Causal Networks




Bayesian Networks are making , intelligent” dialogs possible

Q1: If the season is dry,
and the pavement is @ SEASON
slippery, did it rain?

. . - / \
A1: Unlikely, it is more
’ RAIN
likely the sprinkler was AEECUNHNNG /®

ON. N
Q2: But what if we SEE WET

that the sprinkler is

!
OFF? SLIPPERY

A2. Then it is more likely
that it rained
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Bayesian Networks are making , intelligent” dialogs possible

P(X1)
SEASON

POX3IXD__ ~ \ __P(X2]X1)
SPRINKLER @ @ RAIN

\ / X3 X2 | wet=0, wet=1
B o] 09 b
P(X4|X3,X2) WET 01| 01 09
10| 0208
‘l 1] o i

P(X1,X2,X3,X4,X5))= P(XI1) P(X2|1X1) P(X3X1) P(X4X3,X2) P(X5|X4)
Conditional Independencics === Efficient Representation
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Bayesian Networks are making , intelligent” dialogs possible

Q1: If the season is dry,
and the pavement is @ SEASON
slippery, did it rain?

N\
RAIN
Q2: But what if we SEE SPRINKLER (X;) /@
that the sprinkler is N
WET

OFF? :
SLIPPERY

P(X1,X2,X3,X4,X5))= P(X1) P(X2|X1) P(X3|X1) P(X4X3,X2) P(X5|X4)
Q1: Pr(rain=on | Slippery=yes, season= summer)?

Q2: Pr(rain=on | Slippery=off, season=winter)?

Rudolf Kruse Bayesian Networks



Bayesian Networks are making ,,intelligent®* dialogs possible
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Q2:

A2:

Q3

A3:

But what if we SEE that the
sprinkler is OFF?
Then it is more likely that it @ SEASON

rained / \
Do you mean that if we @
actually turn the sprinkler SPRINKLER RAIN
OFF, the rain will be more \ /

likely? —

No, the likelihood of rain l

would remain the same
SLIPPERY

An Observation is different from an Intervention!

Bayesian Network model associations/dependencies and and integrate

observations (via conditioning).
In order to integrate causalities and interventions, we have to extent the

concept.
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Do storks deliver babies?

The Relationship Between Stork Populations and
Country Area Storks | Humans | Birth rate Human Birth Rates
(km?) (pairs) (10%) (10°/yr) i
Albania 28,750 100 3.2 83 = k3
Austria 83,860 300 7.6 87 S
Belgium 30,520 1 9.9 118 £ —
Bulgaria 111,000 | 5000 9.0 117 gm, ’ e il
Denmark 43100 9 5.1 59 Rt | f_d_,_,a-"’* *
France 544,000 140 56 774 Sl
Germany | 357,000 | 3300 78 901 ”:{N ¢
Greece 132,000 | 2500 10 106 . - N o e -
Holland 41,900 4 15 188
Hungary 93,000 5000 11 124
Italy 301,280 5 57 551
Poland 312,680 | 30,000 38 610
abiakiad o an | 1 D i "Highly statistically significant
Romania | 237,500 | 5000 23 367 degree of correlation between
Spain 504,750 | 8000 39 439 stork populations and birth rates”
Switzerland | 41,290 150 | 6.7 82 (or in technical terms, p = 0.008)
Turkey 779,450 | 25,000 56 1576
S— ———
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Common Cause Principle

Country Area Storks | Humans | Birth rate

(km?) (pairs) (10%) (10°/yr)
Albania 28,750 100 g 22 83 -
Austria 83,860 300 76 87 ;:m
Belgium 30,520 1 99 118 2
Bulgaria 111,000 5000 9.0 117 s
Denmark 43,100 9 51 59 E:m
France 544,000 140 36 774 * .
Germany | 357,000 | 3300 78 901
Greece 132,000 2500 10 106
Holland 41,900 4 15 188
Hungary 93,000 5000 11 124
Italy 301,280 5 57 551
Poland 312,680 | 30,000 3R 610
Portugal 92,390 1500 10 120
Romania 237,500 5000 23 367
Spain 504,750 8000 39 439
Switzerland | 41,290 150 6.7 82
Turkey 779,450 | 25,000 56 1576

Stork Population vs Land Area
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But a simple variable that
affects both the birth rate and
the stork population is the size of
each country.

Birth Rate vs Land Area
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Common Cause Principle (Reichenbach, 1956): If there is a statistical dependence between variables
X and Y (e.g S-B) then X causally influences Y, orY causally influences X (e.g. S>B, B =>S), or there
exists Z causally influencing both (e.g. A> B and A - S). We use this Reichenbach assumption in the

following.

In practice, causalities may also arise for other reasons, e.g. when the variables follow a physical law
and then only look as if they depend on each other.

Rudolf Kruse
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How to treat scurvy?

Experiment by James Lind (18th century)
- 12 scorput sailors treated with different avids (vinegar, cider, lemon)
- Only the sailors treated by lemon improved

Experiment: Data of 80 sailors with respect to Treatment, Recovery and Age

Recovery Rate

m 20 50 % P(recovery|lemons) < P(recovery|no lemons)

16 24 40 40 %

— P(recovery|lemons,old) > P(recovery|no lemons,old)
9 21 30 30 %
11 29 40
|| Recovery Rate
18 60 % P(recovery|lemons, young) > P(recovery|no lemons, young)

7 3 10 70 %
25 15 40

Simpsons Paradoxon: Reversal of association after considering a third variable
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Resolving the Paradoxon

Association Net (G,P) Intervention Net (Gdo(T),Pdo(T))
Age Age
Treatment — > Recovery do Treatment ——> Recovery

In G all possible causalities are modelled.

In Gdo(T) all influences stemming from ,,natural causes”
of the intervention variables (Treatment) are removed.

- P(recovery | lemons) ist not the same as Pdo(lemons)(recovery)
This is a common misinterpretation, the reason of the Simpson paradoxon

- We should treat scurvy with lemons if
Pdo(lemons)(l"ecovery) > Pdo(no |emons)(recovery)
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Using the do-operator

Learn the Bayesian Network (G,P) from data (parametric estimation using the tables)

P(old)=P(young) = 40/80=0.5

P(lemons | old) = (9+21)/40= 0.75, P(lemons | young) = (7+3)/40 =0.25
P(recovery | old,lemons) = 0.3 P(recovery | old,no lemons)= 0.2
P(recovery | young, lemons) = 0.7 P(recovery | young, no lemons) =0.6

Using only observations gives
0.4 =P(recovery | lemons) < P(recovery | no lemons) = 0.5

Intervention Network: Estimate Pdo(t) (recovery) by using information about (G,P) and Gdo(1)

Pdo(lemon) (recovery) = Pdo(lemon) (recovery,lemons, young) +Pdo(lemon) (recovery, lemons,old) =

= Pdo(lem) (rec | lem, young) Pdo(lem) (lem,young) + Pdo(lem) (rec | lem,old) Pdo(lem) (lem,old)

= Pdo(lem) (rec | lem, young) Pdo(lem) (young) + Pdo(lem) (rec I lem,old) Pdo(lem) (old) (treatment lemon)
= P(rec | lem, young) P(young) + P(rec I lem,old) P(old) (age as influence for treatment is removed)
= 0.7x0.5+0.3x0.5=0.5

Pdo(nolemon) (recovery) = 0.4 (with the same method) Note that the same method was used for the famous

data set for kidney stone recovery with 700 patients
We should treat scurvy with lemons. and two treatments in 1986.
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Causality versus Correlation

It’s hard to separate out causality from correlation

DAGs can be viewed as a causal process: the parents "cause” the children
to take different values

The below equations are equivalent and the graphs have same conditional
independences, but the causalities are not the same. Graphs tells us
something useful that equations miss.

Structural Equation Modeling (Structure Causal Models) is very popular in economics

Y=X+1, Z=Y*2 ®—> Adder (+1) »@ »wummuzy—»@

Y=2/2, X=Y-1 @q— Adder (-1) <—®<——Mdﬁpliar (x 112)-4—@
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Causality versus Correlation

Rudolf Kruse

It’s hard to separate out causality from correlation

DAGs can be viewed as a causal process: the parents "cause” the children
to take different values
The below equations are equivalent and the graphs have same conditional

independences, but the causalities are not the same. Graphs tells us
something useful that equations miss.

Structural Equation Modeling (Structure Causal Models) is very popular in economics

Yi=X+1, Z:=Y*2 ®—> Adder (+1) »@ >Munpner(x2)—>®

Y:=2/2, X:=Y-1 @.7 Adder (-1) <—®<—Mu|ﬁplier (x 1:2)-4—@

There is observational data ("seeing”) and interventional data (”doing”)

Usually the DAG is designed for observational data, but that ignores the
possibility of unobserved variables, also without interventional data you
can’t distinguish the direction of causality.

Simplest external intervention: a single variable is forced to take some fixed
value (in a graph remove arrows entering that variable)
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Pearl‘s Causal Calculus

The Causal Calculus (do-calculus, Pearl’s Causal Calculus, Calculus of
Actions)

Shortly: Calculus to discuss causality in a formal language by Judea Pearl
A new operator, do(), marks an action or an intervention in the model. In
an algebraic model we replace certain functions with a constant X = 2, and
in a graph we remove edges going into the target of intervention, but
preserve edges going out of the target.

The causal calculus uses Bayesian conditioning, p(y|z), where z is observed
variable, and causal conditioning, p(y|do(x)), where an action is taken to
force a specific value x.

Goal is to generate probabilistic formulas for the effect of interventions in
terms of the observed probabilities.
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Pearl‘s Causal Calculus

Notations
OU (Unobserved) O
o - 3 o %
X Z ¥ X z Y
G Gi = Gy
° ° 20 o2 -9 “"“. o +o e
X z Y x 7z Yix z Y
633 G C

Rudolf Kruse

Notation: a graph G, W, X, Y, Z are disjoint subsets of the variables. G~
denotes the perturbed graph in which all edges pointing to X have been
deleted, and G'x denotes the perturbed graph in which all edges pointing

from X have been deleted. Z(W) denote the set of nodes in Z which are
not ancestors of W

Image: Judea Pearl
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Pearl‘s Causal Calculus

Pearl’s 3 rules

Note that we use the short notion of Pearl in the following, i.e.
P(y I do(x),z,w) = Pdow(y | z,w)

» Ignoring observations
p(yldo(z), z,w) = p(y|do(x), w) if (Y L Z|X,W)ay
» Action/Observation exchange (the back-door criterion)

p(y|do(:r)) do(z), w) = p(’y|d0(.’f)) Z,w) it (¥ L Z|X; W)GT

X,Z
» Ignoring actions/interventions

p(yldo(x),do(z),w) = p(y|do(x),w) if (Y L Z|X, VV)C;Y

Z(W)

Notation: a graph G, W, X, Y, Z are disjoint subsets of the variables. G~
denotes the perturbed graph in which all edges pointing to X have been
deleted, and G x denotes the perturbed graph in which all edges pointing
from X have been deleted. Z (W) denote the set of nodes in Z which are
not ancestors of W
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Pearl‘s Causal Calculus

Intuition behind the Pearl’s first rule

With condition (Y L Z|X, W)a we have
p(yldo(x), z, w) = p(y|do(x), w)

» Let’s start with a simple case where we assume that there are no W or
X. We get a condition (Y 1L Z)g, so Y is independent of Z, that is,
p(ylz) = p(y)

» In the second case assume we have passively observed W, but no
variable X: (Y 1L Z|W)¢. Earlier we mentioned connection of
d-separation and conditionally independent, that is, p(y|z, w) = p(y|w)

» The third case assume we don’t know W, but we have X that’s value is
set by intervention: (Y 1L Z|X )G+ By the same theorem, that is,

p(y|z, do(z)) = p(y|do(z))

Combining these gives the full rule.
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Pearl‘s Causal Calculus

Example: Smoking and lung cancer

Randomized Controlled Trials (RCT)
» AKA Randomized Control Trial, Randomized clinical trial

» The participants in the trial are randomly allocated to either the group
receiving the treatment under investigation or to the control group

» The control group removes the confounding factor of the placebo effect
» Double-blind studies remove further confounding factors

» Sometimes impractical or impossible

We can try to use causal calculus to
analyze the probability that someone
would get cancer given that they are
smoking, without doing an actual
BRCT:

p(y|do(x))

Y

(lung
cancer)

Note: We have no information about the hidden variable that could cause
both smoking and cancer
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Pearl‘s Causal Calculus

We can’t try to apply rule 1 because there is no observations to ignore, we
would just have p(y|do(z)) = p(y|do(x)).

Try apply rule 2: We would have p(y|do(z)) = p(y|x), that is, the
intervention doesn’t matter. It’s condition is (Y 1L X)a:

Y and X are not d-separated, because they
have a common ancestor.
— Rule 2 can’t be applied

Try apply rule 3: We would have p(y|do(z)) = p(y). that is, an intervention
to force someone to smoke has no impact on whether they get cancer. It’s
condition is (¥ L X)a:

Y and X are not d-separated, because we
have unblocked path between them.
— Rule 3 can’t be applied

Rudolf Kruse Bayesian Networks



Pearl‘s Causal Calculus

Rudolf Kruse

New attempt:

pyldo(2)) =3 p(ylz, do(w) )p(z|do(x))
=3 plylz. do(w))p(z|)
=" p(yldo(z), do(x))p(2x)

= 3" plyldo(=))p(=l)

hidden
factor

Y

{lung
cancer)

X

{smoking)

(rule 2: (Z 1L X)ay)

(rule 2: (Y 1L Z|X)c

(rule 3: (Y L X|2)¢

Bayesian Networks
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Pearl‘s Causal Calculus

We can use the same approach to the first term on the right hand side:

p(yldo(z)) = _p(ylx, do(z))p(x|do(z))
= Zp(yh‘ z)p(x) (rule 2 4 rule 3)

Finally we can combine these results:

p(yldo(x)) = > " p(yla’, 2)p(z|z)p(z’)

!

We can now compare p(y) and p(y|do(z))The
needed probabilities can be observed directly
from experimental data: What part of
smokers have lung cancer, how many of them
have tar in their lungs etc.

X Y
{lung
cancer)

(smoking)
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Pearl‘s Causal Calculus

Remarks about the do-calculus
PREDICTING THE I lysi Id | ked if tl h had missed tl
» 1 he analysis would have not worked 1 the graph had missed the tar
EFFECTS OF POLICIES variable, Z, because there is no general way to compute p(y|do(z))

1. Surgeon General (1964): ; from any observed distributions whenever the causal model includes
Smnking C:ncer P(c|do(s)~P(c|s) subgraph shown the figure below
2. Tobacco Industry: » Causal Calculus can be used to analyze causality in more complicated

7 Genotype (unobserved) (and more unethical) situations than RCT

P (c| do(s) » Causal Calculus can also be used to test whether unobserved variables

"‘4 L . . . .
& ] are missed by removing all do terms from the relation
- - o
Smoking Cancer ) _
3. Combined: » Not all models are acyclic

. CHCISRSIE R General Properties of the do-calculus
«——o
Smoking Cancer
4. Combined and refined: The do-calculus is complete: Whenever a causal effect is

Fl

estimatable from data, a sequence of steps using the three rules
> S 5)) = computable eliminates the do-operator.
—0—0
Smoking Tar Cancer The corresponding decision problem is tractable: Shpitser‘s
algorithm decides if a solution exist in polynomial time.

Judea Pearl’s “The Book of Why”, 2018, coauthored with the journalist Dana MacKenzie describes the story “Is there scientific evidence on the
health benefits of quitting smoking?” . You’ll find a good motivation about causation in future intelligent Systems in this award winning book.
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Pearl‘s Causal Calculus

The do-calculus is complete: Whenever a causal effect is estimatable from
data, a sequence of steps using the three rules eliminates the do-operator.

The corresponding decision problem is tractable: Shpitser‘s algorithm decides
if a solution exist in polynomial time.

Judea Pearl’s “The Book of Why”, 2018, coauthored with the journalist Dana
MacKenzie describes the story “Is there scientific evidence on the health
benefits of quitting smoking?”

and also his vision about causation in intelligent Systems
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Mechanization of cognitive abilities with probabilistic networks

Associations (“Observation”) Bayes, Belief, Conditional Probabilities

Are headaches an indication of a brain tumor? How likely is it that a
customer who buys a Golf also wants a towbar?

Intervention (*“Action”) Do Operator , Model Revision, Causality

If | take aspirin, will my headaches be cured? What happens to our sales
If we increase the price by 10%?

Imagination (“Understanding'*)Counterfactuals, miningworlds that could have been
Was it aspirin that stopped my headache? What if | hadn't smoked in the
last 2 years? What Is the probability that a customer who bought a Golf

would have bought the car if we had increased the price by 10% at the
time?
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