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Decision Graphs - Influence Diagrams



Descriptive Decision Theory
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Descriptive Decision Theory tries to simulate human behavior in finding the right
or best decision for a given problem

Example:
• Company can chose one of two places for a new store
• Option 1: 125.000 EUR profit per year
• Option 2: 150.000 EUR profit per year

Company should take Option 2, because it maximized the profit.



Decisions under Uncertainty
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In real world not every thing is known, so there are uncertainties in the model

Example:
◦ There are plans for restructure the local traffic, which changes the predicted
profit
◦ Option 1: 125.000 EUR profit per year
◦ Option 2: 80.000 EUR profit per year

With modification Option 1 is the better one and without modification Option
2 is the better one

To model these variations in the environment we use so called Decision Tables

z1 (no modification) z2 (restructure)

a1 (Option 1) 125.000 = e11 125.000 = e12
a2 (Option 2) 150.000 = e21 80.000 = e22



Probability-based Decisions
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In many cases probabilities could be assigned to each option

Objective Probabilities based on mathematic or statistic background

Subjective Probabilities based on intuition or estimations

Example:
• The management estimates the probability for the restructure to 30%

The decision can be chosen by expectation value

z1 (no modification) z2 (restructure) Expectation Value
p1 = 0.7 p2 = 0.3

a1 (Option 1) 125.000 = e11 125.000 = e12 125.000
a2 (Option 2) 150.000 = e21 80.000 = e22 129.000

Option 2 has the higher expectation value and should be used



Domination
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An alternative a1 dominates a2 if the value of a1 is always greater of (or equal to)
the value of a2

∀je1j ≥ e2j ´

Example:

z1 z2

a1 150.000 = e11 90.000 = e12
a2 125.000 = e21 80.000 = e22

Alternative a2 could be dropped



Domination - Example 2
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Some more alternatives:

z1 z2 z3 z4 z5

a1 0 20 10 60 25 dominated by a3
a2 -20 80 10 10 60
a3 20 60 20 60 50
a4 55 40 60 10 40
a5 50 10 30 5 20 dominated by a4

◦ a3 dominated a1
◦ a4 dominated a5
Alternatives a1 and a5 could be dropped



Probability Domination
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z1 z2 z3 z4
p1 = 0.3 p2 = 0.2 p1 = 0.4 p2 = 0.1

a1 20 40 10 50
a2 60 30 50 20

Probability Domination means that the cumulated probability for the payout for
is always higher

Algorithm:
• Order payout by value in a decreasing order
• Cumulate probabilities

Example:
• a1 : 50(0.1) 40(0.2) 20(0.3) 10(0.4)
• a2 : 60(0.3) 50(0.4) 30(0.2) 20(0.1)



Probability Domination
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Example:
• a1 : 50(0.1) 40(0.2) 20(0.3) 10(0.4)
• a2 : 60(0.3) 50(0.4) 30(0.2) 20(0.1)
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Multi Criteria Decisions - Example

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 477

Sales e1 Profit e2 Environment Pollution e3

a1 800 7000 -4
a2 600 7000 -2
a3 400 6000 0
a4 200 4000 0

Efficient Alternatives
• Only focus on alternatives which are not dominated by others
• Example: Drop a4

Finding a decision
• If multiple alternatives are effective we need an algorithm to choose the pre-
ferred one
• Simplest algorithm: Chose one target (most important, alphabetical) and op-
timize for this value



Multi Criteria Decisions - Utility Function
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Goal find a function U (e1, e2, . . . , en) as a combination of all targets, which could
be optimized

Linear combination
• Simplest variant: Linear combination of all targets

• U (e1, e2, . . . , ei) =
n∑
i=1

ωi · ei

Example
◦ ω1 = 10, ω2 = 1, ω3 = 500

Sales e1 Profit e2 Environment Pollution e3 U (e1, e2, e3)

a1 800 7000 -4 13000
a2 600 7000 -2 12000
a3 400 6000 0 10000



Decision under Uncertainty
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z1 z2 z3 z4

a1 60 30 50 60
a2 10 10 10 140
a3 -30 100 120 130

Think about, how you would decide!

Decision Rules
• Maximin - Rule
• Maximax - Rule
• Hurwicz - Rule
• Savage-Niehans - Rule
• Laplace - Rule



Maximin - Rule
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z1 z2 z3 z4 Minimum

a1 60 30 50 60 30
a2 10 10 10 140 10
a3 -30 100 120 130 -30

Chose the one with the highest minimum

Contra: To pessimistic, only focus on one column

Example

z1 z2 z3 z4 Minimum

a1 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1 1 1 1 1



Maximax - Rule
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z1 z2 z3 z4 Maximum

a1 60 30 50 60 60
a2 10 10 10 140 140
a3 -30 100 120 130 130

Chose the one with the highest maximum

Contra: To optimistic, only focus on one column

Example

z1 z2 z3 z4 Maximum

a1 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
a2 1,000,001 1 1 1 1,000,001



Hurwicz - Rule
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z1 z2 z3 z4 Max Min Φ(ai)

a1 60 30 50 60 60 30 0.4 · 60 + 0.6 · 30 = 42
a2 10 10 10 140 140 10 0.4 · 140 + 0.6 · 10 = 62
a3 -30 100 120 130 130 -30 0.4 · 130 + 0.6 · (−30) = 34

Combination of Maximin and Maximax - Rule
Φ(a) = λ ·max(ei) + (1− λ) ·min(ei)
λ represents readiness to assume risk
Contra: Only focus on two column
Example (min(a1) < min(a2),max(a1) < max(a2)⇒ chose a2)

z1 z2 z3 z4 Max Min

a1 1,000,000 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1,000,001 1 1 1 1,000,001 1



Savage-Niehans - Rule
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z1 z2 z3 z4

a1 60 30 50 60
a2 10 10 10 140
a3 -30 100 120 130

Rule of minimal regret
Algorithm:
• Find the maximal value for every column
• Subtract value from maximal value
• Use alternative with the lowest regret
Regret Table:

z1 z2 z3 z4 Max

a1 60 - 60 = 0 70 70 80 80
a2 60 - 10 = 50 90 110 0 110
a3 60 - (-30) = 90 0 0 10 90



Savage-Niehans - Rule II
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z1 z2 z3 z4

a1 1,000 1,000,000 1,000,000 1,000,000
a2 1,001 0 0 0

Another example

we chose a1

Regret Table:

z1 z2 z3 z4 Max

a1 1 0 0 0 1
a2 0 1,000,000 1,000,000 1,000,000 1,000,000



Savage-Niehans - Rule III

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 485

z1 z2 z3 z4

a1 1,000 1,000,000 1,000,000 1,000,000
a2 1,001 0 0 0
a3 2,000,000 -1,000,000 -1,000,000 -1,000,000

Same example, but we add alternative a3

Now we chose a2

Regret Table:

z1 z2 z3 z4 Max

a1 1,999,000 0 0 0 1,999,000
a2 1,998,999 1,000,000 1,000,000 1,000,000 1,998,999
a2 0 2,000,000 2,000,000 2,000,000 2,000,000



Laplace - Rule
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z1 z2 z3 z4 Mean

a1 60 30 50 60 50
a2 10 10 10 140 42.5
a3 -30 100 120 130 80

Chose the one with the highest mean value

Contra:
• Not every condition has the same probability
• Duplication of one condition could change the result

Most people would also chose a3 in this example



Rule - Axioms
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The following axioms should be fulfilled by the rules

Addition to a column
The decision should not be changed, if a fixed value is added to a column

Additional rows
The preference relation between two alternatives should not be changed, if a new
row is added

Domination
If a1 dominates a2, a2 could not be optimal

Join of equal columns
The preference relation between to alternatives should not change, if two columns
with the same outcomes are joined to a common column



Decision Rules Conclusion
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Rule Example Addition Additional Domination Join of
Result to a row Rows equal Rows

Maximin a1
√ √

Maximax a2
√ √

Hurwicz a2
√ √

Savage-Niehans a1
√ √ √

Laplace a3
√ √ √

No Rule fulfills all axioms ⇒ no perfect rule

Common usage: Remove duplicate Columns and use Laplace

Better: Define subjective probabilities and use them



Preference Orderings
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A preference ordering � is a ranking of all possible states of affairs (worlds) S
• these could be outcomes of actions, truth assignments, states in a search prob-
lem, etc.

• s � t: means that state s is at least as good as t

• s ≻ t: means that state s is strictly preferred to t

We insist that � is
• reflexive: i.e., s � s for all states s

• transitive: i.e., if s � t and t � w, then s � w

• connected: for all states s,t, either s � t or t � s



Preference Orderings
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Note that transitivity is not always given in decision making

Consider the following set of dice (Efron Dice)
• Die A has sides: 2, 2, 4, 4, 9, 9

• Die B has sides: 1, 1, 6, 6, 8, 8

• Die C has sides: 3, 3, 5, 5, 7, 7

The probability that A rolls a higher number than B, the probability that B rolls
higher than C, and the probability that C rolls higher than A are all 5/9, so this
set of dice is nontransitive. In fact, it has the even stronger property that, for each
die in the set, there is another die that rolls a higher number than it more than
half the time.



Why Impose These Conditions?
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Structure of preference ordering imposes certain “rationality requirements” (it is
a weak ordering)

E.g., why transitivity?
◦ Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee

◦ If you prefer X to Y, you will trade me Y plus $1 for X

◦ I can construct a “money pump” and extract arbitrary amounts of money from
you



Utilities
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Rather than just ranking outcomes, we are often able to quantify our degree of
preference

A utility function U : S → R associates a realvalued utility with each outcome.
• U (s) measures the degree of preference for s

Note: U induces a preference ordering �U over S defined as: s �U t iff U (s) ≥
U (t)
• �U will be reflexive, transitive, connected



Expected Utility
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Under conditions of uncertainty, each decision d induces a distribution Prd over
possible outcomes
◦ Prd(s) is probability of outcome s under decision d

The expected utility of decision d is defined

EU (d) =
∑

s∈S
Prd(s)U (s)

The principle of maximum expected utility (MEU) states that the optimal de-
cision under conditions of uncertainty is that with the greatest expected utility.



Decision Problems: Uncertainty
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A decision problem under uncertainty is:
• a set of decisions D

• a set of outcomes or states S

• an outcome function Pr : D → ∆(S)
∆(S) is the set of distributions over S (e.g., Prd)

◦ a utility function U over S

A solution to a decision problem under uncertainty is any d∗ ∈ D such that
EU (d∗) � EU (d) for all d ∈ D



Expected Utility: Notes
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Where do utilities come from?
◦ underlying foundations of utility theory tightly couple utility with action/choice

◦ a utility function can be determined by asking someone about their preferences
for actions in specific scenarios (or “lotteries” over outcomes)

Utility functions needn’t be unique
◦ if I multiply U by a positive constant, all decisions have same relative utility

◦ if I add a constant to U, same thing

◦ U is unique up to positive affine transformation



Complications
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Outcome space is large
◦ like all of our problems, states spaces can be huge

◦ don’t want to spell out distributions like Prd explicitly

◦ Solution: Bayes nets (or related: influence diagrams)

Decision space is large
◦ usually our decisions are not one-shot actions

◦ rather they involve sequential choices (like plans)

◦ if we treat each plan as a distinct decision, decision space is too large to handle
directly

◦ Solution: use dynamic programming methods to construct optimal plans (ac-
tually generalizations of plans, called policies. . . like in game trees)



Decision Networks
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Decision networks (also known as influence diagrams) provide a way of repre-
senting sequential decision problems
◦ basic idea: represent the variables in the problem as you would in a BN

◦ add decision variables – variables that you “control”

◦ add utility variables – how good different states are



Sample Decision Network
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Decision Networks: Chance Nodes
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Chance nodes
◦ random variables, denoted by circles

◦ as in a BN, probabilistic dependence on parents



Decision Networks: Decision Nodes
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Decision nodes
• variables decision maker sets, denoted by squares

• parents reflect information available at time decision is to be made

In example decision node: the actual values of Chills and Fever will be observed
before the decision to take test must be made
• agent can make different decisions for each instantiation of parents (i.e., poli-
cies)



Decision Networks: Decision Nodes
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Value node
◦ specifies utility of a state, denoted by a diamond

◦ utility depends only on state of parents of value node

◦ generally: only one value node in a decision network

Utility depends only on disease and drug



Decision Networks: Assumptions
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Decision nodes are totally ordered
◦ decision variables D1, D2, . . . , Dn

◦ decisions are made in sequence

◦ e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

No-forgetting property
◦ any information available when decision Di is made is available when decision
Dj is made (for i < j)

◦ thus all parents of Di are parents of Dj



Policies
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Let Par(Di) be the parents of decision node Di
• Dom(Par(Di)) is the set of assignments to parents

A policy δ is a set of mappings δi, one for each decision node Di
• δi : Dom(Par(Di))→ (Di)

• δi associates a decision with each parent assignment for Di

For example, a policy for BT might be:

δBT (c, f) = bt

δBT (c,∼ f) =∼ bt

δBT (∼ c, f) = bt

δBT (∼ c,∼ f) =∼ bt



Policies
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Value of a policy δ is the expected utility given that decision nodes are executed
according to δ

Given associates x to the set X of all chance variables, let δ(x) denote the
assignment to decision variables dictated by δ
◦ e.g., assigned to D1 determined by it’s parents’ assignment in x

◦ e.g., assigned to D2 determined by it’s parents’ assignment in x along with
whatever was assigned to D1

◦ etc.

Value of δ:

EU (δ) =
∑

X

P (X, δ(X)U (X, δ(X))

An optimal policy is a policy δ∗ such that EU (δ∗) ≥ EU (δ) for all policies δ



Computing the Best Policy
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We can work backwards as follows

First compute optimal policy for Drug (last decision)
◦ for each assignment to parents (C,F,BT,TR) and for each decision value
(D = md,fd,none), compute the expected value of choosing that value of D

◦ set policy choice for each value of parents to be the value of D that has max
value

◦ eg: δD(c, f, bt, pos) = md



Computing the Best Policy
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Next compute policy for BT given policy δD(C,F,BT, TR) just determined for
Drug
◦ since δD(C,F,BT, TR) is fixed, we can treat Drug as a normal random vari-
able with deterministic probabilities

◦ i.e., for any instantiation of parents, value of Drug is fixed by policy δD

◦ this means we can solve for optimal policy for BT just as before

◦ only uninstantiated variables are random variables (once we fix its parents)



Example
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You want to buy a used car, but there’s a good chance it is a “lemon” (i.e., prone
to breakdown). Before deciding to buy it, you can take it to a mechanic for
inspection. S/he will give you a report on the car, labelling it either “good” or
“bad”. A good report is positively correlated with the car being sound, while a
bad report is positively correlated with the car being a lemon.

The report costs $50 however. So you could risk it, and buy the car without the
report.

Owning a sound car is better than having no car, which is better than owning a
lemon.



Car Buyer’s Network
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Evaluate Last Decision: Buy (1)

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 509

EU (B|I,R) = ∑
LP (L|I, R, B)U (L,B)

I = i, R = g:

EU (buy) = P (l|i, g)U (l, buy) + P (∼ l|i, g)U (∼ l, buy)− 50

= 0.18 · (−600) + 0.82 · 1000− 50 = 662

EU (∼ buy) = P (l|i, g)U (l,∼ buy) + P (∼ l|i, g)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(i, g) = buy

I = i, R = b:

EU (buy) = P (l|i, b)U (l, buy) + P (∼ l|i, b)U (∼ l, buy)− 50

= 0.89 · (−600) + .11 · 1000− 50 = −474
EU (∼ buy) = P (l|i, b)U (l,∼ buy) + P (∼ l|i, b)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(i, b) =∼ buy



Evaluate Last Decision: Buy (2)
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I =∼ i, R = n (note: no inspection cost subtracted):

EU (buy) = P (l| ∼ i, n)U (l, buy) + P (∼ l| ∼ i, n)U (∼ l, buy)

= 0.5 · (−600) + 0.5 · 1000 = 200

EU (∼ buy) = P (l| ∼ i, n)U (l,∼ buy) + P (∼ l| ∼ i, n)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(∼ i, g) = buy

So optimal policy for Buy is:
◦ δBuy(i, g) = buy; δBuy(i, b) =∼ buy; δBuy(∼ i, g) = buy

Note: we don’t bother computing policy for (i,∼ g), (∼ i, g), or (∼ i, b), since
these occur with probability 0



Evaluate First Decision: Inspect
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EU (I) =
∑
L,R P (L,R|I)U (L, δBuy(I, R)),

where P (R,L|I) = P (R|L, I)P (L|I)

EU (i) = 0.1 · (−650) + 0.4 · (−300) + 0.45 · 1000 + 0.05 · (−300)− 50

= 187.5

EU (∼ i) = P (l| ∼ i, n)U (l, buy) + P (∼ l| ∼ i, n)U (∼ l, buy)

= .5 · −600 + .5 · 1000 = 200
So optimal δInspect(∼ i) = buy

P (R,L|I) δBuy U (L, δBuy)

g, l 0.1 buy −600− 50 = −650
g,∼ l 0.45 buy 1000− 50 = 950
b, l 0.4 ∼ buy −300− 50 = −350
b,∼ l 0.05 ∼ buy −300− 50 = −350



Value of Information
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So optimal policy is: don’t inspect, buy the car
◦ EU = 200

◦ Notice that the EU of inspecting the car, then buying it iff you get a good
report, is 237.5 less the cost of the inspection (50). So inspection not worth
the improvement in EU.

◦ But suppose inspection cost $25: then it would be worth it (EU = 237.5−25 =
212.5 > EU (∼ i))

◦ The expected value of information associated with inspection is 37.5 (it im-
proves expected utility by this amount ignoring cost of inspection). How?
Gives opportunity to change decision (∼ buy if bad).

◦ You should be willing to pay up to $37.5 for the report


