Decomposition
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- A difficult problem is broken down into small sub-problems, which
can then be solved individually and combined to form an overall
result.

- For example, if you want to write a book, you can write a sketch as
a framework, then approach each component individually and finally
put everything together to form a coherent work.

- Similar to the “divide and conquer” method for algorithms.
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Property | Car Motor | Radio | Doors Seat Makeup
family body cover mirrow
Property | Hatch- 2.8 L | Type 4 Leather, | yes
back 150kW | alpha Type L3
Otto
About 200 variables

Typically 4 to 8, but up to 150 instances per
variable

More than 2290 combinations exist,

but lots of combinations are not possible.
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Real World Example : Planning in car manufacturing

Available information: 10000 technical rules, 200 attributes

“If Motor = m4 and Heating = h1 then Generator € {g1, 03, g5}’
“Engine type e1 can only be combined with transmission t or tg.”
“Transmission tg requires crankshaft c,.”

“Convertibles have the same set of radio options as SUVs.”

Each information corresponds to a constraint in a high dimensional subspace,
possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set yg?”

“Supplier Sg failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”
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Given: Alarge (high-dimensional) 6 representing the domain knowledge.

Desired: A set of smaller (lower-dimensional) {61, . . ., Os}
(maybe overlapping) from which the original 6 could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {01, . . ., s} that
could be inferred from 6— without, however, actually reconstructing it.
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Example 1

Toy World Relation

size
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‘ color
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small
medium
small
medium
medium
large
medium
medium
medium
large

EEEC A EEENERN
> D>DoobPbD>DOOOO

e 10 simple geometric objects, 3 attributes
e One object is chosen at random and examined

¢ Inferences are drawn about the unobserved attributes

Note: In real applications the attributes (variables) could be motor, heating, generator, etc.
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Example 1: The Reasoning Space (Frame of Discernment)

H B [ @ []
/\ /\
L]
O
large
medium medium

The reasoning space consists of a finite set E of states.

The states are described by a set of n attributes A;,72=1,...,n,

)

whose domains {a(l A aﬁlf} can be seen as sets of propositions or events.

The events in a domain are mutually exclusive and exhaustive.
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Example 1:The Relation in the Reasoning Space

Relation Visual Description
color shape Size
H B [ O
L] O small
] O medium A
[] O small /|
L] O medium o
[] AN medium / |
] /\ large ) nedium
L] L] medium small
L] L] medium
L] AN medium
] A large Each cube represents one tuple.

The spatial representation helps to understand the decomposition
mechanism.
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Possibility-Based Formalization of Reasoning Space

Definition: Let E be a (finite) sample space.
A discrete possibility measure R on Eisa function R : 2E > {0, 1} satisfying

1. R(@)=0 and
2. VA1, A2 € E:R(A1UA2)=max{R(A1), R(A>)}.

Similar to Kolmogorov’s axioms of probability theory.

If an event A can occur (if it is possible), then R(A) =1,
otherwise (if A cannot occur/is impossible) then R(A) =0.

R(E) = 1 is not required, because this would exclude the empty relation.

From the axioms it follows R(E1 NE>) < min{R(E1), R(E>)}.

Note: In our course, only the possibility degrees
0 and 1 are used. A general possibility measure
can have value in the unit interval.
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Operations with the Relations (1)

Projection / Marginalization

Let Raop be a relation over two attributes A and B. The projection (or marginaliza-
tion) from schema {A, B} to schema {A} is defined as:

va € dom(A): Rao(A=a) = max {RapB(A =a,B =b)}
be dom(B)

Note: dom(B)=domain (B) =range (B), set of possible values of the variable B.

This principle is easily generalized to sets of attributes.

bg bg
bol  |—Do
by by

a1 a2 az ay

a;p a2 az ay
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Operations with Relations (2)

Cylindrical Extension

Let Rp be a relation over an attribute A. The cylindrical extension
Rap from {A} to {A, B} is defined as:

vVa € dom(A):Ybedom(B): Rap(A=a,B=b) = Ra(A =a)

This principle is easily generalized to sets of attributes.

a1 av az aq

a1 a9 a3 a4
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Operations with Relations (3)

Intersection
Let R(A)B and R(Azl)3 be two relations with attribute schema {A, B}. The intersection

Rap of both is defined in the naturalway:

va€e dom(A) : Ybe dom(B):
Ran(A=zaB=b = minfRYA=zaB=b.R? (A=zaB =b
ABI a ) min{ AB( a ) AB( a )}

This principle is easily generalized to sets of attributes.

b3 b3 b3
b9 ) b — b
by by by
a1 av az aq a] a9 a3z agq a] a9 a3 aq
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Operations with Relations (4)

Conditional Relation

Let Raopg be a relation over the attribute schema {A, B}. The conditional relationof
A given B is defined as follows:

va € dom(A) : b€ dom(B) : Ra(A =a| B=b)=Rag(A =a,B =h)

This principle is easily generalized to sets of attributes.

bl ap as as aq

alp as az agq
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Properties of Relations

(Unconditional) Independence

Let Raog be arelation over the attribute schema {A, B}. Wecall A and B relationally
independent (w. r. t. Rap)if the following condition holds:

va€ dom(A) : Ybe dom(B) : Rag(A =a,B =b)=min{Ra(A =a), Rg(B =b)}

This principle is easily generalized to sets of attributes.

bg bg
bo —bo
b1 bl

al as az ag

alp as az agq
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Properties of Relations

(Unconditional) Independence

bg bg bg

bg ——bg — bz

by by by
a;p a2 as ay a] ao as ag

Intuition: Fixing one (possible) value of A does not b

restrict the (possible) values of B and vice versa. by

Conditioning on any possible value of B always re- by
sults in the same relation Ra. a1 4o a3 ay

Alternative independence expression:

Vo€ dom(B): Rpg(B =b)=1: a1 ay a3 aj

Ra(A=a | B=b) = Ra(A=3a)
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Decomposition

Rudolf Kruse

The original two-dimensional relation can be reconstructed from the two
one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:
Rag(A=a,B=Db) = min{RA(A =a),Rp(B =b)}
Storing R and Rp is sufficient to represent the information of Rap.

Question: The (unconditional) independence is a rather strong restriction. Are
there other types of independence that allow for a decomposition as well?
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Properties of Relations

Conditional Relational Independence

a] ao a3 a4

Clearly, A and C are unconditionally dependent, i. e.
the relation Rac cannot be reconstructed from R
and Rc.
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Properties of Relations

Conditional Relational Independence

a1 av az aq

However, given all possible values of B, all
respective  conditional relations Rac show the
independence of A and C.

Rac (a,c | b) = min{Ra(a | b),Rc (c | b)}

With the definition of a conditional relation, the de-
composition description for Ragc reads:

Ragc(a, b,c) = min{Rag(a, b),Rec(b,c)}
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Decomposition

ap ay az ayq

Again, we reconstruct the initial relation from y ba
the cylindrical extentions of the two relations /1 b
formed by the attributes A, B and B, C. ! |
1
. : . : Co
It is possible since A and C are (relationally) 7co "
conditionally independent given B. g
ap av az aq a] av az aq
L [/ [/ /L ba b
] ]
ibz /| bo
/5 I A
/9 15
C] /]
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Example 2: Projections

Is it possible to reconstruct
6 from the three projections?
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Example2: Reconstruction of éwith égg and Ot
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Example2:Reconstruction of 6 with 6gg and Ot
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Example 2: Reconstruction of 6with o6gg and 6gT
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Example 3: Using other Projections 1

H B [ @ H B [ O
Y / / A /A
u di=
/|O ) |O
mediugm ) mediugm

small small

H B [ O H B [ O
A AN / A
dis dis
o ™ O
large large
medium /medium

small small

This choice of subspaces does not yield a decomposition.
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Example 3: Using other Projections 2

EE OB EE OB
ATATA A A
N 4in
® Y ®
/large large
sm;n”edium ) Sm;n”edium
l‘l 0w EE OB
/| A | A
N N
y /o - /o
large large
sm;TIIIedlum Sm;T;ledlum

This choice of subspaces does not yield a decomposition.
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Example 3: Is Decomposition Always Possible?

H B [ H H B [ B
2 [] []
. ® ®
large large
1 medium medium
small small
H B [ [ H B (] O
P /\
[] []
O % O
large large
/ medium medium
small small

A modified relation (without tuples 1 or 2) may not possess a decomposition.
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Possibility-Based Formalization of Decomposition

Definition: Let U = {A1,..., An} be a set of attributes and r{; a relation over U.
Furthermore, let M = {Mjy, ..., My} C 2V bhe a set of nonempty (but not necessarily

disjoint) subsets of U satistying

J M=U

MeM

rir 1s called decomposable w.r.t. M ift

Va; € dom(Ay) :...Va, € dom(A,) :

7‘{,?( /\ 1—13 — QE) — Hlill {r:u,( A 4/_1? _ az) }
A@ELT MeM fﬁlj_EﬂI

If rg7 1s decomposable w.r.t. M, the set of relations
RM — {.I-.J.Illfll: 28 ‘r:lifm} — {rjlf | M e M}
is called the decomposition of r;.
Equivalent to join decomposability in database theory (natural join).
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Example 4: Reasoning with Relations

Relation Spatial Visualisation
color | shape Size
H B [ O
] O small
] O medium A\
[] O small / ]
L] O medium o
[] AN medium / |
] /\ large ) nedium
L] L] medium small
L] L] medium
L] AN medium
J A large Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.
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Example 4: Reasoning with Relations

Let it be known (e.g. from an observation) that the given object is green.

This observation considerably reduces the space of possible value combination: It
follows that the given object must be

o either a triangle or a square and

o either medium or large.

H B [ O H B [ O
7l A A
di= u
O O
large large
medium medium
small small

Note that (formulated in the language of Data Science), evidence was used for updating of our
a priori knowledge. We can use now the more informative, so called a posteriori knowledge.
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Example 4: Relational Evidence Propagation

Due to the fact that color and size are conditionally independent given the

shape, the reasoning result can be obtained using only the projections to the
subspaces:

H B [ & s m |
_ . E Y
/ﬁ colol S17¢ %///%
extend shape project 1

://% project % extend :@://%j A
. - 4 °C
_

H B [ @ s m |

o O b

O

This reasoning scheme can be formally justified with discrete possibility measures.
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Example 4: Relational Evidence Propagation, Step 1

R(B=0b| A= agp) A:  color
= R( N A=pB=h YN C=p|d= agbs) c]:?* :Ep(
acdom(A) c€dom(C’)
= was (R(A=0.B=b.C=c|A=og))
Y o e (min{FA =, B =BG < 0} A = w4 nlF}
(3)

= max { max {min{R(A=a.B=5b),R(B=050C =0,
acdom(A) cedom(C') RlA =a | A=a.))})

max {min{R(A=a,B=0),R(A=a]| A= ag).

dom(A
a€dom(A) max {R(B=0b,C =c)}}}
€ dom(C) ,

—R(B=b)>R(A=a,B=b)

= max {min{R(A=a,B=0),R(A=a|A=ay}}
acdom(A)
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Example 4: Relational Evidence Propagation, Step 1 (continued)

(1) holds because of the second axiom a discrete possibility measure has to satisty.

(3) holds because of the fact that the relation R 4pc can be decomposed w.r.t. the

sete M = {{A4, BEAE;C}- (A: color, B: shape, C" size)

(2) holds, since in the first place
Blad=g B =060 =¢|d =) = BlA=48 =00 =84 =)
B { RIA =5, B =50 =d), 1t =4,

0, otherwise,
and secondly

R(A=a | A=ag) = R(A=a,A=ay))
B HlA=8), Ti=bg:
- 0, otherwise,
and therefore, since trivially R(A=a) > R(A=a,B=0,C = ¢),

R(A =0, B=b,C=¢c|A=a,.,)
= min{Hla=u,B=HhC =g}, BA=g

A= aobs)}'
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Example 4:Relational Evidence Propagation, Step 2

R(C = ¢ | A=04is)

= R( N A=e Y B=k€se

A= aob&,)

A:
i
&

color
shape
S1Ze

a€dom(A) bedom(B)
1) _
= max migx (A= B=b{=6] 4 =83
aEdom{A){bEdom(B){ ( | | I Ob&)}}
(‘ ) 1 F A A
- max max_ miny 4 = a8 =0 =e),BlA =8 | A= ay
aEdom(A){bEdom(B){ L ' - ). R( | obs) 1}
(3)

= max { max {min{R(A=a,B=05),R(B=5,C =c),
ac€dom(A) bedom(B) R(A=ua|A=ai)}}
4 | 4 obs

max dmin{ BR(B =b,C = ¢).
bEdom(B}{ { ( J )

max {min{R(A=a,B=0b),R(A=a|A=a,}}}

a€dom(A)

—R(B=b|A=a,,)

= figx «<unlivlE =hC =&}, Bl =0 4 =6.0:. 3},
s {min{ R(B = 0.C = ). R(B = | A= agy)}}
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Property | Car Motor | Radio | Doors Seat Makeup
family body cover mirrow
Property | Hatch- 2.8 L | Type 4 Leather, | yes
back 150kW | alpha Type L3
Otto
About 200 variables

Typically 4 to 8, but up to 150 instances per variable

More than 2290 possible combinations available, for
each combination an installation rate is needed.

The installation rate can be interpreted as a
(subjective ) probability.
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Example 5: Reasoning with Probabilities

Prior Probability
Cubes h bability® e.z. 20/1000 1220|330 | 170 | 280 all numbers in
ubes have a ,probability”, e.g. 5o
ORI EE O parts per 1000
_ 20 [ 90 | 10 | 80 400
a1 1 28l 240
20 2% 24| 5 | 3 360
lnuis |
18811 9 [ 72 “{;BU s m |
g | 4 8068 : /\ | 20 1180200
56 | 48 | 10 | 6 (1| 40 [1601| 40
Al TE 1 meiégm O [180]120] 60
1l &1 1|30
Oy |8 |72 ] 15
H B [ H B [
/N | 40 |180| 20 large | 50 |115| 35
L]l 12 | 6§ | 126|102 medium | 82 |133| 99 | 146
O |168]144] 30 | 18 small | 88 | 82 | 36 | 34

The numbers state the probability of the corresponding value combination.
Compared to the example relation, the possible combinations are now frequent.
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Example 5: Posterior Probability

010 | 0 [1000 all numbers in
Posterior Probability HE0OD parts per 1000
0 0 0 [286 572
0 0 0 | 6l 364
0 0 0 | 11 64
0] 0] 0 [257 large s m |
2 -
0 0 0 |242 358 /\ | 29 | 257|286
0 0 0 | 21 []1] 61 242 61
Af0ToTo 129 medium 3 82 91 |11
o] 0] 0|6l 020
O] 0 0 0 | 32
EE R "-*'““*-“9 E RO B
AlT0ToTo0 [5r2] L122 large[ 0 ] 0 ] 0 [358
(11 0| 0] 0 |364 medium| 0 | 0 | 0 |531
Ol 0| 0] 0|64 small| 0 | 0 | 0 |111

The concept is extremly simple: We have the evidence, that the given object is green. We calculate
the conditional probability. Due to a normalization Color = Green has the ,,posterior" probability of 1.

For real applications the calculations are very complex. Decomposition helps to store and to update
the probabilities in real applications.
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Example 5: Probabilistic Decomposition

e As for relational networks, the three-dimensional probability distribution can
be decomposed into projections to subspaces, namely the marginal distribution
on the subspace formed by color and shape and the marginal distribution on
the subspace formed by shape and size.

e The original probability distribution can be reconstructed from the marginal
distributions using the following formulae V7, 7. k& :

P 1(00101“) f 1(311ape) _} J(size)) — P 1(00101") _’ 1(_sha.pe)) P(wgsize) ‘ w(_sha.pe))
(

W : Wj’ s W Wy ; wj : J
~ (shape)  (size)
~ (color)  (shape) Pl J W)
- P(w}i &y ) (shape)
P(w )

J
e '[hese equations express the conditional independence of attributes color and
size given the attribute shape, since they only hold if vz, 7. &

~ (size) | (shape ~ (size) | (color) (shape)
P("""‘z’i: ) ‘ ey )) - P(wk: ) ‘ Wi Ry )
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Example 5:Reasoning with Projections

Due to the fact that color and size are conditionally independent given the shape,
the reasoning result can be obtained using only the projections to the subspaces:

H B [ O s m |
0 |0 | 0O [1000| new _ old 240 |460 |300
color size
220 330 170 |280 | old new 122 1520 |358
e shape

Ql d-* ' old Zcolumn l Qld—*

new new old i

ﬁlﬂ;—f_]_BQJZ[lflﬁELf =ri Al — 2__(:1,, m,m_.
AP0 0l5m Y s K o 20 957 1986 | 2

12 46 1204102 1119 4016040
oo ols6 - || ~ il el
N 168144430 18 i 1804120160
> 0, 0] 0] 64 il | S 2111 O

H B [ B s m |

This reasoning scheme can be formally justified with probability measures.
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Example 5:Probabilistic Evidence Propagation, Step 1

P =8 | 4= tghe) A: color
= | ( \/ A=a =1, \/ (=gl A= aobs) B: .‘S.hﬂ.[_){'.
acdom(A) cedom(C') C: size
S Z Z PlA=6,8=bC=c| A =iig
acdom(A) cedom(C)
PlA = | 4 =,
2 5 ¥ Pl-aqb=iE—d ( P”J _ ‘obs)
aedom(A) cedom(C) (A=a)
(3) Z Z Pl4 =a,B=8PB=%5C=¢) . P(A =wu | A =ag5s)
2B =ub) Plia—=wa)

aedom(A) cedom(C)

- ¥ P(A:a}B:b)-PH:aIA_GOb“) S P(C=c|B=b)

acdom(A) PlA=a) cedom(C)

.

(]
P(A

£ | A=y ob%)

— Y P(A=a,B=1)- A=)

acdom(A)
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Example 5: Probabilistic Evidence Propagation, Step 1 (continued

(1) holds because of Kolmogorov's axioms.

(3) holds because of the fact that the distribution p 4 g can be decomposed w.r.t.
the set M = {{A, B},{B,C}}. (A: color, B: shape, C" size)
(2) holds, since in the first place

P(A=a,B=bC=cA=ay
Bl Ai— gy B B g A =] = — 2 — WO H = )

P(A = agg)
PlA=a,B=bC=c) .
L AT = @i
— P(A = agps) | .
0. otherwise,

and secondly
P(4 =g A =g ) — P(A — il-)r ifa= Aohss
; . e 0, otherwise,

and therefore
Pl =g B =50=«e| 4=,
P(A=a| A =ayy)

= PlA=d,B=00 =¢)- P4 '
==l

Rudolf Kruse Bayesian Networks



Example 5:Probabilistic Evidence Propagation, Step 2

P8 =e | A=) A: color
= P( \/ A=s N B=bU0=¢|dA= aobs) b:  shape
acedom(A) bedom(B) C: size
D > Y PAd=aB=bC=c|A=am)
ac€dom(A) bedom(B)
( ) 5 P(A = a | A= a’obs)
= PlA=a,B=8,0C =¢)-
L 2 Fl=58=50-4 P(A = a)
acdom(A) bedom(B)
(.:) Z Z P =9 B =bPB=b)lU=c . P{A = a | A=agy)
ac€dom(A) bedom(B) P(B =) P(A=a)
P(B =b,€C =¢) R(A=ua | A = ay)
= Z Z P(A=a,B=0)-
bedom(B) P(B=b) a€dom(A) P(A=a)

:P(B:g‘rA:aobs)
P(B:blA:a'obs)

= ¥ PB=bC=o-—Fpz_o

bedom(B)
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Example 5 (continued): Probabilistic Decomposition

Decomposition in Subspaces

,

Subspace (A,B) Subspace(B,C)
Decomposition using Dependencies

A —- B — C

Rudolf Kruse

P (A,B,C) = P(A,B)P(B,C)/P(B)

Markov Network

P(A,B,C) = P(A)P(BIA)P(CIB)

Bayes Network

Bayesian Networks



Ecample 6: Bayesian Network

Bayes Networks are directed acyclic graphs (DAGs) where the nodes represent
random variables. For each node X, the conditional probability of X with respect to its
direct predecessors (the ,father” nodes) is calculated. The common probability of all
nodes is defined as the product of the conditional probabilites.

Given a DAG, we define the probability

@ according to the (in)dependency structure:
@.@ P(X1,...,X6) =P (Xe | Xs):
@ @ P(Xs | X2, X3):

P (Xz | X3)
P (X3 | Xq)

Xe) P (X, | X1)

P(X1)
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Real World Example (continues) Markov Net

Property Families for VW Bora

{15, 36, 60, 66, 106 {15, 60, 66, 94, 106 |{15I 50‘55‘10&147} [{15‘5& 55,105,151,168:[}
(7,15, 60, 66, 106)) 5. 50. 60, 66, 106} (15 60,66, 101,106} |115, 56, 60, 66, 106} (115, 60, 66, 108, 130 (115, 40, 60, 56, 106, 145}
(15, 60 66, 93, 106 (115, 40, 41, B0, 68, 106}

{16, B0, 66, 98, 106} “s———o"s 115, 43.50.08. 108410 115, BU 6o 06,07

[{15 41, 60, 66, 106, 151)

S— [{5 15 50 66, 1053] (13,15, 60, 66, 106)) [m = (10,15,186,28, 77,138, 185, 172}
{15, 25, 60, 66, 106 {15, 60, 65, 106, 170 15,30, B0 65, 106jj (115, 60, 66, ?4 106, 151}
i {15, B0, 561061{ = =111, 15, 60, 66, 96, 106, 110}{{96, 104, 110) [0, 15,16, 26, 61,114,138, 172}

{15, 60, 6B, 106, 133 = w777, £ A115.60.68, 108,113 (10,15, 16, 2661, B4, 114,172}

15,19, 60, 66, 108, 110 tleicl
{15, 60, 66, 52, 106 0 W //— 115,60, 66, 87, 106) L(0. 15,16, 26, 61,84, 106, 114] {72, 84,185
115, B0, 55 88,106,110 7 o4 105, 105 T
7 — (15,60, 66,106, 169} ({54, 106, 136} 4100,

(15, 60, 66, 106, 186
{15, 6O, 6E, 106, 194
(5.06.00.108, 7

(115, 60, 88, ?4,105,105}
(115, 80, 686, 74, 1086, 116}

{15, 95, 60, 66, 106

(115,54, 60, 66, 106, 145}
[115, 32, 54, 60, 66, 1086, 180}
(115,80, 65,106, 152, 180}

s ¥

=i
{15, 60, 66, 83, 106 5T (115. 60, 66, 74, 1086, 152}
A 16,60, 66, 106, 159
{ (015,51 00, 5, 70, 00)e_

' / :{0,15‘21,50.55.105}
{15, 20, 80, 66, 1'35 ””j (115, 80,88, 74,108, 114,117} 15 16,45 60, 66,106} (0,15, 60, 66,106, 134

{15, 60, 66, 106, 162

%—j {15 60, 66, 92, 105ﬂ ({15.15, 23, 60, 66, 106) (115, 15, 60, 66, 66, 106]
((15. 63, 60. 66.106.109} (13 75, 6o, 66, o1, 106) _|{u 15, B0, 66, 76,108} (115, 18, B0, 66,106, 144
]?{{1 5, 16, 60, 66, 90, 106}

{15 16, 60, 66, 78, 1055{15 16 ED EB 106, 183
“%

(115, 18, 60, 66, 108, 160, 163}
16,34, B0, 66, 106, 114, 122 =
5,106 114 {15, 60,566,106, 110,114} ({15, 34,60, 66,106, 114, L\ \y// /_[{15,15,44‘60,66,106.150)
/]% (115, 16,60, 66, 106, 114 1778

1{0, 15, 16, 26, B0, 61, 66, 106, 114 0,15, 16, 60, 56, 106, 114, 139
[115, 60, 66, 73,106,114 ({0.15. 16, 60, 66, 106, 129] //I\\ { )
{115, 18, BO, Eamﬁms) EEERTATRITRITEE:
(115,60, 56,106, 114,175 (15, 15, 60, 66, 108, 123, 7375 : (15,18, 60,66,103,108, 114} ({10, 15, 49, 60, 66, 106, 114}
[{15 PeiEnrEn T 1”)/{{15 50, 66, 106, 114, 1 26} 115,15, 35, 60,66 106] /,U.q 18, EEI 6B, 108, 114 1\21} [“5 60, 66, 103, 106, 114, 15?'1[{15‘60,66,706,143,157}
/(ms 389, 60, 66, 108, 114} ({15, 60, 55, 106, 121, 12ﬁ1[{1 15, 60, 66, 106, 121])
un (115, 80, 66, 108, 143, 174}

|
(t15. 60. 86, 79, 106, 114] (115, 46, 60, 68, 105, 114} ({0, 15, 15, 60, 66, 108, 114.131],/[“5- 16, B0, 66, 106, 120, '21\]} (t15.60, 66,106, 114,115, 167)

/ \\
(15, 47. 60, 66, 108, 1 81]/[{75, B0, 66, 106, 121, 124) jio.15:38:00.80.002:408. 41.4)

I
(115, 22, 60, 66, 102, 106, 114) 115,60 82, 106, 106,113

T
(0,16, 17, 1814 [{15, 60, 66,106, 124,125} (115, 33, 60, 66, 106, 115}

({15, 22, 60, 63, 66, 108, 114}
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Each number corresponds to
an attribute.

The 186 attributes have 2 to
20 different values.

Using the installation rates
we obtain a 186 dimensional
probability space.

This high dimensional
probability space stored by
decomposing it by using 174
low dimensional marginal
probability spaces.

How to calculate conditional
probabilities?



Probabilistic Decomposition

Definition: Let U = {A;,..., Ay} be a set of attributes and prr a probability
distribution over U. Furthermore, let M = { My, ..., M;,} C 2V be a set of nonempty
(but not necessarily disjoint) subsets of U satisfying

U M=U.
MeM
prr is called decomposable or factorizable w.r.t. M iff it can be written as a
product of m nonnegative functions oy : Epp — ]RaL, MeM,ie, it
Vai; € dom(Aq) : ...Va, € dom(A,) :
PU( N A= as) = 1] om ( N = ai)-
A;eU MeM A,eM

If py7 is decomposable w.r.t. M the set of functions

cI)M = {G}Ml, . Qﬁﬂfm} - {@M | M e M}

1s called the decomposition or the factorization of pgs.
The functions in ¢z, are called the factor potentials of py;.
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Summary

It is often possible to exploit local constraints (wherever they may come from —
both structural and expert knowledge-based) in a way that allows for a decomposi-
tion of the large (intractable) distribution P (X1, ..., Xn) into several sub-structures
{C1,...,Cm]} such that:

The collective size of those sub-structures is much smaller than that of the original
distribution P..

The original distribution P is decomposable (with no or at least as few as
possible errors) from these sub-structures.

This decomposition allows for efficient propagation algorithms for integration of
new evidence.

Rudolf Kruse Bayesian Networks
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