginal distributions with evidence E = e1



Loop-Breaking Techniques (1985-1990)
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1. Conditioning (1985)
2. Stochastic simulation (1987)
3. Tree clustering (Spiegelhalter & Lauritzen 1986)
4. Node elimination (Shachter 1986)

Problems:
◦ Time exponential in tree-width (Dechter 1996)
◦ Autonomy is lost



Applications of Bayesian Networks
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• Medical Diagnosis • An Information Retrieval System
• Clinical Decision Support • Reliability Analysis of Systems
• Complex Genetic Models • Terrorism Risk Management
• Crime Risk Factors Analysis • Credit-Rating of Companies
• Spatial Dynamics in Geography • Modelling of Mineral Potential
• Risk Management in Robotics • Pavement and Bridge Management
• Conservation of a threatened Bird • Complex Industrial Process Operation
• Classification of Wines • Probability of Default for Large Corporates
• Student Modelling • Inference Problems in Forensic Science
• Sensor Validation


