
Decision Trees - Influence Diagrams

Rudolf Kruse Bayesian Networks



Descriptive Decision Theory

Descriptive Decision Theory tries to simulate human behavior in finding the right  
or best decision for a given problem

Example:
• Company can chose one of two places for a new store
• Option 1: 125.000 EUR profit per year
• Option 2: 150.000 EUR profit per year

Company should take Option 2, because it maximized the profit.
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Decision Making

In real world not everything is known, so there are uncertainties in the  model

Example:
◦ There are plans for restructure the local traffic, which changes the predicted  

profit
◦ Option 1: 125.000 EUR profit per year
◦ Option 2: 80.000 EUR profit per year

With modification Option 1 is the better one and without modification Option  
2 is the better one

To model these variations in the environment we use so called Decision Tables
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z1 (nomodification) z2 (restructure)

a1 (Option1) 125.000 = e11 125.000 = e12
a2 (Option2) 150.000 = e21 80.000 = e22



D om in at ion

An alternative a1 dominatesa2
iff the value ofa1 is always greater of (or equal to) the value ofa2
That means, for all j: e1j ≥ e2j

Example:
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z1 z2

a1 150.000 = e11 90.000 = e12
a2 125.000 = e21 80.000 = e22

Alternative a2 could be dropped



Domination - Example

Some more alternatives:
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z1 z2 z3 z4 z5

a1 0 20 10 60 25 dominated by a3
a2 -20 80 10 10 60
a3 20 60 20 60 50
a4 55 40 60 10 40
a5 50 10 30 5 20 dominated by a4

◦ a3 dominated a1
◦ a4 dominated a5

Alternatives a1 and a5 could be dropped



Decision Making Rules

z1 z2 z3 z4

a1 60 30 50 60
a2 10 10 10 140
a3 -30 100 120 130
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Various Decision Rules are available

• Maximin - Rule
• Maximax - Rule
• Hurwicz - Rule
• Laplace - Rule



Maximin - Rule

z1 z2 z3 z4 Minimum

a1 60 30 50 60 30
a2 10 10 10 140 10
a3 -30 100 120 130 -30

Choose the one with the highest minimum

Contra To pessimistic, only focus on one column
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Example

z1 z2 z3 z4 Minimum

a1 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1 1 1 1 1



Maximax - Rule

z1 z2 z3 z4 Maximum

a1 60 30 50 60 60
a2 10 10 10 140 140
a3 -30 100 120 130 130

Choose the one with the highest maximum

Contra To optimistic, only focus on one column
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Example

z1 z2 z3 z4 Maximum

a1 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
a2 1,000,001 1 1 1 1,000,001



Hurwicz - Rule

z1 z2 z3 z4 Max Min
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Φ(ai)

a1 60 30 50 60 60 30 0.4 · 60 + 0.6 · 30= 42
a2 10 10 10 140 140 10 0.4 · 140 + 0.6 · 10 = 62
a3 -30 100 120 130 130 -30 0.4 · 130 + 0.6 · (−30) = 34

Combination of Maximin and Maximax -Rule
Φ(a) =  λ · max(ei) + (1 − λ) ·min(ei)
λ represents readiness to assume risk
Contra Only focus on two column
Example (min(a1) <  min(a2), max(a1) <  max(a2) ⇒ chosea2)

z1 z2 z3 z4 Max Min

a1 1,000,000 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1,000,001 1 1 1 1,000,001 1



Laplace - Rule

z1 z2 z3 z4 Mean

a1 60 30 50 60 50
a2 10 10 10 140 42.5
a3 -30 100 120 130 80

Choose the one with the highest mean value

Contra
• Not every condition has the same probability
• Duplication of one condition could change the result

Most people would also chose a3 in this example
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Probabili ty- based Decisions

In many cases probabilities could be assigned to each  option

Objective Probabilities based on mathematic or statistic background

Subjective Probabilities based on intuition or estimations  

Example:
The management estimates the probability for the restructure to 30%

The decision can be chosen by analyzing the expected values
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z1  (nomodification)
p1 = 0.7

z2 (restructure)
p2 = 0.3

Expectation

a1 (Option1) 125.000 = e11 125.000 = e12 125.000
a2 (Option2) 150.000 = e21 80.000 = e22 129.000

Option 2 has the higher expectation and should be used



Stochast ic Dominance

z1

p1 = 0.3
z2

p2 = 0.2
z3

p3 = 0.4
z4

p4 = 0.1

A1 20 40 10 50
A2 60 30 50 20
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Formally A dominates B iff p(A ⩾ x) for all x is always higher oder equal than p(B ⩾ x), and it is strictly higher
for at least one x . This definition of dominance gives a partial ordering of sets of options. 

If A dominates B then the expected output for A is higher.

Note that there are different  concepts of stochastic dominance in literature, here the so called first-order 
stochastic dominance is use

Example

Here the options A1 and A2 can be considered as random variables, we have e.g. P(A1(z1)=20)=0.3. 

A random variable A stochastically dominates B if for any outcome, A gives at least as high a probability of
receiving at least z as does B, and for some z, A gives a higher probability of receiving at least z. 



Stochast ic Dominance

A1 : 50(0.1) 40(0.2) 20(0.3) 10(0.4)
A2 : 60(0.3) 50(0.4) 30(0.2) 20(0.1)
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A1 : 50(0.1) 40(0.3) 20(0.6) 10(1)
A2 : 60(0.3) 50(0.7) 30(0.9) 20(1)

A2 dominates A1, because p(A2  ⩾ x) ⩾ p(A1 ⩾ x) is valid for all real numbers x   
and (e.g.) p(A2  ⩾ 50) > p(A1 ⩾ 50) holds

Example 

Order payout by value in a decreasing order: Reward z, in brackets: p(Ai =z)

Determine probabilities p(Ai ⩾ z): Reward z, in brackets:  p(Ai  ⩾ z)

Compare probabilities  p(A ⩾ x) ⩾ p(B ⩾ x) for all x



Mult i Cri ter ia Decisions - Example

Sales e1 Profit e2 Environment Pollution e3

a1 800 7000 -4
a2 600 7000 -2
a3 400 6000 0
a4 200 4000 0
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Efficient Alternatives

• Only focus on alternatives which are not dominated by others
• Example: Drop a4

Finding a Decision

• If multiple alternatives are effective we need an algorithm to choose the pre-
ferred one



Multi Criteria Decisions - Utility Function

Goal find a function U(e1, e2, . . . , en) as a combination of all targets/criteria ,  
which could  be optimized

Linear combination
• Simplest variant: Linear combination of all targets using weights for criteria

Σ
i= 1

• U(e1, e2, . . . , ei) =
n ω · ei i

Example
◦ ω1= 10, ω2= 1, ω3= 500

Sales e1 Profit e2 Environment Pollution e3 U(e1, e2, e3)

a1 800 7000 -4 13000
a2 600 7000 -2 12000
a3 400 6000 0 10000

Optimum
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Preference Orderings

Note that transitivity is not always given in decision making

Consider the followingset ofdice (so called Efron-Dice)
• Dice A has sides:  2, 2, 4, 4, 9, 9

• Dice B has sides:  1, 1, 6, 6, 8, 8

• Dice C has sides:  3, 3, 5, 5, 7, 7

The probability that A rolls a higher number than B, the probability that B rolls
higher than C, and the probability that C rolls higher than A are all 5/9, so this
set of dice lead to nontransitive decisions. In fact, it has the property that, for
each dice in the set, there is another dice that rolls a higher number than in more
than half the time.

Standard economic theory assumes that preferences are transitive.

In most real applications there are good arguments for imposing such “rationality  
requirements”, e.g. the money pump argument, or the Dutch Book argument.
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Preference Orderings

Apreference ordering ≤ is a ranking of all possible states of affairs (worlds) S
• these could be outcomes of actions, truth assignments, states in a search prob-

lem, etc.

• s ≤ t: means that state t is at least as good as s

• s  ≻ t: means that state s  is strictly preferred to t

We insist that ≤ is
• reflexive: i.e., s ≤ s for all states s

• transitive: i.e., if s ≤ t and t ≤ w, then s ≤ w

• connected: for all states s,t, either s ≤ t  or t ≤s
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U t ilit ies

Rather than just ranking outcomes, we are often able to quantify our degree of  
preference

A utility function U : S → R associates a realvalued utility with each outcome.
• U (s) measures the degree of preference for s
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≤ U(t)Note: U induces a preference ordering ≤U over S defined as: s ≤U t iffU (s)
• ≤U is reflexive, transitive,and connected



Expected Utility

Under conditions of uncertainty, each decision d induces a distribution Pd over  
possible outcomes

◦ Pd(s) is probability of outcome s under decisiond

The expected utility of decision d is defined by

EU (d) = Σ P d(s) U (s)
s∈S

The principle of maximum expected utility (MEU) states that the optimal  
decision under conditions of uncertainty is that with the greatest expected utility.
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Decision Trees
in Machine Learning
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Decision Trees (in Machine Learning)

Assignment of a  drug to a patient:

Blood pressure
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high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



D ecis io n T r e e s i n M a c hi ne L e a r ni ng

Recursive Descent:

Start at the root node.

If the current node is an leaf node:

◦ Return the class assigned to the node.

If the current node is an inner node:

◦ Test the attribute associated with the node.

◦ Follow the branch labeled with the outcome of the test.

◦ Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case to bedecided.
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Example: Assignment of a  drug to a patient

Blood pressure
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high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

D e c i s i o n T r e e s i n M a c h i n e L e a r n i n g



Assignment of a  drug to a patient:

Blood pressure
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high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

D e c i s i o n T r e e s i n M a c h i n e L e a r n i n g



Assignment of a  drug to a patient:

Blood pressure
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high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B

D e c i s i o n T r e e s i n M a c h i n e L e a r n i n g



Learning of Decision Trees

Top- down approach
◦ Build the decision tree from top to bottom  

(from the root to the leaves).

Greedy Selection of a Test At t r ibute
◦ Compute an evaluation measure for all attributes.

◦ Select the attribute with the best evaluation.

Divide and Conquer / Recursive Descent
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◦ Divide the example cases according to the values of the test attribute.

◦ Apply the procedure recursively to the subsets.

◦ Terminate the recursion if – all cases belong to the same class

– no more test attributes are  
available



Indu ct ion of a D ecision Tr ee: E xam ple

Pat ient database
12 example cases
3 descriptive attributes
1 class attribute
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Assignment of drug  
(without patient attributes)  

always drug A or always drug B:  

50% correct (in 6 of 12 cases)

No Sex Age Blood pr. Drug
1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B

10 female 30 normal A
11 female 26 low B
12 male 54 high A



Indu ct ion of a D ecision Tr ee: E xam ple

Sex of the patient
Division w.r.t. male/female.
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Assignment of drug

male: 50% correct (in 3 of 6 cases)
female: 50% correct (in 3 of 6 cases)

total: 50% correct (in 6 of 12 cases)

No Sex Drug
1 male A
6 male A

12 male A
4 male B
8 male B
9 male B
3 female A
5 female A

10 female A
2 female B
7 female B

11 female B



Indu ct ion of a D ecision Tr ee: E xam ple

Age of the patient
Sort according to age.
Find best age split.  
here: ca. 40 years

Assignment of drug

≤ 40: A.
> 40: B.

67% correct
67% correct

(in 4 of
(in 4 of

6 cases)
6 cases)

total:

Rudolf Kruse Bayesian Networks

67% correct (in 8 of 12 cases)

No Age Drug
1 20 A

11 26 B
6 29 A

10 30 A
4 33 B
3 37 A
8 42 B
5 48 A
7 52 B

12 54 A
9 61 B
2 73 B



Indu ct ion of a D ecision Tr ee: E xam ple

Blood pressure of the patient
Division w.r.t. high/normal/low.
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Assignment of drug

high: A 100% correct (in 3 of 3 cases)
normal: 50% correct (in 3 of 6 cases)
low: B 100% correct (in 3 of 3 cases)

total: 75% correct (in 9 of 12 cases)

No Blood pr. Drug
3 high A
5 high A

12 high A
1 normal A
6 normal A

10 normal A
2 normal B
7 normal B
9 normal B
4 low B
8 low B

11 low B



Indu ct ion of a D ecision Tr ee: E xam ple

Cu rren t Decision Tree:

Blood pressure
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high
normal

low

Drug A ? Drug B



Indu ct ion of a D ecision Tr ee: E xam ple

Blood pressure and sex
Only patients
with normal blood  
pressure.
Division w.r.t. male/female.
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Assignment of drug

male:
female:

A
B

67% correct
67% correct

(2 of 3)
(2 of 3)

total: 67% correct (4 of 6)

No Blood pr. Sex Drug
3 high A
5 high A

12 high A
1 normal male A

A  
B

6 normal male
9 normal male
2 normal female B

B  
A

7 normal female
10 normal female

4 low B
8 low B

11 low B



Indu ct ion of a D ecision Tr ee: E xam ple

Blood pressure and age
Only patients
with normal blood  
pressure.
Sort according to age.
Find best age split.  
here: ca. 40 years

Assignment of drug
≤ 40: A.
> 40: B.

100% correct
100% correct

(3 of 3)
(3 of 3)

total:
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100% correct (6 of 6)

No Blood pr. Age Drug
3 high A
5 high A

12 high A
1 normal 20 A
6 normal 29 A

10 normal 30 A
7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B



Result of Decision Tree Induction

Assignment of a  drug to a patient:

Blood pressure
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high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B



Evaluation Measures

Evaluation measure used in the above example:
Rate of correctly classified example cases.

◦ Advantage: simple to compute, easy tounderstand.

◦ Disadvantage: works well only for twoclasses.

If there are more than twoclasses, the rate of misclassified example cases
neglects a  lot of the available information.

◦ Only the majority class—that is, the class occurring most often in (a subset  
of) the example cases—is really considered.

◦ The distribution of the other classes has no influence. However, a good  
choice  here can be important for deeper levels of the decision tree.

Therefore : Several other evaluation measures are studied, e.g.

Information gain and its various normalizations.
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An Information- theoretic Evaluation Measure

Rudolf Kruse Bayesian Networks



Inducing the Decision Tree by Information Gain
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Inducing the Decision Tree by Information Gain
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Inducing the Decision Tree by Information Gain
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Inducing the Decision Tree by Information Gain
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Inducing the Decision Tree by Information Gain
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Decision Trees
in Economics
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Decision Trees (in Economy, with Uncertainty)

probabilities
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Decision Tree with uncertainty involved

$ 1005

Maximal Expected Value

Rudolf Kruse Bayesian Networks



E xp ect ed U t ilit y

Where do utilities come from?
◦ underlying foundations ofutility theory tightly couple utility with action/choice

◦ a utility function can be determined by asking someone about their preferences  
for actions in specific scenarios (or “lotteries” over outcomes)
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Utility functions needn’t be unique
◦ if I multiply U by a positive constant, all decisions have same relative  utility

◦ if I add a constant to U, same thing

◦ U is unique up to positive affine transformation



D ecision P r ob lem s: U ncer t aint y

A decision problem under uncertainty is:
• a set of decisions D

• a set of outcomes or states S

• an outcome function P : D → ∆( S )
∆( S ) is the set of distributions over S (e.g., Pd)

◦ a utility function U over S
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∈ D  such thatA  solution to a decision problem under uncertainty is any d∗ 

EU (d) ≤ EU (d*) for all d ∈D



Influence Diagrams
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Influence Diagrams vs Decision Trees

Outcome space is large
◦ like all of our problems, states spaces can be huge

◦ don’t want to spell out distributions like Pd explicitly

◦ Solution: Extend Bayes Networks with decision nodes and utility nodes

◦ Use Influence Diagrams
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Methods for solving Influence Diagrams

Decision space is large

◦ usually our decisions are not one-shot actions

◦ rather they involve sequential choices (likeplans)

◦ if we treat each plan as a distinct decision, decision space is too large to handle  
directly

Solution: use dynamic programming methods to construct optimal plans  
(actually generalizations of plans, called policies . . . like in gametrees)
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S i m p l e Ex am p l e : Inf l ue nc e D i ag r am s
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S i m p l e Ex am p l e : Inf l ue nc e D i ag r am s
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Influence Diagrams

Influence diagrams provide a way of representing sequential decision problems

◦ basic idea:  represent the variables in the problem as you would in a BN

◦ add decision variables – variables that you “control”

◦ add utility variables – how good different states are
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S i m p l e Ex am p l e : Inf l ue nc e D i ag r am s
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Example: Influence diagram
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Chance Nodes

Chance nodes
◦ random variables, denoted by circles

◦ as in a BN, probabilistic dependence on parents
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Decision Nodes

Decision nodes
• variables decision  maker sets, denoted bysquares

• parents reflect information available at time decision is to be made

In example decision node: the actual values ofChills and Fever will be observed  
before the decision to take test must be made

• agent can make different decisions for each instantiation of parents (i.e.,poli-
cies)
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Utility Nodes

Utility node
◦ specifies utility of a state, denoted by a diamond

◦ utility depends only on state of parents of value node

◦ generally: only one value node in a decision network

Utility depends only on disease and drug
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Inf l ue nc e D i ag r am s : A s s um pt i ons

In Standard Influence Diagrams two assumptions are made:
Decision nodes are totally ordered
- decision variables D1, D2, . . . , Dn

- decisions are made in sequence

No-forgetting property
- any information available when decision Di is made is available when decision

Dj is made (for i <  j )

Thus all parents of Di are parents of Dj

Example: BloodTest is done before Drug Assignment, and at the time of the Drug  
Assignment the decision maker is aware of of the result of the Blood Test.

In Non-Standard Influence Diagrams other assumptions may hold

Example: The solution of a Limited Memory Influence Diagram (LIMID, used in HUGIN) is a strategy consisting  
of one policy for each decision. The policy is a function from the known variables to the states of the decision. It is not  
a function of all past observations as the decision maker is assumed only to know the most recent observation. This is  
different from the traditional influence diagram where the policy would be a function from all past observations and  
decisions as the decision maker is assumed to be non-forgetting. There need not be a total order on thedecisions.
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P olicies

Let Par(Di) be the parents of decision node Di
• Dom(Par(Di)) is the set of assignments to parents

Apolicy δ is a set ofmappings δi, one for each decision node Di
• δi : Dom(Par(Di)) →(Di)

• δi associates a decision with each parent assignment for Di

For example, a policy for BT might be:
δBT (c, f ) = bt

δBT (c, ∼ f ) =∼ bt  
δBT (∼ c, f ) = bt

δBT (∼ c, ∼ f ) =∼ bt
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P olicies
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Comput ing the Best Policy

We can work backwards as follows

First compute optimal policy for Drug (last decision)
◦ for each assignment to parents (C,F,BT,TR) and for each decision value  (D

= md,fd,none), compute the expected value of choosing that value ofD

◦ set policy choice for each value ofparents to be the value of D that has max  
value

◦ eg:  δD(c, f, bt, pos) = md
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Comput ing the Best Policy

Next compute policy for BT given policy δD(C, F, BT, TR ) just determined for  
Drug

◦ since δD(C, F, BT, TR ) is fixed, we can treat Drug as a normal random vari-
able with deterministic probabilities

◦ i.e., for any instantiation of parents, value of Drug is fixed bypolicy δD

◦ this means wecan solve for optimal policy for BT just as before

◦ only uninstantiated variables are random variables (once wefix its parents)
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Exam ple

You want to buy a used car, but there’s a good chance it is a “lemon” (i.e., prone to
breakdown). Before deciding to buy it, you can take it to a mechanic for
inspection. S/he will give you a report on the car, labelling it either “good” or
“bad”. A good report is positively correlated with the car being sound, while a
bad report is positively correlated with the car being a lemon.

The report costs $50 however. So you could risk it, and buy the car without the
report.

Owning a sound car is better than having no car, which is better than owning a
lemon.
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C a r Buyer’s Network
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Evaluate Last Decision: Buy (1)

-350
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Evaluate Last Decision: Buy (2)

I  =∼ i, R = n (note: no inspection cost subtracted):

EU (buy) = P (l| ∼ i, n)U (l, buy) + P (∼ l| ∼ i, n)U (∼ l, buy)
= 0.5 · (−600) + 0.5 · 1000 = 200

EU (∼ buy) = P (l| ∼ i, n)U (l, ∼ buy) + P (∼ l| ∼ i, n)U (∼ l, ∼ buy) − 50
= −300 − 50 = −350
So optimal is: δBuy(∼ i, g) = buy

So optimal policy for Buy is:
◦ δBuy(i, g) = buy; δBuy(i, b) =∼ buy; δBuy(∼ i, g) = buy

Note: we don’t bother computing policy for the other cases since these occur with 
probability 0
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E valu at e F ir st D ecision : In sp ect
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Value of Information

So optimal policy is: don’t inspect, buy the car
◦ EU = 200

◦ Notice that the EU of inspecting the car, then buying it iff you get a good
report, is 237.5 less the cost of the inspection (50). So inspection not worth the
improvement in EU.

◦ But suppose inspection cost $25: then it would be worth it (EU = 237.5−25 =
212.5 > EU (∼ i))

◦ The expected value of information associated with inspection is 37.5 (it im-
proves expected utility by this amount ignoring cost of inspection). Gives
opportunity to change decision (∼ buy if bad).

◦ You should be willing to pay up to $37.5 for the report
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