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Causality is central notion in science, decision-taking and daily life.

How to reason formally about cause and effect?

Question: How do you define cause and effect?



“…Thus we remember to have seen that species 
of object we call flame, and to have felt that 
species of sensation we call heat. We likewise 
call to mind their constant conjunction in all past 
instances. Without any farther ceremony, we call 
the one cause and the other effect, and infer 
the existence of the one from that of the other.”

David Hume, A Treatise of Human Nature (1738)

The subject of causality has a long history in philosophy. 



Do storks deliver babies?

“Highly statistically significant 
degree of correlation between 
stork populations and birth rates” 
(or in technical terms, p = 0.008)



Do storks deliver babies?

But a simple variable that 
affects both the birth rate and 
the stork population is the size of 
each country.



■ James Lind (1716-1794): How to treat scurvy?
□ Scurvy results from a lack of vitamin C
□ 12 scorbutic sailor treated with different acids,

e.g. vinegar, cider, lemon
□ Only the condition of the sailor treated by lemon improved

■ “If your experiment needs statistics,
you ought to have done a better experiment.”
Ernest Rutherford (1871-1937)

Challenge in Statistics: Draw conclusions from data



Or in other words:
“Is there a dependence between recovery and the treatment with lemons?”

But: What if you cannot do a randomized experiment or receive ambiguous results?

Use statistical tests to validate your hypothesis

Check whether it is statistically significant that
𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙) > 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 |𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙)



Since then, many statisticians tried to avoid causal reasoning
■ “Considerations of causality should be treated as they have always

been in statistics: preferably not at all.”  (Terry Speed, 1990)
■ “It would be very healthy if more researchers abandon thinking of and

using terms such as cause and effect.” (Bengt Muthen, 1987)

“Beyond such discarded fundamentals as `matter' 
and `force' lies still another fetish amidst the 
inscrutable arcana of even modern science, 
namely, the category of cause and effect.”

Karl Pearson (1857-1936)

Correlation does not imply causation.



But dependence says us something about causation:

If there is a statistical dependence 
between variables 𝑋𝑋 and 𝑌𝑌, e.g.,

then either

■ 𝑋𝑋 causally influences 𝑌𝑌
(or vise versa), e.g.,

■ or there exists 𝑍𝑍 causally
influencing both, e.g.,

𝒁𝒁“Common Cause Principle”
Hans Reichenbach (1891-1953)



■ The modeling of the underlying structures provides a language to
encode causal relationships – the basis of a causality theory.

■ Causality theory helps to decide when, and how, causation can be
inferred from domain knowledge and data.

Some people who contributed to causality theories:

Donald 
Rubin

(*1943)

Judea
Pearl

(*1936)

Donald
Campbell

(1916-1996)

Dawid
Philip

(*1946)

Clive
Granger

(1934-2009)

Judea
Pearl

(*1936)

“[…] all approaches to causation are variants or abstractions 
of […] structural theory […].” Judea Pearl



“Causality, although widely used, does not seem to be well-
defined” (Lindley and Novick, 1981)

To see this:
■ Recap the scurvy experiment
■ Assume that the data is generated by model .

o The recovery of the scurvy is causally influenced by the
treatment with lemons.

o But now, both the recovery of scurvy as well as the
treatment with lemons are causally influenced by the
age of the sailors.

■ The question remains:

Problem: Probability theory has an 
associational, and not a causal nature.

Should we treat scurvy with lemons?



■ We run an experiment w.r.t. the model ,
i.e., we favor old sailors for treatment with lemons.

■ The observed data of all sailors:

■ Hence, we see that
𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍 < 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍

Combined Recovery No Recovery Total Recovery Rate

No lemons 20 20 40 50 %

Lemons 16 24 40 40 %

Total 36 44 80

Should we treat scurvy with lemons?



■ The observed data of old sailors:

𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍,𝒓𝒓𝒍𝒍𝒐𝒐 > 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍,𝒓𝒓𝒍𝒍𝒐𝒐

■ The observed data of young sailors:

Old Recovery No Recovery Total Recovery Rate
No lemons 2 8 10 20 %
lemons 9 21 30 30 %
Total 11 29 40

Young Recovery No Recovery Total Recovery Rate
No lemons 18 12 30 60 %
Lemons 7 3 10 70 %
Total 25 15 40

Should we treat scurvy with lemons?

𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍,𝒓𝒓𝒓𝒓𝒚𝒚𝒍𝒍𝒚𝒚 > 𝑷𝑷 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒍𝒍𝒓𝒓 𝒍𝒍𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍𝒍𝒍,𝒓𝒓𝒓𝒓𝒚𝒚𝒍𝒍𝒚𝒚



■ This reversal of the association between two variables after considering the
third variable is called Simpson’s Paradox.

How to resolute the paradox and find an answer?

■ In an interventional regime, all influences stemming from “natural causes”
of the exposure variable are removed (e.g., see randomized experiments).

■ Pearl extends probability calculus by introducing a new operator for
describing interventions, the do-operator.

Example:

Observational Regime Interventional Regime

vs. 

𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑐𝑐𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑟𝑟𝑠𝑠𝑟𝑟
Probability somebody gets lung cancer, 
given that he smokes. 

𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑐𝑐𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟(𝑙𝑙𝑙𝑙𝑟𝑟𝑠𝑠𝑟𝑟)
Probability somebody gets lung cancer, 
if we force the person to smoke.



Resolution of the Simpson’s paradox
■ Simpson's paradox is only paradoxical if we misinterpret

𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙 as 𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟(𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙)
■ We should treat scurvy with lemons if

𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟(𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙) > 𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟(𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙)

Derivation of the do-operator
■ If identifiable,
𝑃𝑃 � 𝑑𝑑𝑟𝑟(�) can be calculated from 𝐺𝐺 and observational Data

■ In our example, we have

𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙 = �
𝑎𝑎𝑔𝑔𝑔𝑔

𝑃𝑃 𝑐𝑐𝑙𝑙𝑟𝑟 𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑙𝑙𝑟𝑟, 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙 = 0.5

𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟 𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙 = �
𝑎𝑎𝑔𝑔𝑔𝑔

𝑃𝑃 𝑐𝑐𝑙𝑙𝑟𝑟 𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑙𝑙𝑟𝑟, 𝑙𝑙𝑟𝑟 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙 = 0.4

We should treat scurvy with lemons!
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Input:
1. “If the grass is wet, then it rained”
2. “if we break this bottle, the grass

will get wet”

Output:
“If we break this bottle, then it rained”

CAUSATION  AS  A CAUSATION  AS  A 
PROGRAMMER'S  NIGHTMAREPROGRAMMER'S  NIGHTMARE



Q1:  If the season is dry, 
and the pavement is 
slippery, did it rain?  

A1:  Unlikely, it is more 
likely the sprinkler was 
ON. 

Q2:  But what if we SEE 
that the sprinkler is 
OFF?  

A2:  Then it is more likely 
that it rained 
.  

The Story 

Bayesian	  Network	  for	  a	  Simple	  ConversaKon	  



   Conditional  Independencies Efficient  Representation 

    CPD: 
X3 X2  wet=0, wet=1 

0  0    0.9  0.1 
0  1    0.1  0.9 
1  0    0.2  0.8 
1  1    0  1 

P(X5|X4) 

P(X4|X3,X2) 

P(X3|X2) P(X2|X1) 

P(X1) 

Bayesian	  Network	  for	  a	  Simple	  ConversaKon	  

 = P(X1) P(X2|X3) P(X3|X1) P(X4|X3,X2) P(X5|X4) P(X1,X2,X3,X4,X5)) 



Q1:  If the season is dry, 
and the pavement is 
slippery, did it rain?  

Q2:  But what if we SEE 
that the sprinkler is 
OFF?  

.  

The Story 

Bayesian	  Network	  for	  a	  Simple	  ConversaKon	  

Q1: Pr(rain=on | Slippery=yes, season= summer)? 

Q2: Pr(rain=on | Slippery=off, season=winter)? 

Belief updating: how probability changes with evidence? 
What is more likely? Rain or not rain given evidence 

 = P(X1) P(X2|X3) P(X3|X1) P(X4|X3,X2) P(X5|X4) P(X1,X2,X3,X4,X5)) 



Q2:  But what if we SEE that the 
sprinkler is OFF?  

A2:  Then it is more likely that it 
rained 

Q3:  Do you mean that if we 
actually turn the sprinkler 
OFF, the rain will be more 
likely?  

A3:  No, the likelihood of rain 
would remain the same 

The Story 

Bayesian	  Network	  for	  a	  Causal	  ConversaKon	  

.  
Observing (sprink ≠         ler=on)          Doing (sprinkler=on)
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NEEDED:  ALGEBRA  OF  DOINGNEEDED:  ALGEBRA  OF  DOING

Available: algebra of seeing
e.g., What is the chance it rained 

if we see the grass wet?
P (rain | wet)  = ? {=P(wet|rain) }
Needed: algebra of doing
e.g., What is the chance it rained 

if we make the grass wet?
P (rain | do(wet)) = ? {= P (rain)}

P(rain)
P(wet)



Effect of turning the sprinkler ON:  P(season | do(sprinkler=on)) 

Bayesian Network 

Causal Network 

Seeing	  	  vs.	  Doing	  

Pearl do-calculus  leads to a complete mathematical framework  
for formulating causal models and for analyzing data to determine 
causal relationships.  



Bayesian network
Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes
represent random variables:

p(x1, . . . , xd) =
d∏

j=1

p(xj |xpa(j))

Assumes that a variable is independent of previous non-parents given the
parents, that is, p(xj |x1, . . . , xd) = p(xj |xpa(j))

Captures how variables are conditionally dependent: If there are no any
arrows between the nodes then they are independent:

p(A,B) = p(A)p(B)

The joint probability
distribution:

p(G,S,R) = p(G|S,R)p(S|R)p(R)

3 / 1



Sampling from a DAG

Ancestral sampling:

I Sample x1 from p(x1)

I If x1 is a parent of x2, sample x2 from p(x2|x1) Otherwise, sample x2

from p(x2)

I Go through the subsequent j in order sampling xj from p(xj |xpa(j))

Conditional Sampling:

I easy if condition on the first
variables: fix these and run
ancestral sampling

I Hard if condition on the last
variables: Conditioning on
descendent makes ancestors
dependent

4 / 1



It’s hard to separate out causality from correlation

DAGs can be viewed as a causal process: the parents ”cause” the children
to take different values

The below equations are equivalent and the graphs have same conditional
independences, but the causalities are not the same. Graphs tells us
something useful that equations miss.

Y = X + 1

Z = 2Z

X = Y − 1

Y = Z/2

There is observational data (”seeing”) and interventional data (”doing”)

Usually the DAG is designed for observational data, but that ignores the
possibility of unobserved variables, also without interventional data you
can’t distinguish the direction of causality.

Simplest external intervention: a single variable is forced to take some fixed
value (in a graph remove arrows entering that variable)

5 / 1



D-separation
d-separation is a criterion for deciding, from a causal graph, whether a set
A of variables is independent of another set B (given a third set C)

A ⊥⊥ B|C
A and B are d-separated if for all paths P from A to B, at least one of the
following holds:

I P includes a ”chain” with an observed
middle node

I P includes a ”fork” with an observed
parent node

I P includes a ”v-structure” or ”collider”

A and B are d-separated, give C, iff corresponding random variables are
conditionally independent:

p(A,B|C) = p(A|C)p(B|C)

If A and B are not d-separated they are d-connected
6 / 1



The Causal Calculus (do-calculus, Pearl’s Causal Calculus, Calculus of
Actions)

Shortly: Calculus to discuss causality in a formal language by Judea Pearl

A new operator, do(), marks an action or an intervention in the model. In
an algebraic model we replace certain functions with a constant X = x, and
in a graph we remove edges going into the target of intervention, but
preserve edges going out of the target.

The causal calculus uses Bayesian conditioning, p(y|x), where x is observed
variable, and causal conditioning, p(y|do(x)), where an action is taken to
force a specific value x.

Goal is to generate probabilistic formulas for the effect of interventions in
terms of the observed probabilities.

Judea Pearl, Causality: Models, reasoning, and inference. Cambridge University
Press, 2000.

7 / 1



Notations

Notation: a graph G, W , X, Y , Z are disjoint subsets of the variables. GX

denotes the perturbed graph in which all edges pointing to X have been
deleted, and GX denotes the perturbed graph in which all edges pointing
from X have been deleted. Z(W ) denote the set of nodes in Z which are
not ancestors of W

Image: Judea Pearl
8 / 1



Pearl’s 3 rules

Pearl’s 3 rules

I Ignoring observations

p(y|do(x), z, w) = p(y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X

I Action/Observation exchange (the back-door criterion)

p(y|do(x), do(z), w) = p(y|do(x), z, w) if (Y ⊥⊥ Z|X,W )G
X,Z

I Ignoring actions/interventions

p(y|do(x), do(z), w) = p(y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X,Z(W )

Notation: a graph G, W , X, Y , Z are disjoint subsets of the variables. GX

denotes the perturbed graph in which all edges pointing to X have been
deleted, and GX denotes the perturbed graph in which all edges pointing
from X have been deleted. Z(W ) denote the set of nodes in Z which are
not ancestors of W

9 / 1



Intuition behind the Pearl’s first rule

With condition (Y ⊥⊥ Z|X,W )G
X

we have

p(y|do(x), z, w) = p(y|do(x), w)

I Let’s start with a simple case where we assume that there are no W or
X. We get a condition (Y ⊥⊥ Z)G, so Y is independent of Z, that is,
p(y|z) = p(y)

I In the second case assume we have passively observed W , but no
variable X: (Y ⊥⊥ Z|W )G. Earlier we mentioned connection of
d-separation and conditionally independent, that is, p(y|z, w) = p(y|w)

I The third case assume we don’t know W , but we have X that’s value is
set by intervention: (Y ⊥⊥ Z|X)G

X
. By the same theorem, that is,

p(y|z, do(x)) = p(y|do(x))

Combining these gives the full rule.

10 / 1
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1. Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2. Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3. Combined:

Cancer

P (c | do(s)) = noncomputable

Smoking
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1. Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2. Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3. Combined:

Cancer

P (c | do(s)) = noncomputable

4. Combined and refined:

P (c | do(s)) = computable

Smoking

Smoking CancerTar
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Example: Smoking and lung cancer

Randomized Controlled Trials (RCT)

I AKA Randomized Control Trial, Randomized clinical trial

I The participants in the trial are randomly allocated to either the group
receiving the treatment under investigation or to the control group

I The control group removes the confounding factor of the placebo effect

I Double-blind studies remove further confounding factors

I Sometimes impractical or impossible

We can try to use causal calculus to
analyze the probability that someone
would get cancer given that they are
smoking, without doing an actual
RCT:

p(y|do(x))

Note: We have no information about the hidden variable that could cause
both smoking and cancer

11 / 1



Example

We can’t try to apply rule 1 because there is no observations to ignore, we
would just have p(y|do(x)) = p(y|do(x)).

Try apply rule 2: We would have p(y|do(x)) = p(y|x), that is, the
intervention doesn’t matter. It’s condition is (Y ⊥⊥ X)GX :

Y and X are not d-separated, because they
have a common ancestor.
=⇒ Rule 2 can’t be applied

Try apply rule 3: We would have p(y|do(x)) = p(y), that is, an intervention
to force someone to smoke has no impact on whether they get cancer. It’s
condition is (Y ⊥⊥ X)G

X
:

Y and X are not d-separated, because we
have unblocked path between them.
=⇒ Rule 3 can’t be applied
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Example

New attempt:

p(y|do(x)) =
∑
z

p(y|z, do(x))p(z|do(x))

=
∑
z

p(y|z, do(x))p(z|x) (rule 2: (Z ⊥⊥ X)GX )

=
∑
z

p(y|do(z), do(x))p(z|x) (rule 2: (Y ⊥⊥ Z|X)G
X,Z

)

=
∑
z

p(y|do(z))p(z|x) (rule 3: (Y ⊥⊥ X|Z)G
Z,X

)
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Example

We can use the same approach to the first term on the right hand side:

p(y|do(z)) =
∑
x

p(y|x, do(z))p(x|do(z))

=
∑
x

p(y|x, z)p(x) (rule 2 + rule 3)

Finally we can combine these results:

p(y|do(x)) =
∑
z,x′

p(y|x′, z)p(z|x)p(x′)

We can now compare p(y) and p(y|x). The
needed probabilities can be observed directly
from experimental data: What part of
smokers have lung cancer, how many of them
have tar in their lungs etc.
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Example: end

I The analysis would have not worked if the graph had missed the tar
variable, Z, because there is no general way to compute p(y|do(x))
from any observed distributions whenever the causal model includes
subgraph shown the figure below

I Causal Calculus can be used to analyze causality in more complicated
(and more unethical) situations than RCT

I Causal Calculus can also be used to test whether unobserved variables
are missed by removing all do terms from the relation

I Not all models are acyclic. See for example Modeling Discrete
Interventional Data Using Directed Cyclic Graphical Models (UAI
2009) by Mark Schmidt and Kevin Murphy

15 / 1



45

RULES  OF  CAUSAL  CALCULUSRULES  OF  CAUSAL  CALCULUS

Rule 1: Ignoring observations
P(y | do{x}, z, w) = P(y | do{x}, w)

Rule 2: Action/observation exchange
 P(y | do{x}, do{z}, w) = P(y | do{x},z,w)

Rule 3: Ignoring actions
 P(y | do{x}, do{z}, w) = P(y | do{x}, w)   

XG WX,|ZY )( if ⊥⊥

ZXGWXZY ),|( if ⊥⊥

)(
),|( if

WZXGWXZY ⊥⊥





Example from Pearl’s book
Suppose that we have:

◮ a cat, Oscar

◮ another cat: Bastet

◮ a bird feeder outside that we assume is always populated
with birds unless at least one cat is outside

◮ and a window.
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If the door is open the cats will always go outside. The door is normally
closed but if the temperature outside goes above 20C, 
 someone will open
it. There are always birds at the feeder unless there is at least one cat
outside in which case they will all leave the feeder. We have the following
propositions:

◮ T = The temperature is above 20C.

◮ D = Someone opens the door.

◮ O = Oscar goes outside.

◮ B = Bastet goes outside.

◮ L = All the birds leave the feeding station.
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Some sentences:

1. Prediction If Bastet did not go outside then there are birds at the
feeding station.

¬B ⇒ ¬L.

2. Abduction If there are birds at the feeder then no one opened the door.

¬L ⇒ ¬D. (Given D ⇒ O ∧ B, and B ∨ O ⇒ L, then D ⇒ L, so its
contrapositive is true.)

3. Transduction If Oscar went outside then so did Bastet.

O ⇒ B (Given D ⇔ B and D ⇔ O, then O ⇒ D. So O ⇒ B.)

4. Action If no one opened the door and Bastet snuck outside through a window
then all the birds will leave the feeder and Oscar will remain inside.

¬D ⇒ LB & ¬OB

5. Counterfactual If the birds have left the feeder then they still would have left the
feeder even if Bastet had not gone outside.

L ⇒ L
¬B
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Sentences 1 - 3 can be handled by standard logical deduction.

Pearl p.209.:

“The feature that renders S1 - S3 manageable in standard logic is
that they all deal with epistemic inference – that is, inference from
beliefs to beliefs about a static world.”
...

“From our discussion of actions . . . , any such action must violate
some premises, or mechanisms, in the initial theory of the story.
To formally identify what remains invariant under the action, we
must incorporate causal relationships into the theory; logical
relationships alone are not sufficient.”

6 / 52



Equality to show two-way inference

Pearl uses equality rather than implication in order to permit two-way
inference. The independent variable is given in brackets in the second
column below, to demonstrate the causal asymmetry.

Here is the causal model so far:

Model M

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (O) (Oscar goes out iff door opens.)

B = D (B) (Bastet goes out iff door opens.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet goes out)
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A submodel

To evaluate S4, (¬D ⇒ LB & ¬OB) we form submodel MB in which the
equation B = D is replaced by B.

If no one opened the door and Bastet snuck outside through a window then
all the birds will leave the feeder and Oscar will remain inside.

Model MB

(T )
D = T (D)
O = D (O)
B (B)
L = O ∨ B (L)

Facts: ¬D

Conclusions: B,L,¬O,¬T,¬D

¬D ⇒ ¬O by contrapositive but L is still true since B ⇒ L.

8 / 52



Pearl’s view

Pearl, pp. 209-210:

“It is important to note that problematic sentences like S4, whose
antecedent violates one of the basic premises in the story, [in this
case, that Bastet got outside without the door being opened] are
handled naturally in the same deterministic setting in which the
story is told. Traditional logicians and probabilists tend to reject
sentences like S4 as contradictory and insist on reformulating the
problem probabilistically so as to tolerate exceptions to [a] law.
. . . Such reformulations are unnecessary; the structural approach
permits us to process commonplace causal statements in their
natural deterministic habitat without first immersing them in
nondeterministic decor. In this framework, all laws are understood
to represent defeasible default expressions subject to breakdown by
deliberate intervention.”
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Evaluating counterfactuals: step 1
If the birds have left the feeder then they still would have left the feeder
even if Bastet had not gone outside.

The counterfactual L¬B stands for the value of L in submodel M¬B below.
The value L depends on the value of T , which is not specified in M¬B The
observation L removes the ambiguity: if we see the birds have left the
feeder, we can infer that the temperature rose above 20C and thus the door
was opened. If Bastet had not gone outside then Oscar would have, scaring
the birds away from the feeder. We can derive L¬B as follows.

We add the fact L to the original model and evaluate T . Then we form
submodel M¬B and reevaluate L in M¬B using the value of T found in the
first step.

Model M (Step 1)

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (B) (Oscar goes out iff door opens.)

B = D (O) (Bastet goes out iff door opens.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet go out)

Facts: L (Birds leave the feeder.)

Conclusions: T,B,O,D, L
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Evaluating counterfactuals: step 2

Step 2
Model M¬B

(T )
D = T (D) (Door opens iff temp > 20C.)

O = D (O) (Oscar goes out iff door opens.)

¬B (B) (Bastet does not go out.)

L = O ∨B (L) (Birds leave iff Oscar or Bastet go out)

Facts: T

Conclusions: T,¬B,O,D, L

Pearl remarks that it is only the value of T which he refers to as a
‘background variable’ that is carried over to Step 2. Everything else must
be re-evaluated.

Pearl’s next step is to combine steps 1 and 2 into one by using an asterisk
to denote variables whose truth value pertains to the hypothetical world
created by the modification – in this case ¬B. So we rewrite S5 as follows:
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Combined theory

(T )
D∗ = T D = T (D)
¬B∗ B = D (B)
O∗ = D∗ O = D (O)
L∗ = O∗ ∨B∗ L = O ∨B (L)

Facts: L

Conclusions: T,B,O,D, L,¬B∗, O∗, D∗, L∗

Given L, we have O ∨B. Since at least one of O or B is true, we must have
D and therefore T , which exists in both worlds. Therefore D∗. Therefore
L∗, therefore L∗ in spite of ¬B∗
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Why is S4 ‘action’ and S5 ‘counterfactual’?

◮ In S4, the fact given (no one opened the door) is not affected by the
antecedent (Bastet snuck outside through a window.)

◮ In S5 we were asking if changing B to ¬B would affect the outcome L

vs. ¬L. To determine this we had to calculate the potential impact of
¬B on L and route the impact of ¬B through T .
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Probabilistic evaluation of counterfactuals

Suppose that . . .

1. There is a probability P (T ) = p that the temperature goes above 20C.

2. Bastet has a probability q of sneaking out through a window.

3. Bastet’s inclination to sneak out a window is independent of T .

We want to compute the probability P (¬L¬B|L), the probability that the
birds would not have left the feeder if Bastet had not gone outside, given
that the birds have in fact left the feeder.
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Intuitive calculation

◮ Intuitively, ¬L¬B is true, given ¬B iff the temperature did not go
above 20C. So we want to compute P (¬T |L) = P (¬T∧L)

P (L)
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Intuitive calculation

◮ Intuitively, ¬L¬B is true, given ¬B iff the temperature did not go
above 20C. So we want to compute P (¬T |L) = P (¬T∧L)

P (L)

◮ This comes to the probability that the birds all left under the
circumstances that the temperature did not rise above 20C divided by
the probability that the birds all left.
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above 20C. So we want to compute P (¬T |L) = P (¬T∧L)

P (L)

◮ This comes to the probability that the birds all left under the
circumstances that the temperature did not rise above 20C divided by
the probability that the birds all left.

◮ The only way that the birds would have all left if the temperature had
not gone above 20C is that Bastet snuck out a window. (We are
assuming that Oscar is not capable of doing so.)
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not gone above 20C is that Bastet snuck out a window. (We are
assuming that Oscar is not capable of doing so.)

◮ So the numerator is the probability that Bastet snuck out a window
times the probability that the temperature did not rise above 20C (the
two events independent) which is q(1− p).
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◮ So the numerator is the probability that Bastet snuck out a window
times the probability that the temperature did not rise above 20C (the
two events independent) which is q(1− p).

◮ The denominator is 1 minus the probability that the birds are still
there, the latter only being possible if the temperature did not rise
above 20C and Bastet did not sneak out a window – i.e.
1− (1− p)(1− q)
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A probabilistic causal model

Pearl comments that we can calculate this using a probabilistic causal
model using two background variables T (temperature rises above 20C) and
W (Bastet decides to go out through a window.)

P (t, w) =















pq ⇐⇒t = 1, w = 1,
p(1− q) ⇐⇒t = 1, w = 0,
(1− p)q ⇐⇒t = 0, w = 1,
(1− p)(1− q) ⇐⇒t = 0, w = 0

We need to first compute the posterior probability P (t, w|L). This can
become a problem computationally to compute and store if there are a lot
of background variables. And conditioning on some variable e normally
destroys the mutual independence of the background variables so that we
have to maintain the joint distribution of all the background variables.
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Solution: Balke and Pearl 1994: Twin network graphical model

Two networks: one to represent the actual world and one to represent the
hypothetical world.

TW

D D∗

B O B∗ O∗

L L∗

Since we are conditioning on Bastet not going outside, there is no path
from D∗ to B∗.
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A different example

We now look at a different example from Balke and Pearl that illustrates
the calculations in more detail.

◮ There is a crow that sometimes comes to the yard to look for worms

but only if it is raining.

◮ Bastet goes outside if the crow is out there but otherwise almost never
goes outside if it is raining.

◮ Oscar likes going outside as much as possible even if it is raining but,
strangely, is afraid of the crow, so avoids going outside if the crow is
there.

◮ If Bastet and Oscar are both outside, one will likely chase the other
away. There is also a slight chance that if both are inside, one will
chase the other.
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Variables for this example

We have the following variables:

◮ C The crow is outside or not outside.

◮ B Bastet is outside or not outside.

◮ O Oscar is outside or not outside.

◮ W One of the cats chases the other away.

c ∈

{

c0 ≡ The crow is not outside.
c1 ≡ The crow is outside.

}

b ∈

{

b0 ≡ Bastet is not outside.
b1 ≡ Bastet is outside.

}

o ∈

{

o0 ≡ Oscar is not outside.
o1 ≡ Oscar is outside.

}

w ∈

{

w0 ≡ There is no cat chase.
w1 ≡ There is a cat chase.

}
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A conversation by observers

Imagine the following conversation by observers who notice that Bastet is
inside even though it is raining.

A: The crow must not be outside, or Bastet would be there
instead of inside.

B: That must mean that Oscar is outside!

A: If Bastet were outside, then Bastet and Oscar would surely
chase each other.

B: No. If Bastet was there, then Oscar would not be there,
because the crow would have been outside.

A: True. But if Bastet were outside even though the crow was
not, then Bastet and Oscar would be chasing each other.

B: I agree.
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Balke & Pearl p. 232

‘In the fourth sentence, B tries to explain away A’s conclusion by
claiming that Bastet’s presence would be evidence that the crow
was outside which would imply that Oscar was not outside. B,
though, analyzes A’s counterfactual statement as an indicative
sentence by imagining that she had observed Bastet’s presence
outside; this allows A to use the observation for abductive
reasoning. But A’s subjunctive (counterfactual) statement should
be interpreted as leaving everything in the past as it was [e.g. that
Bastet is inside] (including conclusions obtained from abductive
reasoning from real observations [e.g. that the crow must be outside
and therefore Oscar must be inside]) while forcing variables to
their counterfactual values. This is the gist of A’s last statement.
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Unknown factors

Suppose that we have the following probabilities:

p(b1|c1) = 0.9

p(b0|c0) = 0.9

We observe that neither Bastet nor the crow is outside and ask whether
Bastet would be there if the crow were there: p(b∗1|ĉ

∗
1, c0, b0). The answer

depends on what causes Bastet not to go outside even when the crow is
there.

We model the influence of A on B by a function: b = Fb(a, ǫb) where ǫ

represents all the unknown factors that could influence B as quantified by
the prior distribution P (ǫb). For example, possible components of ǫb could
be Bastet being sick or Bastet being sulky about never being able to catch
the crow.
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Response function variables

Each value in ǫb’s domain specifies a response function that maps each
value of A to some value in B’s domain.

rb : domain(ǫb) → N:

rb(ǫb) =















0 if Fb(a0, ǫb) = 0 & Fb(a1, ǫb) = 0 (b = b0 regardless of a)
1 if Fb(a0, ǫb) = 0 & Fb(a1, ǫb) = 1 (b = b1⇐⇒ a = a1)
2 if Fb(a0, ǫb) = 1 & Fb(a1, ǫb) = 0 (b has opposite value of a)
3 if Fb(a0, ǫb) = 1 & Fb(a1, ǫb) = 1 (b = b1 regardless of a)

rb is a random variable that can take on as many values as there are
functions between a and b. Balke and Pearl call this a response function
variable.
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Response functions for this example

Specifically for this example:

b = fb(c, rb) = hb,rb(c)

Whether Bastet goes outside or not is a function of whether the crow is
there and of the response function that accounts for other factors that can
influence Bastet’s behaviour. We can also think of a function h of c that
returns a value of b given the value of c and the value of the response
variable:

hb,0(c) = b0 Bastet doesn’t go outside

regardless of whether the crow is there.

e.g. Bastet is ill.

hb,1(c) =

{

b0 if c = c0
b1 if c = c1

Bastet goes outside only if the crow is there.

hb,2(c) =

{

b1 if c = c0
b0 if c = c1

Bastet goes outside only if the crow isn’t there.

hb,3(c) = b1 Bastet goes outside regardless.
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An example counterfactual
If we have the prior probability P (rb) we can calculate P (b∗1|ĉ

∗
1, c0, b0): i.e.

‘Given that the crow is not outside and Bastet is not outside, if the crow
were outside, what is the probability that Bastet would be outside?’

We crucially assume that:

‘. . . the disturbance ǫb, and hence the response-function rb, is
unaffected by the actions that force the counterfactual values;
therefore, what we learn about the response-function from the
observed evidence is applicable to the evaluation of belief in the
counterfactual consequent.’

If we observe (c0, b0) (neither Bastet nor the crow is outside), then it must
be that rb ∈ {0, 1}, an event with prior probability P (rb = 0) + P (rb = 1).
This updates the posterior probability of rb as follows, letting
→

P (rb) = 〈P (rb = 0), P (rb = 1), P (rb = 2), P (rb = 3)〉:

→

P (rb) =
→

P (rb|c0, b0)

=

〈

P (rb = 0)

P (rb = 0) + P (rb) = 1
,

P (rb = 1)

P (rb = 0) + P (rb) = 1
, 0, 0

〉
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Calculating this counterfactual

From the definition of rb(ǫb) above, if C were forced to c1 (the crow is
outside), then B would have been b1 (Bastet would have also been outside
iff rb ∈ {1, 3}, whose probability is P ′(rb = 1) + P ′(rb = 3) = P ′(rb = 1).
(P ′(rb = 3) must be zero since we have determined that rb ∈ {0, 1}.) This
gives the solution to the counterfactual query:

P (b∗1|ĉ
∗
1, c0, b0) = P ′(rb = 1) = P (rb=1)

P (rb=0)+P (rb=1)

The probability of external influence 1 that causes Bastet to go outside if
the crow is there divided by the probability of external influence 1 plus
exernal influence 0, the latter causing Bastet to stay inside regardless.
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Representation with a DAG

We can represent the causal influences over a set of variables in this
example through a DAG. If the set of variables is {X1, X2, . . . Xn}, for each
xi there is a functional mapping xi = fi(pa(xi), ǫi), where pa(xi) is the
value of Xi’s parents in the graph and there is a prior probability
distribution P (ǫi) for each ‘disturbance’ ǫi.

A counterfactual query will be of the form: ‘What is P (c∗|â
∗, obs), where c∗

is a set of counterfactual values for C ⊂ X, â∗ is a set of forced values in
the counterfactual antecedent and obs represents observed evidence.

For our example, we assume that Bastet is not outside (b = b0) and want to
ask ‘what is P (c∗1 |̂b

∗
1 , b0)?’ Or further, what is the probability that the cats

will chase each other under those conditions?
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A possible causal theory with response variables

Suppose that we have the following of what Balke and Pearl call a ‘causal
theory’:

c = fc(rc) = hc,rc() (crow’s presence depends only on rc)
b = fb(c, rb) = hc,rb(c) (Bastet’s presence depends on rb, crow)
o = fo(c, ro) = hc,rc(c) (Oscar’s presence depends on ro, crow)
w = fw(b, o, rw) = hw,rw (b, o) (chase depends on rw, Bastet and Oscar)

P (rc) =

{

0.40 if rc = 0
0.60 if rc = 1

(60% chance crow is there)

P (rb) =















0.07 if rb = 0
0.90 if rb = 1
0.03 if rb = 2
0 if rb = 3

(90% chance Bastet there if crow is)

P (ro) =















0.05 if ro = 0
0 if ro = 1
0.85 if ro = 2
0.10 if ro = 3

(85% chance Oscar there if crow isn’t)

P (rw) =















0.05 if rw = 0
0.90 if rw = 8
0.05 if rw = 9
0 otherwise

(90% chance chase if B & O there)
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hc,0() = c0 (if rc = 0 the crow is not there)
hc,1() = c1 (if rc = 1 the crow is there)

hw,0(b, o) = s0 (if rs = 0, there is no chase regardless)

hw,8(b, o) =

{

s0 if (b, o) 6= (b1, o1) no chase unless both B,O outside

s1 if (b, o) = (b1, o1) chase if both B,O outside

hw,9(b, o) =

{

s0 if (b, o) ∈ {(b1, o0), (b0, o1)} no chase if 1 cat present

s1 if (b, o) ∈ {(b0, o0), (b1, o1)} chase if B,O meet in or out
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DAG

rc

C C∗

rb ro

B O
B∗ O∗

W
W ∗

rw

Variables marked with ∗ indicate the counterfactual world and those
without the factual world. The r variables are response functions.

30 / 52



DAG for counterfactual evaluation

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw

To evaluate P (w∗
1 |̂b

∗
1, b0), instantiate B as b0 and B∗ as b∗1. Sever links

pointing to b∗1
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Evaluating W
∗

Balke and Pearl comment:

If a variable X∗

j in the counterfactual world is not a causal
descendant of any of the variables mentioned in the counterfactual
antecedent â∗, then Xj and X∗

j will always have identical
distributions, because the causal influences that functionally
determine Xj and X∗

j are identical.

To evaluate W ∗, we can start by looking at the graph in the factual world
to see what values of parents of b0 could lead to that value. We consider all
the possible combinations of values of parents of b0. The probability of each
combination is the product of their probabilitites and the total prior
probability of b0 is the sum of probabilities of combinations that result in
B = b0.

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

◮ rc = 0 (0.4) and rb = 0 (0.07) → C = c0 and B = b0 (0.028)

◮ rc = 0 (0.4) and rb = 1 (0.90) → C = c0 and B = b0 (0.36)

◮ rc = 0 (0.4) and rb = 2 (0.03) → C = c0 and B = b1 (0.012)

◮ rc = 1 (0.6) and rb = 0 (0.07) → C = c1 and B = b0 (0.042)

◮ rc = 1 (0.6) and rb = 1 (0.90) → C = c1 and B = b1 (0.54)

◮ rc = 1 (0.6) and rb = 2 (0.03) → C = c1 and B = b0 (0.018)

The prior probability P (B = b0) = 0.028 + 0.36 + 0.042 + 0.018 = 0.448. So
p(C = c0|B = b0) =

0.028+0.36
0.448

= 0.86607
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C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw
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Evaluating W
∗

Given that C∗ is not a causal descendant of any B variables, we can give
counterfactual C∗ the same probability as C. We can now work down on
the counterfactual side of the DAG and calculate O∗. We calculate the
probability of each possible combination of values of ro and C∗ and
determine for each the value of O∗ that results. We add to get the total
probability of o∗1 .
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C C∗

rb ro

b0 O b∗1 O∗

W
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rw
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Evaluating W
∗

◮ ro = 0 (0.05) and C∗ = c∗0 (0.86607) → O∗ = o∗0 (0.043304)

◮ ro = 0 (0.05) and C∗ = c∗1 (0.13393) → O∗ = o∗0 (0.0066965)

◮ ro = 1 (0) and C∗ = c∗0 (0.86607) → O∗ = o∗0 (0)

◮ ro = 1 (0) and C∗ = c∗1 (0.13393) → O∗ = o∗1 (0)

◮ ro = 2 (0.85) and C∗ = c∗0 (0.86607) → O∗ = o∗1 (0.73616)

◮ ro = 2 (0.85) and C∗ = c∗1 (0.13393) → O∗ = o∗0 (0.1138405)

◮ ro = 3 (0.10) and C∗ = c∗0 (0.86607) → O∗ = o∗1 (0.086607)

◮ ro = 3 (0.10) and C∗ = c∗1 (0.13393) → O∗ = o∗1 (0.013393)

P (O∗ = o∗1) = 0 + 0.73616 + 0.086607 + 0.013393 = 0.83616
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rb ro

b0 O b∗1 O∗

W
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rw
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Evaluating W
∗

Given that P (b∗0) = 1, we can now calculate P (W ∗ = 1|b∗0 , O
∗), moving

further down the graph. We look at all the possible combinations of
possible values of parents of W ∗. Since B∗ is set at b∗1, we need not include
it in the set of combinations.

rc

C C∗

rb ro

b0 O b∗1 O∗

W
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rw
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Evaluating W
∗

◮ rw = 0 (0.05) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.008092)

◮ rw = 0 (0.05) and O∗ = o∗1 (0.83616) → W ∗ = w∗
0 (0.041808)

◮ rw = 8 (0.90) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.145656)

◮ rw = 8 (0.90) and O∗ = o∗1 (0.83616) → W ∗ = w∗
1 (0.752544)

◮ rw = 9 (0.05) and O∗ = o∗0 (0.16184) → W ∗ = w∗
0 (0.008092)

◮ rw = 9 (0.05) and O∗ = o∗1 (0.83616) → W ∗ = w∗
1 (0.041808)

So P (W ∗ = 1|b∗0 , O
∗) = 0.75254 + 0.041808 = 0.79435, which to two decimal

places is the value given by Balke and Pearl.

rc

C C∗

rb ro

b0 O b∗1 O∗

W
W ∗

rw

37 / 52


	04_17_Causal_Inference-Theory_and_Applications.pdf
	Causal Inference – Theory and Applications�
	Agenda�April 17, 2018
	Lecture Organization�
	Lecture Organization�Setup
	Lecture Organization�Goals
	Lecture Organization�Schedule (I/II)
	Lecture Organization�Schedule (II/II)
	Lecture Organization�Grading
	Causal Inference in a Nutshell
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: What is it?
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	3. A Paradigm Shift�The Idea: Plato’s Allegory of the Cave
	3. A Paradigm Shift�Basic Contributions
	3. A Paradigm Shift�Structural Causal Models
	4. Causal Graphical Models�The Idea in one Example
	4. Causal Graphical Models�The Idea in one Example
	4. Causal Graphical Models�The Concept
	5. The Calculus of Causality�Causal Inference: How to build a formal Theory?
	5. The Calculus of Causality�The Associational Nature of Probability Theory
	5. The Calculus of Causality�The Associational Nature of Probability Theory
	5. The Calculus of Causality�Pearl's contribution: the do-operator
	5. The Calculus of Causality�Application of the do-operator
	6. Summary and Outlook�The Concept
	6. Summary and Outlook�Summary
	6. Summary and Outlook�Theoretical Basis of Causal Inference
	7. Further Reading�
	8. References� List of Figures
	Thank you �for your attention!

	jsm-august2016 pearl.pdf
	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72

	04_17_Causal_Inference-Theory_and_Applications.pdf
	Causal Inference – Theory and Applications�
	Agenda�April 17, 2018
	Lecture Organization�
	Lecture Organization�Setup
	Lecture Organization�Goals
	Lecture Organization�Schedule (I/II)
	Lecture Organization�Schedule (II/II)
	Lecture Organization�Grading
	Causal Inference in a Nutshell
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: An ubiquitous Notion
	1. Motivation�Causality: What is it?
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Philosophy
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	2. A short History�Causality in Statistics
	3. A Paradigm Shift�The Idea: Plato’s Allegory of the Cave
	3. A Paradigm Shift�Basic Contributions
	3. A Paradigm Shift�Structural Causal Models
	4. Causal Graphical Models�The Idea in one Example
	4. Causal Graphical Models�The Idea in one Example
	4. Causal Graphical Models�The Concept
	5. The Calculus of Causality�Causal Inference: How to build a formal Theory?
	5. The Calculus of Causality�The Associational Nature of Probability Theory
	5. The Calculus of Causality�The Associational Nature of Probability Theory
	5. The Calculus of Causality�Pearl's contribution: the do-operator
	5. The Calculus of Causality�Application of the do-operator
	6. Summary and Outlook�The Concept
	6. Summary and Outlook�Summary
	6. Summary and Outlook�Theoretical Basis of Causal Inference
	7. Further Reading�
	8. References� List of Figures
	Thank you �for your attention!

	causal.pdf
	Foliennummer 1




