Separation in Graphs




Simple Graph

Simple Graph
A simple graph (or just: graph) is a tuple G = (V, E) where

V ={A1,...,An}
represents a finite set of vertices (or nodes) and
Ec (VxV)\ {(AA)| A€V}

denotes the set of edges.

It is called simple since there are no self-loops and no multiple edges.
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Edge Types

Let G = (V, E) be a graph. An edge e= (A, B)
Is called

directed if (A,B)EE = (B,A)¢ E

Notation: A — B e

undirected if (A,B)e E = (B, A) €E
Notation: A— B orB — A

(Un)directed Graph

A graph with only (un)directed edges is called
an (un)directed graph.

Adjacency Set e

Let G = (V, E) be a graph. The set of nodes
that Is accessible via a given node A € Vis
called the adjacency set of A:

adj(A) = {B € V| (A, B) € E}
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Paths

Let G = (V,E) be a graph. Aseries pofr
pairwise different nodes

p=Aip ... Aj)
s called a path from Ajto Aj if
Ai = Al A=A
Ai.,, € adj(Aj), 1= k<r

A path with only undirected edges is called an
undirected path

p:Ail_ e Ay

whereas a path with only directed edges is
referred toasadirected path

P:Ail—’"'—>Air

If there is a directed path p
from node A to node B in a
directed graph G we write

I,f_]'
Aw& B

If the path pis undirected
we denote this with

Jr:l'
A%g%B
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Loop and Cycle

Loop
Let G = (V, E) be an undirected graph. A path

p= X1— -~ Xk e

with ( Xk — X1 ) € E is called a loop.

Cycle
Let G=(V, E) be a directed graph. A path

with (Xx — X1) € E is called a cycle.

Directed Acyclic Graph (DAG) e
A directed graph G = (V, E) is called acyclic if for
every path X1 — - - - —» Xk in G the condition

(Xk — X1) € E is satisfied, i. e. it contains no
cycle.
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Parents, Children and Families

LetG =(V,E) bea dirgcted graph. !:or ever.y o e
node A €V we define the following sets:
E:rreenrt:;:(A): {BEV|B —>AE€E} O‘@
ShhilidI:el;\ZrZA): {BeV|A—->BE€EE} e e @
1:nni])I’Icz/(:A) = {A} Uparentsg(A) 0 o @

If the respective graph is clear from the

context, the index G is omitted. o @

parents(F)= {C, D}

children(F)= {J,K}
family(F)= {C, D, F}
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Ancestors, Descendants, Non-Descendants

Let G = (V,E) be a DAG. Forevery node A € V
we define the following sets:

Ancestors:

ancsG(A) {BeEV|3Ip:BL A}
Descendants:

descséA) {BeV|Ip:A~ B}

Non-Descendants:

non-descsg(A) =V \ {A} \ descsg(A)

If the respective graph is clear from the context, the
index G is omitted.

non-descs(F) ={A,B,C,D,E, G, H}
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ancs(F) ={A,B,C,D}
descs(F) ={J,K, L, M}
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Operations on Graphs

Let G=(V, E) be a DAG.

The Minimal Ancestral Subgraph of G
given a set M € V of nodes is the smallest
subgraph that contains M and all ancestors of
all nodes in M .

The Moral Graph of G is the undirected
graph that is obtained by

1. connecting nodes that share a common
child with an arbitrarily directed edge and,

2. convertingall directed edges Into
undirected ones by dropping the arrow
heads.

Moral graph of ancestral
graph induced by the set
{E, F,G}.
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u-Separation

Let G = (V, E) be an undirected graph and X, Y ,Z c V three disjoint
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X fromY — written as
X1gY]|Z,
If every possible path from a node in X to a node in'Y IS blocked.

2. A path is blocked if it contains one (or more) blocking nodes.
3. Anode is a blocking node if it lies in Z.
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u-Separation

e.g. pathA- B- E- G- Hisblockedby E € Z. It can be easily
verified, that every path from X to Y is blocked by Z. Hence we have:

{A,B,C,D} 1L {G,H,J}|{E,F}
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u-Separation

X Z Y

Another way to check for u-separation: Remove the nodes in Z from
the graph (and all the edges adjacent to these nodes). X and Y are
u-separated by Z if the remaining graph is disconnected with X and
Y in two separate subgraphs.
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Motivation: Separation in Directed Graphs

Idea: Separation in Directed Graphs should fit to the concept of Conditional independence

(B)

&) (®

C

If Cisinstantiated with c
then A and B are conditional independent,
i.e. P(A,BIC=c)=P(AIC=c)P(BIC=c)

C separates A and B
Cis a blocking node of the path A-B-C

(walking against the direction of the arrows is allowed)

B)

A quality of ingredients
B cook’s skill
C meal quality
D restaurant success

®)

If Cis instantiated with c
then A and B are conditional dependent

If D is instantiated with d
Then A and B are conditional dependent

Cis no separator of A and B,
Cis no blocking node

D is no separator of A and B,
Cis no blocking node



d-Separation

Separation criterion for directed graphs.
We use the same principles as for u-separation. Two modifications are

necessary: Directed paths may lead also in reverse to the arrows.
The blocking node condition is more sophisticated.

Blocking Node (in a directed path)

A node A is blocking if its edge directions along the path
are oftypeland A € Z, or

are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail —"'—"
serial, head-to-talil "—"'—
diverging, tail-to-tail -—'—- converging, head-to-head

Type 1 Type 2
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Examples for d-Separation X 1LY | Z

X

A C
(—@
B—0

CheckingpathA - C - E —» G

C is serial and not in Z: non-blocking
E is also serial butin Z: blocking
Path is blocked, no other paths between A and G are available

= Al G|E
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Examples for d-Separation X JLY | Z

X

(&) (F—®

B)—=0D, &—

Y

Checking path A - C - E <« D:

C is serial and not in Z: non-blocking
E is converging and in Z: non-blocking
= Path is not blocked

AlLDI|E
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Examples for d-Separation XL Y | Z

X

(&) (F—®
B)—=0D, Oxs O
Y Z

Checking path A - C —- E « D:

C is serial and not in Z: non-blocking

E isconverging and not in Z but one of its descendants (J ) is in
Z: non-blocking

= Path is not blocked

AU DI
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Examples for d-Separation X 1LY | Z

X
(&)
B,

Y = {B, H}

CheckingpathA - C - E - F — H:
C is serial and not in Z: non-blocking
E isserial and in Z: blocking
F is serial and not in Z: non-blocking
= Path is blocked
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Examples for d-Separation X 1LY | Z

X

Y ={B,H}

CheckingpathA - C - E <« D — B:

C is serial and not in Z: non-blocking
E isconverging and in Z: non-blocking
D isserial and in Z: blocking

= Path is blocked

ALllB,H|D,E
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d-Separation: Alternative Way for Checking

X
O G G =)
o= 0

Y ={B, H}

Steps

- Create the minimal ancestral subgraph induced by X uYu Z
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d-Separation: Alternative Way for Checking

X

>

(B

Y ={B, H}

Steps
- Create the minimal ancestral subgraph induced by X uYu Z
- Moralize that subgraph
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d-Separation: Alternative Way for Checking

(>) %

(=)

Y ={B, H}

Steps:
- Create the minimal ancestral subgraph induced by X uYuZ

- Moralize that subgraph
- Check for u-Separation in that undirected graph
AllH,B|D,E
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Summary: d-Separation

Let G =(V,E) a DAG and X, Y,Z € V three nodes.

a) AsetS € V\{X, Y} d-separates X and Y, if S blocks all paths between
X and Y. A path may also route in opposite edge direction.

b) A path sris d-separated by S if at least one pair of consecutive edges
along sris blocked. There are the following blockingconditions:

1. X «—Y—>Z tail-to-tail
XY~/

2 head-to-tall
X—>Y—>~Z

3 XY 7 head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are
blocked if Y € S.

d) Two edges meeting head-to-head in'Y
are blocked if neither Y nor its successors are in S.
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d-Separation and Conditional Independence

Theorem
IfS < V\{X, Y} d-separates X and Y in a Bayesian network (V,E, P),
then X and Y are conditionally independent given S:

POX,Y |S)=P(X|S)-P(Y]|S)

Example
P m = (X2=-X1-X3), m2=(X2-X5-X3)

Paths:
m3 = (X2=Xg4-X1-X3), S={X1}

a1 X2« X1 — Xg tail-to-tail
X1 €S = uris blocked by S

7o X2 — Xi « X3 head-to-head
X5, X6 € S = mois blocked by S

Xz
X4

73 Xg «— X1 — X3 tail-to-taill Xo — Xg«— X1
head-to-head both connections are
blocked = m31S blocked

X
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X2 and X3 are d-separated via {X1}.
X2 and X3 are therefore conditionally independent given X1



Algebraic structure of Cl statements

Conditional independence statements can be characterised qualitatively,
e.g. without specifying the numerical values of probabilities.

Let (€2, &€, P) be a probability space and W, X, Y, Z disjoint subsets of variables. If X
and Y are conditionally independent given Z we write:

X llp¥ | 2

Often, the following (equivalent) notation is used:
Ip(X|Z|Y) or Ip(X,Y | Z)

If the underlying space is known the index P is omitted.
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(Semi-)Graphoid Axioms

Definition: Let V' be a set of (mathematical) objects and (- LL - | -) a three-place
relation of subsets of V. Furthermore, let W, X, Y, and Z be four disjoint subsets
of V. The four statements
symmetry: (X AL | By = (FILX | Z)
decomposition: ( WUX LY |Z) == WLY |2)AXILY | Z)
weak union: WUX1LY|Z2) = (XLY |ZuW)

(XY | sUuW)nW 1LY | 2y = (WUX 1 Y| %)

contraction:

are called the semi-graphoid axioms. A three-place relation (- 1L - | -) that satisfies
the semi-graphoid axioms for all W, X, Y. and Z is called a semi-graphoid.

Note: The probability calculus satisfies the four semi-graphoid axioms,
but not the additional fifth intersection axiom of a graphoid.
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llustration of the (Semi-)Graphoid Axioms

decomposition \;(V Z|Y = W7 Y
. W W
Z = Z
weak union > Y > Y
contraction \;(V Z|lY A W Z|Y
. . W W
Z Z
INntersection > Y N > Y
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Example

DI AC|® A BLC|AD
(D) WM DI @A & BIC|AD
"= CULD|A A CUB|AD
(5, SRR, @il BB A
(A) lomr cuB|A
"ES BUC|A

O
|
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Independence Maps

Let (-LlLs-|-) beathree-place relation representing the set of conditional independence
statements that hold in a given distribution & over U.

A graph G=(U,E) over random variables U is called an independence map (I-map) for the joint
probability space 0, if for all disjoint subsets X,Y,Z of U the property

(X |2 | ¥ie =5 A ¥ | 2,
holds.

An I-map G for 6 captures only conditional independences that are valid in 9.
An I-map G for 6 is called a perfect map, if G captures all valid conditional independences in 6.

An I-map G for is called minimal iff no edge can be removed from G so that the resulting graph is
still an I-map for 6.

These definitions hold for directed as well as undirected graphs.
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Independence Maps: Examples for undirected graphs

Rudolf Kruse

{(4, BI{C.D}),(B,C{A, D})

is not an I-map for
snota ap 1o (B, Al{c, D}),(C, B|{A, D}}

{(A, B[{C, D}),(B.C|{A,D})
is I-map for (B,A{C,D}),(C, Bl{A,D}}

{(4, B{C, D}), (B, C[{4, D}), (B,{A,C}|D),(B, AID), (B, C|D),

is a perfect I-map for (B, A|{C, DY), (C. BI{A, DY), ({A,CY}. B|D), (A, B|D),(C, B|D)}

{(A, B|{C,D}),(A,C|{B, D}),(A,{B,C}|D),(A, B|D),(A,C|D),

is @ minimal I-map for (B, A|{C, D)), (C, A|{B, DY), {B,CY}, A|D), (B, A|D), (C, A|D)}
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Independence Maps for Probability Spaces

If a probability P is given, then we can check for subsets X,Y,Z of random variables on P
whether X and Y are conditionally independent with respect to Z. As the result we obtain a
three-place relation representing a set of conditional independence statements

B | Z
A directed graph G=(U,E) over U is called an independence map (I-map) for P, if for all disjoint
subsets X,Y,Z of U the property

holds. (X|Z|Y)e = XUpY|Z

In an I-map every independence we can observe from G is encoded in P. In most cases the set
of independencies we can see from the connectivity in the graph (via d-separation or u-
separation) is only a part of the independencies the joint distribution P has. The “ultimate”
connection between probability distributions and graphs requires the other implication
direction to hold, namely for every conditional independence in the probability distribution to
correspond to a separation in the graph. This connection has been called faithfulness of the
probability distribution and the graph.

An I-map G for P is called a perfect map, if G captures exactly the (conditional) independences
in P.
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Limitations of Graph Representations

Perfect directed map, no perfect undirected map:

}@
©
Al,B|0
AY,B|C

Perfect undirected

. A=a A=ay
T B=W B=%|B=bl B=b

C=ci| ke a | S “fu

C=cy| % 3fog 304 o

map, no perfect directed map:

9 @ PABCD =i =
T B=b B=l | B=k B=b
C'=cq D=di| Jaz a7 Y7
Bu,D|{A4, C} |o_, D=% Yoo m Yoo Y
P et O = c9 9 5 A 16
All,C|{B, D} D=dy| “/az /a7 /47 /a7
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Limitations of Graph Representations

There are also probability distributions for which
there exists neither a directed nor an undirected perfect map:

. ; A:al 44:0.'.2
(A) ety 0 B=b B=n|B=t B=b
Gl sweh |G e[
P C=cy| o 2o 25 V1o

In such cases either not all dependences or not all independences

can be captured by a graph representation.
In such a situation one usually decides to neglect some of the independence
information, that is, to use only a (minimal) conditional independence graph.

This is suflicient for correct evidence propagation,
the existence of a perfect map is not required.
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