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Introduction to Hidden Markov Models



Markov Models
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Set of states: {s1, s2, . . . , sN}

Process moves from one state to another generating a sequence of states:
(si1, si2, . . . , sik, . . . )

Markov chain property:

◦ probability of each subsequent state depends only on the previous state
P (sik | si1, si2, . . . , sik−1) = P (sik|sik−1)

To define Markov model, the following probabilities have to be specified:

◦ transition probabilities: aij = P (si | sj)
◦ initial probabilities πi = P (si)



Markov Models
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Rain

Dry

0.3

0.8

0.70.2

Two states:

◦ s1 = Rain and s2 = Dry

Transition probabilities:

◦ P (Rain | Rain) = 0.3
◦ P (Dry | Rain) = 0.7
◦ P (Rain | Dry) = 0.2
◦ P (Dry | Dry) = 0.8

Initial probabilities:

◦ P (Rain) = 0.4
◦ P (Dry) = 0.6



Calculation of sequence probability
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By Markov chain property, probability of state sequence can be found by:

P (si1, si2, . . . , sik) = P (sik | si1, si2, . . . , sik−1)P (si1, si2, . . . , sik−1)
= P (sik | sik−1)P (si1, si2, . . . , sik−1)
= . . .

= P (sik | sik−1)P (sik−1 | sik−2) . . . P (si2 | si1)P (si1)

Suppose we want to calculate a probability of a sequence of states in our example
(Dry, Dry, Rain, Rain).

P (Dry,Dry,Rain,Rain)

= P (Rain | Rain)P (Rain | Dry)P (Dry | Dry)P (Dry)
= 0.3 · 0.2 · 0.8 · 0.6



Hidden Markov Models
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Set of states: {s1, s2, . . . , sN}

Process moves from one state to another generating a sequence of states:
(si1, si2, . . . , sik, . . . )

Markov chain property: probability of each subsequent state depends only on what
was the previous state:

P (sik | si1, si2, . . . , sik−1) = P (sik | sik−1)

States are not visible, but each state randomly generates one of M observations
(or visible states):

{v1, v2, . . . , vM}

The Hidden Markov Model M = (A,B, π) is defined by the specification of the
following probabilities:
◦ matrix of transition probabilities A = (aij), aij = P (si|sj)
◦ matrix of observation probabilities B = (bi(vm)), bi(vm) = P (vm | si)
◦ a vector of initial probabilities π = (πi), πi = P (si)



Example of a Hidden Markov Model
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Rain

Dry

Low

High

0.3

0.8

0.70.20.40.4

0.6

0.6

Two states:
◦ Low and High atmospheric pressure.

Two observations : Rain and Dry.

Transition probabilities:
◦ P (Low | Low) = 0.3
◦ P (High | Low) = 0.7
◦ P (Low | High) = 0.2
◦ P (High | High) = 0.8

Observation probabilities:
◦ P (Rain | Low) = 0.6
◦ P (Dry | Low) = 0.4
◦ P (Rain | High) = 0.4
◦ P (Dry | High) = 0.3

Initial probabilities:
◦ P (Low) = 0.4 , P (High) = 0.6



Calculation of Observation Sequence Probability
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Suppose we want to calculate a probability of a sequence of observations in our
example, (Dry,Rain).

Consider all possible hidden state sequences:

P ((Dry,Rain)) = P ((Dry,Rain), (Low,Low))

+ P ((Dry,Rain), (Low,High))

+ P ((Dry,Rain), (High,Low))

+ P ((Dry,Rain), (High,High))

where the first term is:

P ((Dry,Rain), (Low,Low))

= P ((Dry,Rain) | (Low,Low))P ((Low,Low))
= P (Dry | Low)P (Rain | Low)P (Low)P (Low|Low)
= 0.4 · 0.6 · 0.4 · 0.3



Main issues using HMMs
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Let O = (o1, . . . , oK) denote a sequence of observations ok ∈ {v1, . . . , vM} we
define the following problems:

Evaluation Problem
◦ Given the HMMM = (A,B, π) and the observation sequenceO = (o1, o2, . . . , oK),
calculate the probability that model M has generated sequence O.

Decoding Problem
◦ Given the HMMM = (A,B, π) and the observation sequenceO = (o1, o2, . . . , oK),
calculate the most likely sequence of hidden states si that produced this ob-
servation sequence O.

Learning problem
◦ Given some training observation sequences O = (o1, o2, . . . , oK) and general
structure of HMM (numbers of hidden and visible states), determine HMM
parameters M = (A,B, π) that fits the training data best.



Example Word Recognition
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Typed word recognition, assume all characters are separated.

Character recognizer outputs probability of the image being particular character,
P (image|character).

a

b
...

m
...

z

0.15

0.02

0.80

0.10



Example Word Recognition
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Hidden states of HMM: characters.

Observations: typed images of characters segmented from the images vα. Note
that there is an infinite number of observations.

Observation probabilities: character recognizer scores

B = (bi(vα)) = (P (vα | si))

Transition probabilities will be defined differently in two subsequent models.



Example Word Recognition
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If lexicon is given, we can construct separate HMM models for each lexicon word.

s

a

w

n

s

m

o

g

0.90

0.05

0.70

0.60

0.90

0.75

0.10

0.15

Here recognition of word image is equivalent to the problem of evaluating few
HMM models.

This is an application of the Evaluation problem.



Example Word Recognition
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We can construct a single HMM for all words.

Hidden states = all characters in the alphabet.

Transition probabilities and initial probabilities are calculated from language model.

Observations and observation probabilities are as before.

s m w a b c

Here we have to determine the best sequence of hidden states, the one that most
likely produced word image.

This is an application of Decoding problem.



Character recognition with HMM example.
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The structure of hidden states:

s1 s2 s3

Observation: number of islands in the vertical slice.

HMM for character A :

Transition probabilities: Observation probabilities:

aij =



0.8 0.2 0.0
0.0 0.8 0.2
0.0 0.0 1.0


 bjk =



0.9 0.1 0.0
0.1 0.8 0.1
0.9 0.1 0.0




HMM for character B :

Transition probabilities: Observation probabilities:

aij =



0.8 0.2 0.0
0.0 0.8 0.2
0.0 0.0 1.0


 bjk =



0.9 0.1 0.0
0.0 0.2 0.8
0.6 0.4 0.0






Evaluation Problem
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Evaluation Problem.

◦ Given the HMMM = (A,B, π and the observation sequenceO = (o1, o2, . . . , oK),
calculate the probability that model M has generated sequence O.

Trying to find probability of observations O = (o1, o2, . . . , oK) by means of con-
sidering all hidden state sequences is impractical (NK hidden state sequences)
⇒ exponential complexity

Use Forward-Backward HMM algorithms for efficient calculations.

Define the forward variable αk(i) as the joint probability of the partial observation
sequence (o1, o2, . . . , ok) and that the hidden state at time k is si:

α(i) = P ( (o1, o2, . . . , ok), qk = si)



Evaluation Problem
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o1 ok ok+1 oK

s1 s1 s1 s1

s2 s2 s2 s2

si si sj si

sN sN sN sN

1 k k+1 KTime

Observation

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

... ... ... ...

... ... ... ...

a1j

a2j

aij

aNj



Forward Recursion for HMM
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1. Initialization α1(i) = P (o1, q1 = si) = πibi(o1), 1 ≤ i ≤ N

2. Forward Recursion

αk+1(i) = P ( (o1, o2, . . . , ok+1), qk+1 = sj)

=
∑

i

P ( (o1, o2, . . . , ok+1), qk = si, qk+1 = sj)

=
∑

i

P ( (o1, o2, . . . , ok+1), qk = si) aij bj(ok+1)

=
[∑

i

αk(i)aij
]
bj(ok+1), 1 ≤ j ≤ N, 1 ≤ k ≤ K − 1

3. Termination

P ( (o1, o2, . . . , oK)) =
∑

i

P ( (o1, o2, . . . , oK), qK = si) =
∑

i

αK(i)

4. Complexity: N2K operations



Backward Recursion for HMM
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Define the forward variable βk(i) as the joint probability of the partial observation
sequence ok+1, ok+2, . . . , oK given that the hidden state at time k is si:

βk(i) = P ( (ok+1, ok+2, . . . , oK) | qk = si)

1. Initialization βK(i) = 1, 1 ≤ i ≤ N

2. Backward Recursion

βk(j) = P ( (ok+1, ok+2, . . . , oK) | qk = sj)

=
∑

i

P ( (ok+1, ok+2, . . . , oK), qk+1 = si | qk = sj)

=
∑

i

P ( (ok+2, ok+3 . . . , oK) | qk+1 = si) aji bi(ok+1)

= βk+1(i) aji bi(ok+1), 1 ≤ j ≤ N, 1 ≤ k ≤ K − 1

3. Termination

P ( (o1, o2, . . . , oK)) =
∑

i

P ( (o1, o2, . . . , oK), q1 = si)

=
∑

i

P ( (o1, o2, . . . , oK) | q1 = si)P (q1 = s1) =
∑

i

β1(i) bi(o1) πi



Decoding Problem
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Decoding Problem

◦ Given the HMMM = (A,B, π) and the observation sequenceO = o1, o2, . . . , oK ,
calculate the most likely sequence of hidden states si that produced this ob-
servation sequence.

We want to find the state sequence Q = (q1, . . . , qK) which maximizes:

P (Q | (o1, o2, . . . , oK)), or equivalently P (Q, (o1, o2, . . . , oK))

Brute force consideration of all paths takes exponential time. Use efficientViterbi
algorithm instead.

Define variable δk(i) as the maximum probability of producing observation se-
quence (o1, o2, . . . , ok) when moving along any hidden state sequence q1, . . . , qk−1
and getting into qk = si.

δk(i) = maxP (q1, . . . , qk−1, qk = si, (o1, o2, . . . , ok))

where max is taken over all possible paths q1, . . . , qk−1



Viterbi Algorithm
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General idea: if best path ending in qk = sj goes through qk−1 = si then it
should coincide with best path ending in qk−1 = si.

qk−1 qk

s1

si

sN

sj

...

...

a1j

aij

aNj

δk(i) = maxP (q1, . . . , qk−1, qk = sj, (o1, o2, . . . , ok))

= max
i
[aij bj(ok) maxP (q1, . . . , qk−1 = si, (o1, o2, . . . , ok−1))]

To backtrack best path keep info that predecessor of sj was si.



Viterbi Algorithm
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1. Initialization

δ1(i) = maxP (q1 = si, o1) = πi bi (o1), 1 ≤ i ≤ N

2. Forward Recursion

δk(i) = maxP (q1, . . . , qk−1, qk = sj, (o1, o2, . . . , ok))

= max
i
[aij bj(ok) maxP (q1, . . . , qk−1 = si, (o1, o2, . . . , ok−1))

= max
i
[aij bj(ok) δk−1(i)], 1 ≤ j ≤ N, 2 ≤ k ≤ K.

3. Termination choose best path ending at time K
max
i
[δK(i)]

4. Backtrack best path

This algorithm is similar to the forward recursion of evaluation problem, with
∑

replaced by max and additional backtracking.



Learning Problem
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Learning Problem

◦ Given some training observation sequences O = (o1, o2, . . . , oK) and general
structure of HMM (numbers of hidden and visible states), determine HMM
parameters M = (A,B, π) that best fit training data, that is maximizes
P (O | M).

There is no algorithm producing optimal parameter values.

Use iterative expectation-maximization algorithm to find local maximum of P (O|M)

⇒ Baum-Welch algorithm



Learning Problem
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If training data has information about sequence of hidden states (as in word recog-
nition example), then use maximum likelihood estimation of parameters:

aij = P (si | sj)

=
Number of transitions from state sj to state si

Number of transitions out of state sj

bi(vm) = P (vm | si)

=
Number of times observation vm occurs in state si

Number of times in state si



Baum-Welch algorithm
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If training data has information about sequence of hidden states (as in word recog-
nition example), then use maximum likelihood estimation of parameters:

aij = P (si | sj)

=
Expected number of transitions from state sj to state si

Expected number of transitions out of state sj

bi(vm) = P (vm | si)

=
Expected number of times observation vm occurs in state si

Expected number of times in state si

πi = P (si)

= Expected frequency in state si at time k = 1



Baum-Welch algorithm: expectation step
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Define variable ξk(i, j) as the probability of being in state si at time k and in
state sj at time k + 1, given the observation sequence o1, o2, . . . , oK .

ξij = P (qk = si, qk+1 = sj | (o1, o2, . . . , ok))

=
P (qk = si, qk+1 = sj, (o1, o2, . . . , ok))

P ( (o1, o2, . . . , ok))

=
P (qk = si, (o1, o2, . . . , ok)) aij bj(ok+1) P (ok+2, . . . , oK | qk+1 = sj)

P ( (o1, o2, . . . , ok))

=
αk(i) aij bj(ok+1) βk+1(j)∑
i
∑
j αk(i) aij bj(ok+1) βk+1(j)



Baum-Welch algorithm: expectation step
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Define variable γk(i) as the probability of being in state si at time k, given the
observation sequence o1, o2, . . . , oK .

γk(i) = P (qk = si | (o1, o2, . . . , oK))

=
P (qk = si, (o1, o2, . . . , oK))

P ( (o1, o2, . . . , ok))

=
ak(i)βk(i)∑
iαk(i)βk(i)



Baum-Welch algorithm: expectation step
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We calculated
◦ ξk(i, j) = P (qk = si, qk+1 = sj | (o1, o2, . . . ok)) and
◦ γk(i) = P (qk = si | (o1, o2 . . . , ok))

Expected number of transitions from state si to state sj is equal is represented by∑
k ξk(i, j)

Expected number of transitions out of state si is represented by
∑
k γk(i)

Expected number of times observation vm occurs in state si is equal to
∑
k γk(i),

k is such that ok = vm

Expected frequency in state si at time k = 1 : γ1(i)



Baum-Welch algorithm: maximization step
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aij =
Expected number of transitions from state sj to state si

Expected number of transitions out of state sj

=

∑
k ξk(i, j)∑
k γk(i)

bi(vm) =
Expected number of times observation vm occurs in state si

Expected number of times in state si

=

∑
k ξk(i, j)∑

k,ok=vm
γk(i)

πi = P (si) = Expected frequency in state si at time k = 1 = γ1(i)


