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- A  d i f f i c u l t  p r o b l e m  i s  b r o k e n  d o w n  i n t o  s m a l l  s u b - p r o b l e m s ,  w h i c h  
c a n  t h e n  b e  s o l v e d  i n d i v i d u a l l y  a n d  c o m b i n e d  t o  f o r m  a n  o v e r a l l  
r e s u l t .  

- F o r  e x a m p l e ,  i f  y o u  w a n t  t o  w r i t e  a  b o o k ,  y o u  c a n  w r i t e  a  s k e t c h  a s  
a  f r a m e w o r k ,  t h e n  a p p r o a c h  e a c h  c o m p o n e n t  i n d i v i d u a l l y  a n d  f i n a l l y  
p u t  e v e r y t h i n g  t o g e t h e r  t o  f o r m  a  c o h e r e n t  w o r k .

- S i m i l a r  t o  t h e  “ d i v i d e  a n d  c o n q u e r ”  m e t h o d  f o r  a l g o r i t h m s .
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Basic  Idea



Real  World  Example

Property
family

Car
body

Motor Radio Doors Seat
cover

Makeup
mirrow

...

Property Hatch-
back

2.8 L
150kW
Otto

Type
alpha

4 Leather,
Type L3

yes ...

About 200 variables

Typically  4 to 8, but up to 150 instances per
variable

More than 2200 combinations e x i s t, 

but lots of combinations are not possible.
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Real  World  Example : Planning  in car manufactur ing

Available information: 10000 technical rules, 200attributes
“If Motor = m4 and Heating = h1 then Generator ∈ {g1, g3, g5}”

“Engine type e1 can only be combined with transmission t2 or t5.”

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Each information corresponds to a constraint in a high dimensional subspace,  
possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set y6?”  

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered  
an aircondition failure?”
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Handling a Problem by Decomposi t ion

G iven :

Rudolf Kruse Bayesian Networks

A large (high-dimensional) domain knowledge.δ representing the

Desired: A set of smaller (lower-dimensional) {δ1, . . . , δs}  
(maybe overlapping) from which the original δ could be  
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that  
could be inferred from δ — without, however, actually reconstructing it.



E xam p le 1

Toy World Relat ion

color shape size
small
medium
small  
medium  
medium  
large  
medium  
medium  
medium  
large
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• 10 simple geometric objects, 3 attributes
• One object is chosen at random and examined
• Inferences are drawn about the unobserved attributes

Note: In real applications the attributes (variables) could be motor, heating, generator, etc. 



E x a mp l e 1 :  T h e  Reasoning Space (Frame of Discernment)

large  
medium medium
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E



E x a mp l e 1 : T h e  Relat ion in t he  Reasoning Space

Relat ion

color shape size
small  
medium  
small  
medium  
medium  
large  
medium  
medium  
medium  
large

Visual  Descript ion

large  
medium

small
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Each cube represents one tuple.

The spatial representation helps to understand the decomposition
mechanism.



Possibility-Based Formalization of Reasoning Space 

Definition: Let E be a (finite) sample space.
A discrete possibility measure  R on E is a function R : 2E → {0, 1} satisfying

1. R(∅) = 0 and

2. ∀A1, A2 ⊆ E : R(A1 ∪A2)= max{R(A1), R(A2)}.

Similar to Kolmogorov’s axioms of probability theory.

If an event A can occur (if it is possible), then R(A) = 1,  
otherwise (if A cannot occur/is impossible) then R(A) = 0.

R(E) = 1 is not required, because this would exclude the empty relation.  

From the axioms it follows R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.
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Note: In our course, only the possibility degrees 
0 and 1 are used. A general possibility measure 
can have value in the unit interval.  



Opera t ions  with the Relat ions (1)

Project ion / Marginalization
Let RAB be a relation over two attributes A and B .  The projection (or marginaliza-
tion) from schema {A, B } to schema { A } is defined as:

∀a  ∈ dom(A) : RA(A = a) = max {RAB(A = a, B =b)}
b∈ dom(B)

Note: dom(B)=domain (B) =range (B), set of possible values of the variable B.

This principle is easily generalized to sets of attributes.
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Opera t ions wi th Rela t ions   (2)

Cylindrical Extens ion
Let RA  be a relation over an attribute A. The cylindrical extension 

RAB from { A } to {A, B } is defined as:

∀a  ∈ dom(A) : ∀b  ∈ dom(B) : RAB(A = a, B = b) = RA(A = a)  

This principle is easily generalized to sets of attributes.
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Opera t ions wi th Rela t ions  (3)  

Intersection

AB ABLet R(1) and R(2) be two relations with attribute schema {A, B } .  The intersection

RAB of both is defined in the naturalway:

∀a ∈ dom(A) : ∀b ∈ dom(B):
RAB(A = a, B = b) = min{R(1) (A = a, B = b), R(2) (A = a, B =b)}

AB AB

This principle is easily generalized to sets of attributes.
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Opera t ions wi th Rela t ions  (4)  

Condit ional Relat ion
Let RAB be a relation over the attribute schema {A, B } .  The conditional relationof
A given B is defined as follows:

∀a  ∈ dom(A) : ∀b  ∈ dom(B) : RA(A = a | B = b) = RAB(A = a, B =b)  

This principle is easily generalized to sets of attributes.
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Proper t i e s  o f Re la t ions

(Uncondit ional) Independence
Let RAB be a relation over the attribute schema {A, B } . We call A and B relationally  
independent (w. r. t. RAB) if the following condition holds:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a, B = b) = min{RA(A = a), RB(B = b)}

This principle is easily generalized to sets of attributes.
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Proper t i e s  o f Re la t ions

(Uncondit ional) Independence

Intuition: Fixing one (possible) value of A does not  
restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always re-
sults in the same relation RA.

Alternative independence expression:

∀b  ∈ dom(B) : RB(B = b) = 1 :
RA(A = a  | B = b) = RA(A = a)
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D ecom p osit ion

The original two-dimensional relation can be reconstructed from the two 
one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

RAB(A = a, B = b) = min{RA(A = a), RB(B = b)}

Storing RA and RB is sufficient to represent the information of RAB.

Question: The (unconditional) independence is a rather strong restriction. Are  
there other types of independence that allow for a decomposition as well?
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C o n d i t i o n a l  Re l a t i o na l I n d e p e n d e n c e

Clearly, A and C are unconditionally dependent, i. e.
the relation RAC cannot be reconstructed from RA
and RC .
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Propert ies  of Relat ions



C o n d i t i o n a l  Re l a t i o na l I n d e p e n d e n c e

However, given all possible values of B, all
respective conditional relations RAC show the
independence of A and C.

RAC (a,c | b) = min{RA(a | b), RC (c | b)}

With the definition of a conditional relation, the de-
composition description for RABC reads:

RABC (a, b,c) = min{RAB(a, b), RBC (b, c)}

Rudolf Kruse Bayesian Networks

Propert ies  of Relat ions



Decomposi t ion

Again, we reconstruct the initial relation from
the cylindrical extentions of the two relations
formed by the attributes A, B and B, C.

It is possible since A and C are (relationally)
conditionally independent given B .
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E xam p le 2: Projections

Is it possible to reconstruct
δ from the three projections?
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Example2: Reconst ruct ion of δwith δBE and δET
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Example2:Reconst ruct ion of δ with δBE and δET
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Example 2: Reconst ruct ion of δ with δBE and δET
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Example 3: Using o ther  Project ions 1

large  
medium

small

large  
medium

small

large  
medium

small

large  
medium

small

This choice of subspaces does not yield a decomposition.
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Example 3: Using o ther  Project ions 2

large  
medium

small

large  
medium

small

large  
medium

small

large  
medium

small

This choice of subspaces does not yield a decomposition.
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Example 3: Is Decomposi t ion Always Possible?
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A modified relation (without tuples 1 or 2) may not possess a decomposition.



Possibility-Based Formalization of Decomposition
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E x a mp l e 4 :  R e a s o n i n g w i t h R e l a t i o n s

Relat ion

color shape size
small  
medium  
small  
medium  
medium  
large  
medium  
medium  
medium  
large

Spatial Visual isat ion

large  
medium

small

Rudolf Kruse Bayesian Networks

Each cube represents one tuple.

The spatial representation helps to understand the decomposition mechanism.



Example 4:  Reasoning with Relat ions

Let it be known (e.g. from an observation) that the given object is green.

This observation considerably reduces the space of possible value combination: It
follows that the given object must be

◦ either a triangle or a square and
◦ either medium or large.

large  
medium

small

large
medium  

small
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Note that (formulated in the language of Data Science), evidence was used for updating of our 
a priori knowledge. We can use now the more informative,  so called a posteriori knowledge. 



Example 4:  Relat ional  Evidence Propagat ion

Due to the fact that color and size are conditionally independent given the 
shape,  the reasoning result can be obtained using only the projections to the
subspaces:
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This reasoning scheme can be formally justified with discrete possibility measures.



Example 4:  Relat ional  Evidence Propagat ion ,  Step 1
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Example 4:  Relat ional  Evidence Propagat ion ,  Step  1 (cont inued)
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Example 4:Relat ional Evidence Propagat ion ,  Step 2

Rudolf Kruse Bayesian Networks



Real  World  Example (cont inued)  

Property
family

Car
body

Motor Radio Doors Seat
cover

Makeup
mirrow

...

Property Hatch-
back

2.8 L
150kW
Otto

Type
alpha

4 Leather,
Type L3

yes ...

About 200 variables

Typically  4 to 8, but up to 150 instances per variable

More than 2200 possible combinations available, for
each combination an installation rate is needed.

The installation rate can be interpreted as a 
(subjective ) probability.   
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Example 5:  Reasoning with Probabi l i t ies
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Prior Probability

20

Cubes have a „probability“, e.g. 20/1000 



Example 5:  Posterior Probabil i ty

The concept is extremly simple: We have the evidence, that the given object is green. We calculate
the conditional probability.  Due to a normalization Color = Green has the „posterior" probability of 1.

For real applications the calculations are very complex. Decomposition helps to store and to update 
the probabilities in real applications.
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Posterior Probability



Example 5:  Probabil ist ic Decomposit ion
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Example 5:Reasoning wi th Project ions
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Example 5:Probabil ist ic Evidence Propagat ion ,  Step 1
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Example 5:  Probabil is t ic  Evidence Propagat ion, S tep  1 (cont inued)
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Example 5:Probabil ist ic Evidence Propagat ion ,  Step 2
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Example 5 (continued):   Probabil ist ic Decomposi t ion
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Decomposition in Subspaces

P (A,B,C) = P(A,B)P(B,C)/P(B)

Markov Network
A       B        C

Subspace (A,B)         Subspace(B,C)             

Decomposition using Dependencies

A            B               C                                                           P(A,B,C) = P(A)P(BIA)P(CIB)

Bayes Network



Ecample 6:  Bayesian Network

Bayes Networks are directed acyclic graphs (DAGs) where the nodes represent
random variables. For each node X, the conditional probability of X with respect to its
direct predecessors (the „father“ nodes) is calculated. The common probability of all
nodes is defined as the product of the conditional probabilites.

X1

X2 X3

X4 X5

X6

Given a DAG, we define the probability
according to the (in)dependency structure: 
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P (X1, . . . , X6) = P (X6 | X5)·
P (X5 | X2, X3)·  
P (X4 | X2)·
P (X3 | X1)·
P (X2 | X1)·  
P (X1)



Property Famil ies for V W Bora
Each number corresponds to
an attribute. 

The 186 attributes have 2 to
20 different values.

Using the installation rates
we obtain a 186 dimensional
probability space.

This high dimensional 
probability space stored by
decomposing it by using 174
low dimensional marginal
probability spaces.

How to calculate conditional
probabilities? 
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Real  World Example (cont inues)  Markov Net



Probabil ist ic Decomposi t ion
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Summary

It is often possible to exploit local constraints (wherever they may come from —
both structural and expert knowledge-based) in a way that allows for a decomposi-
tion of the large (intractable) distribution P (X1, . . . , Xn) into several sub-structures
{C1, . . . , Cm} such that:

The collective size of those sub-structures is much smaller than that of the original  
distribution P .

The original distribution P is decomposable (with no or at least as few as
possible  errors) from these sub-structures.

This decomposition allows for efficient propagation algorithms for integration of
new evidence.
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