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Problems with CF-Factors

- Meaning of the CF –Numbers and operators semantically unclear

- Abduction not included
Given uncertain A        B and B. What is the updated knowledge about A?

- Incorrect handling of dependences, see message passing example above

- Is classical probability theory a solution?  How to solve the complexity problems?

Mycin: 500 attributes with more that two values. How to handle 2        probabilities?

Rudolf Kruse                                                                                      Bayes Networks

Motivation

500



Universe of  Discourse

We conduct an experiment that has a set E of possible outcomes, e.g.

◦ Rolling a dice (E = {1, 2, 3, 4, 5, 6})
◦ Arrivals of phone calls (E = N0)
◦ Bread roll weights (E = R+)

An outcome is called an elementary event .

All possible elementary events are called the frame of discernment or 
universe of discourse E.

The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of E.  
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of E.  
(mutual disjoint).
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E vent s

Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or  
purchasing a bread roll heavier than 80 grams)

Any subset A ⊆ E is called an event  which occurs,  if the outcome of  the 
random experiment lies in A.

Since events are sets, we can define for two events A and B :

◦ A ∪ B occurs if A or B occurs; A ∩ B occurs if A and B occurs.
◦ A occurs if A does not occur (i.e., if Ω\A occurs).
◦ A and B are mutually exclusive, iff A ∩ B = ∅.
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Event Algebra

A (finite) family of sets Ɛ   = {A1, . . . , An} is called an event algebra 
on E,  if the following conditions hold:

◦ The cer ta in  event  E lies in Ɛ .

◦ If A ∈Ɛ , then A = E\A ∈ Ɛ  .

◦ If A1 and A2 is in Ɛ, then A1 ∪ A2 ∈ Ɛ    and A1 ∩ A2 ∈Ɛ   

Rudolf Kruse Bayesian Networks

We can think of (E,Ɛ) as a measurement space, in which we operate with the
outcomes of an experiment. In this course the number of outcomes is normally
finite, so we use the power set of E as an appropriate event algebra. 

Remark
In the case of a non-finite number of outcomes the concept of a sigma algebra
ist used, for example the Borel-algebra for real-valued outcomes.  



Probabi l i ty Funct ion

Given an finite event algebra, we would like to assign to every event 
A ∈ Ɛ  its  probability (frequency, subjective belief, …) 

A  probabil ity function P :   Ɛ   → [0, 1] is a mapping that satisfies the 
so-called Kolmogorov Axioms:

◦ ∀A ∈ Ɛ       : 0 ≤ P (A) ≤ 1

◦ P (Ω) = 1

◦ For pairwise disjoint events A,  B in Ɛ the equality

P(A∪B) = P(A) + P(B) holds.

Remark: In the general case of a sigma algebra we have to replace the third
condition (additivity) by the canonically extended concept of sigma-additivity. 
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R a n d o m  V a r i a b l e

Rudolf Kruse Bayesian Networks

For handling Bayes Networks it is more convenient to separate the modelling of the „randomness“ 
from the modelling of the „measurement“.

We model
- the randomness by using a probability Q on a set Ω,
- the measurement space E,  equipped with the event algebra Ɛ,
- the whole random experiment by a random variable.

A random variable  X is a mapping from the probability space Ω to the measurement space E,
X: Ω → E

If Q is a probability on Ω, then it induces a probability P for all A ∈ Ɛ  by

P( A) =  Q({ω ∈ Ω I X(ω) ∈ A}).

We are mainly interested in the elementary probabilities P({e}) for e ∈ E . Often it is not necessary
to give a concrete meaning to the ω‘s, but it is extremely important to use this intuition. 
In the course we use the following short notions (if the context is clear):    

P(x) = P(X = x)= P ({X = x}) = P ({ω ∈ Ω | X(ω) = x}) , x ∈ E                                                      



E x a m p l e R o l l i n g  a  d i c e t w i c e
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Ω =  { (1,1),(1,2),… (6,5),(6,6) }

E = {2,3,4,…,12}

Q(i,j) = 1/36 , fair dice

X1(i,j) = i , first roll

X2(i,j) = j , second roll

X (i,j) = i+j

P(3) = Q({ω ∈ Ω I X(ω)=3}=Q({ (1,2),(2,1)}=2/36

P(1) =0, P(2)=1/36,.. ,P(7)=6/36,…, P(12)=1/36



W h y  (Kolmogorov) Axioms?

If P models an objectively observable probability, these axioms  
are obviously reasonable.

However, why should an agent obey formal axioms when 
modeling  degrees of (subjective) belief?

Objective vs. subjectiveprobabilities

Axioms constrain the set of beliefs an agent can abide.

Ramsey (1926) gave a plausible argument why
subjective beliefs should respect Kolmogorov axioms:

The so called “Dutch Book Argument”
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Uncondit ional Probabil i t ies

P (A) designates the unconditioned or a priori probability  that 
A ⊆ Ω occurs if no other additional information is present.
For example:

P (cavity) = 0.1

A formally different way to state the same would be via  
a binary random variable Cavity:

P (Cavity= true) = 0.1

A priori probabilities are derived from statistical surveys or general rules.

Rudolf Kruse Bayesian Networks



Uncondit ional Probabil i t ies

In general a random variable can assume more than two
values:
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P ( Weather = sunny ) = 0.7
P ( Weather = rainy ) = 0.2
P ( Weather = cloudy) = 0.02
P ( Weather = snowy) = 0.08
P (Headache= true ) = 0.1

P (X ) designates the vector of probabilities for 
the  (ordered) domain of the random variable X :

P (Weather) = (0.7, 0.2, 0.02, 0.08)
P (Headache) = (0.1, 0.9)

Both vectors define the respective probability 
distributions  of the two random variables.



Condit ional Probabil i t ies

New evidence can alter the probability of an event.

Example: The probability for cavity increases if information  about 
a toothache arises.

With additional information present, the a priori knowledge  must 
not be used!

P (A | B )  designates the conditional or a posteriori probability  of A 
given the sole observation (evidence) B .

P (cavity | toothache)  = 0.8

For random variables X and Y   P (X | Y ) represent the conditional 
distribution for each possible value of Y .
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Condit ional Probabil i t ies

P (Weather | Headache) consists of the following
table:
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h = Headache =true^ ¬h = Headache =false^

Weather = sunny P (W= sunny | h) P (W= sunny | ¬h)

Weather = rainy P (W= rainy | h) P (W= rainy | ¬h)

Weather = cloudy P (W = cloudy| h) P (W = cloudy| ¬h)

Weather = snowy P (W = snowy |h) P (W = snowy |¬h)

Note that we are dealing with two distributions 
now!  Therefore each column sums up to unity!



Condit ional Probabil i t ies

A and B are subsets of E

P (A ∧ B )
P (A | B ) =

P (B)

Product Rule: P (A ∧ B ) = P (A | B ) · P (B)

Also: P (A ∧ B ) = P (B | A) · P (A)

A and B  are called independent iff

P (A | B ) = P (A) and P (B | A) = P (B)

Equivalently, iff the following equation holds true:

P (A∧ B ) = P (A) · P (B)

Caution: P (A | B) = 0.8 does not mean, that P (A) = 0.8, given B holds
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Jo in t Probabil i t ies

Let X1 , . . . , X n be random variables over the same frame of discernment Ω
and  event algebra E. Then Ẋ = (X1, . . . , Xn ) is called a random vector with

Ẋ (ω) = (X1(ω), . . . , Xn(ω))

Shorthand notation:

P (X  ̇ = (x1, . . . , xn)) = P (X1 = x1, . . . , X n = xn) = P (x1, . . . , xn)

Definition:
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P (X1 = x1, . . . , X n = xn) = P
. ,

ω ∈ Ω

|

n.

i=1
Xi(ω) =xi

, Σ

= P
. n\

i=1
{Xi = xi}

Σ



Jo in t Probabil i t ies

Example: P (Headache, Weather) is the joint probability distribution of both  
random variables and consists of the following table:
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h = Headache =true^ ¬h = Headache =false^

Weather = sunny P (W= sunny ∧ h) P (W= sunny ∧ ¬h)

Weather = rainy P (W= rainy ∧ h) P (W= rainy ∧ ¬h)

Weather = cloudy P (W = cloudy∧ h) P (W = cloudy∧ ¬h)

Weather = snowy P (W = snowy ∧ h) P (W = snowy ∧ ¬h)

All table cells sum up to unity.



Calculat ing wi th  Jo in t Probabil i t ies

In the finite case all desired probabilities can be computed from a joint probability  
distribution.

toothache ¬toothache

cavity 0.04 0.06

¬cavity 0.01 0.89

Example: P (cavity∨ toothache) = P ( cavity ∧
+ P (¬cavity ∧

toothache
)  
toothache
)

+ P ( cavity ∧ ¬toothache) =
0.11

Marginalizations: P(cavity) = P ( cavity ∧ toothache)
+ P ( cavity ∧ ¬toothache) =

0.10
Conditioning:

P (cavity | toothache) =
P (cavity∧

=
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Problems

Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability  
distribution contains kn entries which is infeasible in practical applications.

Hard to handle.  

Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?

2. Is there a more efficient way of processing this representation?

The answer is no for the general case, however, certain dependencies and inde-
pendencies can be exploited to reduce the number of parameters to a practical
size. This is the case in many real world problems.
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Stochast ic Independence

Two events A and B  are called stochastically independent iff

P (A∧ B ) = P (A) · P (B)
⇔

P (A | B ) = P (A) = P (A |B )

Two random variables X and Y are stochastically independent iff
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∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X =x, Y = y) = P (X = x) · P (Y = y)
⇔

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x | Y = y) = P (X =x)

Shorthand notation: P (X, Y ) = P (X ) · P (Y ).

Note the difference:  P (A) ∈ [0, 1] whereas P (X ) ∈ [0, 1]|dom(X)|.



Condit ional Independence

Let X , Y and Z be three random variables. We call X and Y conditionally
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independent given Z ,  iff the following condition holds:

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :
P (X =x, Y = y |  Z = z) = P (X = x | Z = z) · P (Y = y | Z =z)

Shorthand notation: X  ⊥P Y | Z

Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} be three
disjoint sets of random variables.  We call X and Y conditionally independent  
given Z , iff

P ( X , Y | Z ) = P ( X  | Z ) · P (Y | Z )  ⇔ P ( X  | Y , Z ) = P ( X | Z )

Shorthand notation: X ⊥ P Y | Z



Condit ional Independence

The complete condition for X ⊥ P Y | Z  would read asfollows:

∀a1 ∈ dom(A1) : · · ·∀ak ∈ dom(Ak) :
∀b1∈ dom(B1) : · · ·∀bl∈ dom(Bl) :
∀c1 ∈ dom(C1) : · · ·∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)
= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)

· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

Remarks:

1. If Z  = ∅we get (unconditional) independence.

2. We do not use curly braces ({}) for the sets if the context is clear. Likewise,  
we use X  instead of X to denote sets.
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Example Condit ional  Independence

Geschlech
t  Raucher

gender)  
(smoker)

Verheiratet (married)  
Schwanger (pregnant)

• dom(G) = {mal, fem}
• dom(S) = {sm, sm}
• dom(M ) =
•

{mar, mar}
dom(P ) = {preg, preg}

pGSMP
G = mal G = fem

S = sm S = sm S = sm S = sm

M = mar
P = preg 0 0 0.01 0.05

P = preg 0.04 0.16 0.02 0.12

M = mar
P = preg 0 0 0.01 0.01

P = preg 0.10 0.20 0.07 0.21
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Example Condit ional  Independence 

P (G=fem) = P (G=mal) = 0.5 P (P=preg) = 0.0
8

P (S=sm) = 0.25 P (M=mar) = 0.4

Gender and Smoker are not independent:

P (G=fem | S=sm) = 0.44 ƒ= 0.5 = P (G=fem)

Gender and Marriage are marginally independent 
but  conditionally dependent given Pregnancy:

P (fem, mar | preg)≈ 0.152 ƒ= 0.169 ≈ P (fem | preg) · P (mar | preg)
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Bayes Theorem

Product Rule (for events A and B):

P (A ∩ B ) = P (A | B)P (B) and P (A ∩ B ) = P (B | A)P (A)

Equating the right-hand sides:

P (A | B ) =
P (B | A)P(A)

P (B)

For random variables X  and Y :

∀x∀y : P (Y =y | X =x ) = P (X =x | Y =y)P (Y =y)
P (X =x)

Generalization concerning background knowledge/evidence E :

P (Y | X , E ) =
P (X | Y, E)P (Y | E)

P (X |E)
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Example : Bayes Theorem

P (toothache | cavity) =0.4

P (cavity) =0.1

P(toothache) = 0.05
0.05
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P (cavity | toothache) = 0.4 · 0.1 =0.8

Why not estimate P (cavity | toothache) right from the start?

Causal knowledge like P (toothache | cavity) is more robust than
diagnostic  knowledge P (cavity |toothache).

The causality P (toothache | cavity) is independent of the a priori  
probabilities P (toothache) and P (cavity).

If P (cavity) rose in a caries epidemic, the causality P (toothache | cavity) would
remain constant whereas both P (cavity | toothache) and P (toothache) would
increase according to P (cavity).

A physician, after having estimated P (cavity | toothache), would not know a rule
for updating.



Example : Using absolute Number s

P (toothache | cavity) =0.4 P (cavity) =0.1

P (toothache | ¬cavity) = 1
90 P (cavity | toothache)=

40
40 +10

= 0.8

1000 people

100 cavity 900 ¬cavity

40 toothache 60 ¬toothache 10 toothache 890 ¬toothache

P (c | t )=
P (t | c) · P (c)

P (t )
=

P (t | c) · P (c)
P (t | c) · P (c) + P (  t | ¬c) · P (¬c)
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Remark:  ¬ means not



Example 3:  Relat ive Probabil i t ies

Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

P (toothache| gumdisease)= 0.7
P (gumdisease) = 0.02

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some  
decisions), P (toothache) needs not to beestimated:

P(g | t )
=

P (c | t ) P (t | c)P (c)
P (t )

P (t | c)P (c)

·
P (t )

P (t | g)P (g)

=
P (t | g) P (g)

=
0.4 ·0.1

0.7 ·0.02
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= 28.57



Example 3:   Normalizat ion

If we are interested in the absolute probability of P (c | t ) but do not know P (t ),
we may conduct a complete case analysis (according c) and exploit the fact that
P (c | t ) + P (¬c | t ) =1.

P (c | t ) =
P (t | c)P (c)

P (t )

P (t | ¬c)P (¬c)
P (¬c | t ) =

P (t )

1 = P (c | t) + P (¬c | t ) =
P (t | c)P (c)

+
P (t | ¬c)P (¬c)

P (t ) P (t )
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P (t ) = P (t | c)P (c) + P (t | ¬c)P (¬c)



Example 3:  Normalizat ion

Plugging into the equation for P (c | t ) yields

P (c | t )=
P (t | c) P (c)

P (t| c) P (c) + P (t | ¬c) P (¬c)

For general random variables, the equation read:

P (Y =y | X =x) =
P (X =x | Y =y) P (Y =y)
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∀z ∈dom(Y )
P (X =x | Y =z) P (Y =z)Σ



Example 3:  Mult iple Evidences

The patient complains about a toothache. From this first evidence the dentist  
infers:

P (cavity | toothache) =0.8

The dentist palpates the tooth with a metal probe which catches into a fracture:

P (cavity | fracture) =0.95

Both conclusions might be inferred via Bayes rule. But what does the combined  
evidence yield? Using Bayes rule further, the dentist might want todetermine

P (cavity | toothache∧ fracture) = P (toothache∧ fracture | cavity) · P (cavity)
P (toothache∧ fracture)
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Example 3:  Mult iple Evidences

Problem:
He needs P (toothache∧catch | cavity), i.e. diagnostics knowledge for all combinations  
of symptoms in general. Better is to incorporate evidencesstep-by-step:

P (Y| X , E ) =
P (X| Y, E)P (Y| E)

P (X|E)
Abbreviations

C — Cavity
T —Toothache
F —Fracture

C

T F

Objective:
Computing P (C | T, F ) with just using information about P (  
exploitation of independence relations among the variables.
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· | C) and under

Note that capital letter indicates that C  is a random variable, in the example with values c and  ¬c 



Example 3:  Mult iple Evidences

A priori: P (c)

Evidence
toothache:

P (c | t ) = P(c)
P (t | c)

P (t )

Evidence fracture: P (c | t, f ) = P (c | t )
P (f | c, t)

P (f | t )

Information about conditional independence

P (f | c, t ) = P (f | c)

P (c | t, f ) = P (c)
P (t | c) P (f |c)

P (t ) P (f | t )
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Seems that we still have to cope with symptom interdependencies?!



Example 3:  Mult iple Evidences

Compound equation from last
slide:

P (c| t, f ) = P (c)
P (t | c) P (f | c)

P (t ) P (f | t )

P (t | c) P (f | c)
= P (c)

P (f, t )

P (¬c)
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P (f, t) is a normalizing constant and can be computed  
if P (f | ¬c) and P (t | ¬c) are known

P (f, t ) = P (f ,t | c) P (c) +P (f, t |¬c)

Therefore, using conditional independence, we finally arrive 
at the following solution...



Example 3:  Mult iple Evidences

P (c | f, t ) =
P (c) P (t | c) P (f | c)

P (f | c)
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P (t | c) P (c) + P (f | ¬c) P (t | ¬c) P (¬c)

Note that we only use probabilities P ( ·|c ) together with the a priori  (marginal)
probabilities P (c) and P (¬c).



Example 4 :Monty  Hall Prob lem

Marylin Vos Savant in her riddle column in the New York Times:

Suppose you're on a game show, and you're given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows
what's behind the doors, opens another door, say No. 3, which has a goat. He then says to
you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
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Example 4 :  Monty  Hall Puzzle
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The question in this form is under-determined; the correct answer depends on what additional 
assumptions are made. 

Vos Savant replied, “Yes, you should switch. The goal chosen first has a 1⁄3 chance of winning, 
but the second goal has a 2⁄3 chance of winning. ”

Vos Savant's answer is correct, but only under an additional assumption:  Regardless of whether 
the Porsche or a goat is behind the gate initially chosen by the candidate, the showmaster must 
open a non-chosen gate with a goat and offer the change.

Even with this additional assumption, it is counter-intuitive for many people that the chance of 
winning actually increases to 2⁄3 instead of just 1⁄2. As a result, according to their own 
estimates, vos Savant received ten thousand letters, most of which doubted the correctness of 
their answer.



Example 5: Simpson’s Paradox

Example:
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c = Patient takes medication, e = patient recovers, 

e ¬e Σ Recovery rate
c

¬c
20 20 40
16 24 40

50%
40%

Σ 36 44 80

Men e ¬e Σ Rec.rate Women e ¬e Σ Rec.rate

c 18 12 30 60% c 2 8 10 20%
¬c 7 3 10 70% ¬c 9 21 30 30%

25 15 40 11 29 40

P (e |c) > P (e |¬c)
P (e | c, m ) < P (e | ¬c, m )

P (e | c, w ) < P (e | ¬c, w )

Note: P is an estimated probability based on the relative fequencies of relevant  patients



Focusing vs. Revision

Philosophical topics, studied already by Kant,Gärdenfors

Example  for Focusing/Conditioning

◦ Prior knowledge: a fairdice

◦ New evidence: the result is an oddnumber

◦ A posteriori knowledge via focusing: conditionalprobability

Underlying probability space is not changed

Example  for B e l i e f  C h a n g e / Revision

◦ Prior knowledge: a fair dice

◦ New evidence: weight near the6

◦ Belief change via revision

Underlying probability space is modified
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Excursus: Causal i ty vs. Correlat ion

Another old philosophical topic, studied e.g. by Aristoteles, still underdiscussion

Press acceleration pedal → car is faster (causality)

Stork population high → human birthrate (correlation, but no causality)

Visit doctor often → high risk of dieing (correlation, but no causality)

„Causal“ Explanation of the correlations is possible by adding attributes:

countryside

stork population human birthrate

health status

number of visits risk of dieing
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Probabil ist ic Reasoning is complex

Probabilistic reasoning is difficult and may be problematic:

• Probabilistic methods are not truth functional, 

i.e. P (a ∧ b ) is not determined by P (a) and P (b)

Example: From P (a) = P (b) = 0.5 we can i.g. only conclude P (a∧ b ) ∈ [0, 0.5]

• Central problem in real applications: How does additional information affect the 
current knowledge? I.e., if P (B | A) is known, what can be said about P (B | A ∧ C)?

• High complexity: n propositions → 2n full conjunctives

Hard to specify these probabilities.

• Probabilistic Reasoning in high dimensions is complex with

lots of pitfalls.
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Su m m ar y

Uncertainty is inevitable in complex and dynamic scenarios  
that force agents to cope with ignorance.

Probabilities express the agent’s inability to vote for a  
definitive decision. They use the degree of belief.

If an agent violates the axioms of probability, it may exhibit  
irrational behavior in certain circumstances.

The Bayes rule is used to derive unknown probabilities from  
present knowledge and new evidence.

Multiple evidences can be effectively included into 
computations by exploiting conditional independencies.
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