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Example Mammography

Rudolf Kruse Bayesian Networks

Solution        (A)  Probability is 0.09    or (B)  Probability is 0.9    ?



Example Mammography 2
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T h e  Big Objective(s)

In a wide variety of application fields two main problems need to be addressed:

1. How can (exper t ) knowledge of complex domains be efficiently rep-
resented?

2. How can inferences be  carried ou t  wi thin  these representat ions?

3. How can such representat ions  be  (automat ical ly)  ex t rac ted  from 
collected da ta?

4 . How to rev i se th i s rep resen ta t ion in  the l igh t  o f new knowledge?

We will give some answers to these questions during the lecture.
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Example : Planning  in car manufactur ing

Available information
“Engine type e1 can only be combined with transmission t2 or t5.”  

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:
“Can a station wagon with engine e4 be equipped with tire set y6?”  

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”
“Are there any peculiarities within the set of cars that suffered  
an aircondition failure?”

Rudolf Kruse Bayesian Networks



Example : Medical reasoning

Available information:
“Malaria is much less likely than flu.”  

“Flu causes cough and fever.”

“Nausea can indicate malaria as well as flu.”  

“Nausea never indicated pneunomia before.”

Possible questions/inferences
“The patient has fever. How likely is he to have Covid-19?”

“How much more likely does flu become if we can exclude Covid-19?”
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C o mmo n Problems

Both scenarios share some severe problems:
Large D a t a Space
It is intractable to store all value combinations, i. e. all car part 
combinations or  inter-disease dependencies.
(Example: VW Bora has 10200 theoretical value combinations∗)

Sparse D a t a Space
Even if we could handle such a space, it would be extremely sparse, i. e. 
it would  be impossible to find good estimates for all the combinations.
(Example: with 100 diseases and 200 symptoms, there would be about 
1062 dif- ferent scenarios for which we had to estimate the probability.∗)
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∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.



Decomposi t ion of a high dimensional  Probabil i ty Distr ibution

It is often possible to exploit local constraints (e.g. structural and expert
knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P (X1, . . . , Xn) into several sub-structures
{C1, . . . , Cm} such that:

The collective size of those sub-structures is much smaller than that of
the original  distribution P .

The original distribution P is recomposable (with no or at least as few
as possible  errors) from these sub-structures.
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Bayes Networks

A Bayes Network (V, E, P ) consists of a set V = {X1, . . . , Xn }  of random  
variables, a set E of directed edges between the variables and a probability.

Each variable has a finite set of mutual exclusive and collectively exhaustive
states.The variables in combination with the edges are required to form a 
directed, acyclic graph (DAG).

Each variable Y with parent nodes X1, . . . , Xm is assigned  the conditional 
probability distribution  P (Y | X1, . . . , Xm). These (local) probabilities between 
these nodes model their connections. They not necessarily express a causal  
relationship, often it is a stochastic dependency or an association.

The (global) probability is defined by
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with c(v) being the parent nodes of v.



Example 1

For arbitrary random variables X1,…,Xn the so called „chain rule“ holds, 
e.g.
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P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·
P (X5 | X4, . . . , X1)·
P (X4 | X3, X2, X1)·  
P (X3 | X2, X1)·
P (X2 | X1)·  
P (X1)



Example 1

Bayes Networks are directed acyclic graphs (DAGs) where
the nodes represent random variables and the directed
edges model a direct dependence between the connected
nodes. The strength of the dependence is defined by
conditional probabilities.

X1

X2 X3

X4 X5

X6

Given a DAG, we define the probability according to the (in)dependency
structure
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P (X1, . . . , X6) = P (X6 | X5)·
P (X5 | X2, X3)·  
P (X4 | X2)·
P (X3 | X1)·
P (X2 | X1)·  
P (X1)



Const ruc t ing  a D A G

input P (X1, . . . , Xn)
output a DAG G

1: Set the nodes of G to {X1, . . . , Xn}.
2: Choose a total ordering on the set of 

variables  (e.g. X1 ≺ X2 ≺ · · · ≺ Xn)

3: For Xi find the smallest (uniquely determinable) set Si ⊆ {X1, . . . , Xn }  
such  that P (Xi | Si) = P (Xi | X1 . . . , Xi−1).

4:  Connect all nodes in Si with Xi and store P (Xi | Si) as quantization of 
the  dependencies for that node Xi (given its parents).

5:  return G
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For a given probability we can find a suitable DAG



E xam p le 2

Let a1, a2, a3 be three blood groups and b 1, b 2, b3 three indications of a 
blood  group test.

Variables:  
Possible 
values:

A (blood group) 
{a1, a2,a3}

B (indication) 
{b1, b2,b3}
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Result of a data analysis Model, that explains the situation



E xam p le 3

Ex per t Knowledge (cancer clinic)

Metastatic cancer is a possible cause of brain cancer, and an explanation for
elevated levels of calcium in the blood. Both phenomena together can
explain that a patient falls into a coma. Severe headaches are possibly
associated with a brain tumor.

Special Case

A patient has severe headaches.

Question

Will this patient go into a coma?
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E xam p le 3: Choice of universe of discourse

Variable Values
A    metastatic cancer

B    increased serum
calcium

C    brain tumor

D    coma

E  headache

{a1, a2}

{b1, b2}

{c1, c2}

{d1, d2}

{e1, e2}

(Index 1 means: present, 2 means: 
absent)

Universe is {a1, a2} × · · · × {e1, e2}
32 possible values

Analysis of dependencies A

B C

D E
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E xam p le 3: Definition of the probability space
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C h o i c e  o f t h e c o n d i t i o n a l p r o b a b i l i t i e s
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E x a m p l e  3 :       



E x a mp l e 3 :  H U G I N  E x p e r t
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There are many tools for handling BN. Most of them have a graphical user interface.
Free Download of the BN-System Hugin Lite 8.9

https://www.hugin.com/index.php/hugin-lite/

A priori Knowledge about D,  Marginal Probabilities: P(d1) = 0.3200,… 

https://www.hugin.com/index.php/hugin-lite/


E x a mp l e 3
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New Evidence e1 , Belief Update for D via Conditioning :        P(d1 I e1)= 0.3325,… 



C r u x  of t he M a t t e r

Knowledge acquisition: Where do the numbers come from?
→ learning methods

Computational complexities: How to handle real problem with 200 attributes? 
→ exploit independencies

When does an independency of X and Y given Z hold in a 
Bayes network (V, E, P )?

How to determine a decomposition that fits of the graph structure?
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→ study separation in the DAG



Example 4

S D

L

For each Bayes Net with probability P and the DAG 
on the right holds:

P(S, D, L) = P (L| S, D) · P (S) · P (D)

It is easy to prove that S and D are independent:

P (S, D , L ) = P (S, D, L)
P (S,D)

Rudolf Kruse Bayesian Networks

· P (S) · P (D)

P (S, D) = P (S) · P (D)

On the other hand, it is not possible to prove that S and D are conditionally
independent from L



Example 4

A farmer discovers that his finest apple tree is losing its leaves. Now, he wants to know why this 
is happening. He knows that if the tree is dry (caused by a drought). There is no mystery - it is 
very common for trees to lose their leaves during a drought. On the other hand the losing of 
leaves can be an indication of a disease.
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Example 4

P(Sick=yes)= 0.1) 
P(Sick=yes I Looses = Yes) = 0,494 
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E xam p le 5

A B

C

Meal quality

A     quality of ingredients
B     cook’s skill
C     meal quality

Note that A,B,C are variables!
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Intuition:
If C is not known, then A and B should be independent.
If C is known, then A and B should become (conditionally) dependent 
given C.



Example 5 (cont .)

A B

C

D

Meal quality

A  quality of ingredients
B  cook’s skill
C  meal quality
D  restaurant success
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If nothing is known about the restaurant success or meal quality or both, 
the  cook’s skills and quality of the ingredients are unrelated, that is,
independent.
However, if we observe that the restaurant has no success, we can infer 
that the  meal quality might be bad.
If we further learn that the ingredients quality is high, we will conclude that 
the  cook’s skills must be low, thus rendering both variables dependent.

P(A,B,C,D) = P(A)P(B)P(CIA,B)P(DIC)  



Example 6

A B

C

Diagnosis
A body temperature
B cough
C disease
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If C is unknown, knowledge about A is relevant for B and vice versa, 
i.e. A and B are marginally dependent.
However, if C is observed, A and B become conditionally 
independent given C.
A influences  B via C. If C is known it in a way blocks the information 
from  flowing from A to B, thus rendering A and B (conditionally)
independent.



Example 6

A B

C

Analysis of the corresponding Bayes networks
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Decomposition according to the directed acyclic
graph:

P(A, B, C) = P (A | C) · P (B | C) · P (C)

Embedded Independence:

P (A, B | C) = P (A | C) · P (B | C)

Alternative derivation:

P(A, B, C) = P (A | C) · P (B, C)

P (A | B, C) = P (A | C)



Example 7

A B

C

Accidents

A rain
B accident risk
C road conditions
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Analog scenario to case 2
A influences C and C influences B. Thus, A 
influences B.  If C is known, it blocks the path 
between A and B.



Example 7

A B

C
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Decomposition according to graph:

P(A, B, C) = P (B | C) · P (C | A) · P (A)

Embedded Independence:

P(A, B, C) = P (B | C) · P (A, C) P (C) P (A)/P(A) (use Bayes Theorem) 

P(A,B| C) = P(A|C) P(B|C) 



A B P (A, B) = P (A) · P (B)

A B P (A, B) = P (B | A) · P (A)
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Example 8



Example 9   Moni tor ing Intensive Care Pa t ien t s

Original joint distribution: 237 

parameters  Depicted network: 509
parameters
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Graph Theory in necessary to handle such big networks.
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