Evidence Propagation in Bayesian Trees




Example 1: Conditioning in a Bayesian Tree

Anchestors

Evidence from above

Instantiated nodes

4

Node of interest

Wz ={L, M}
s(B) = {C. M, N}
Decendants

Evidence from below
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The Formal Problem

Gilven:

Desired:

Notation:

Rudolf Kruse

Beliet network (V, E, P) with tree structure and P(V') >

Set W C V' of instantiated variables where
a priori knowledge W #£ ) is allowed

P(B|W)forall BeV

Wp subset of those variables of W that belong
to the subtree of (V, IV) that has root B

W § - W\W3

s(B) set of direct successors of B

(}p domain of B

b* value that B is instantiated with

Bayesian Networks
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Influence of the Evidence

Rudolf Kruse

= Pb|Wg ,Wj) withBgW

PWg ,W§5 B=b)

Def. Cond. Prob.

Bayes Theorem
PWg5 W% | b)P(b)
PWg W3

d-separation

I (Wé | b)P (U§ | b)P(b)
P (Uré , I"'I’TQF ) Bayes Theorem

P( W3

xPWg |b) x  Pb|W§)

PWg , W) "
B B Evidence from “below” Evidence from “above”

This value depends only on B and W. It is the same for all values b of B. So it can be calculated by

normalization using the evidences. This ,normalization factor” is denoted by Ols,w.
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m— and A-Values

m-values and M\-values

Let B € V be a variable and b € {lp a value of its domain. We define the 7~ and
A-values as follows:

(P(W5 |b) fBgW
Ab) =% 1 if Be WAb =b
0 if Be W AG* 40

m(b) = P(b| W3)
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m— and A-Values

Ces(B)
Alb)=1
7(b) = P(b)

P |W)=agw - Ab)

m(b)

it B¢ W

if B leaf in (V, E)

if B root in (V, F)

The values for A and it are changing during the initialization and propagation phase. It is convenient to store

the values as table in a node processor

T A P
b1 0.25 |0.8| 0.229
0.75 |0.9| 0.771

b2

Rudolf Kruse
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Example 2 Belief Propagation via Message Passing

Global information can be shared locally by every entity.
New knowledge is distributed by message passing.

Example: How many people are we?

fifd

1@ g
1111
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Example 2 Belief Propagation via Message Passing

How many people are we?

- Forward propagation
1 2 3 4
Q@@ 2@ @
£ 0! c-a @ '.
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Example 2 Belief Propagation via Message Passing

How many people are we?

LR Ry
BEEN

A ) /‘\_,_ﬂ//‘

4 3 2 1

-

backward propagation
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Belief Propagation in Trees via Message Passing

Causal
Suppaort

Diagnostic
Support

Rudolf Kruse Bayesian Networks



A-Message

A-message

Let B € V be an attribute and C' € s(B) its direct children with the respective
domains dom(B) = { b1,vxy by, - -« ;bg} and dom(C) = { €1, v Cfyennym}-

’

m

Aeop(bi) = Y Plej|bi)-Neg), i=1,....k
=1

The vector
k

v Def
Aosp = ()\C'—>B(bi))?,_1

is called A-message from C' to B.
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A-Message

Let B € V' an attribute an b € dom(B) a value of its domain.
Then

( iyl 1 T
ppw - Il Acoplb) it B¢Ww

i it BeW Ab=b*
P it BeW Ab+#b*

with pp 7 being a positive constant.
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m-Message

m=1essage

Let B € V be a non-root node in (V, F) and A € V its parent

with domain dom(A) = {ay,...,a s 54 ,Gm}-
g=1L ... M
m(a;) - 11 Aosala;) if A¢gW
. Def Ces(A\{B}
TA-Bl%) = (g ifAecWAa=a*
0 fAe WAa#a*

The vector
TA—-B = |7 A—>B(ﬂ’-j) _

is called m-message from A to B.
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m-Message

Let B € V be a non-root node in (V, &) and A the parent node of B.
Further let b € dom(B) be a value of B's domain.

w(b) = ppw - >, P(b|a)-map(a)
acdom(A)
Let A ¢ W a non-instantiated attribute and P(V') > 0.
Taspla;) = 7w(a;) - ]I Aesaley))
Ces(A\{B}

P(a; | W)
Ap—Alaj)

= TBW "
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Example 3 Belief Updating

Court Hearing

There are three suspects for murder X ={x1, x2, x3}
There is a holder of the weapon Y ={y1, y2, y3}
A fingerprint analysis Z of the weapon is performed Z

Bayes Network

X—Y —Z , P(XYZ)=P(X) x P(YIX) x P(ZlY)

P(X) =(0.8,0.1,0.1) , P(yIx)=0.8, if x=y, P(ylx)=0.1, if xzvy

The ,Who is the murder?“-Belief changes over time in the light of new evidence.

Initial Belief

n(X) =(0.8,0.1,0.1), A(X) =(1,1,1) (no diagnostic support), P (X) = amr(X)A(X) =(0.8,0.1,0.1)
0.8 0.1 0.1

n(Y) =(0.8,0.1,0.1) |0.1 0.8 0.1 =(0.66,0.17,0.17),A(Y)=(1,1,1),P(Y)=(0.66,0.17,0.17)
0.1 0.1 0.8

For calculations it is convenient if the numbers in the vectors are not normalized, so we use again
normalization factors. The final result is given in normalized form.
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Example 3 Belief Updating

Updated belief due to the fingerprint analysis (evidential support)
Z passes diagnostic knowledge to Y in form of anew A of Y:  A(Y)= a (0.8,0.6,0.5)

n(Y) =(0.66,0.17,0.17) does not change,
The new belief is P(Y)= amn(Y)A(Y)=a(08,0.6,0.5)(0.66,0.17,0.17) = (0.738,0,142,0.119)

Y passes the new knowledge to X, where the conditional probabilities have to be used:
0.80.10.17( 0.8

AMX)=pB | 010801 06 =p(0.750.61,0.54)
0.1 0.1 0.8} 0.5

The new belief is P (X) = a(0.75,0.61,0.54) (0.8,0.1,0.1)= (0.840,0.085,0.075)

Note that P is the updated belief, in general it is different from the prior probability P
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Example 3 Belief Updating

Updated belief due to a rather strong alibi for suspect 1 (causal support)
The prior probability for X is revised to n(X) = ( 0.28,0.36,0.36)
A(X) = (0.75,0.61,0.54) is the same as before, P(X)= (0.343,0.349,0.308)

The revised prior is forwarded to Y

0.8 0.1 0.1
n(Y) = (0.28,0.36,0.36)| 0.1 0.8 0.1 F ( 0.30,0.35,0.35), A(Y) = (0.75,0.61,0.54),

0.10.1 0.8

The new belief is P (Y) = a(0.3,0.35,0.35) (0.8,0.6,0.5)= (0.384,0.336,0.280)
Thus suspect 2 becomes the strongest candidate for being the killer: P(X=2) = 0.349.
Note that suspect 1 is still more likely to be the owner of the fingerprint: P(Y=1) = 0.384
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Example 4: Propagation in Belief Trees (1)

Belief Tree Conditional Probabilities

L P(a;)=0.1 P (b1]a1) =0.7
P(by|az)=0.2 P(dy|a1)=0.8
P(c1|b1)=0.4

— TP P (dq | ay)=0.4 P (cq | by) =0.001

Note that in the tables the P represents the , current” belief, it changes.
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Propagation in Belief Trees (2)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.
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Propagation in Belief Trees (3)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.

n(ay) =P(ay) and w(az) =P(ay)
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Propagation in Belief Trees (4)

Belief Tree: Initialization Phase:

Set all A-messages and
A-values to 1.
m(a1) =P(a1) and z(az) = P(az).

1 A sends 7-messagesto B and D.
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Propagation in Belief Trees (5)

Belief Tree: Initialization Phase:

Set all A-messages and

A-values to 1.

m(ay) =P (a1) and n(az) =P(ay).
A sends 7-messagesto B and D.

0441|044

0.56 |1 |0.56 .

> > B and D update their
m-values.
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Propagation in Belief Trees (6)

Belief Tree: Initialization Phase:

Set all A-messages and

A-values to 1.

m(ay) =P(a1) and n(az) =P(ay).
A sends 7-messagesto B and D.

0.44 | 1044 B and D update their 7-values.
0561|056

B sends 7z-message to C.
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Propagation in Belief Trees (7)

Belief Tree: Initialization Phase:
LAEAN Set all A-messages and
a1 . .
a, |09 109 A-values to 1.

n(a1) =P(a1) and =(az) = P(az).
A sends 7-messagesto B and D.
d; [0.44| 1044 B and D update their 7-values.
% 061110 B sends z-message to C.

b1 b,
(0.25, 0.75)/

by [0.25] 1025 C updates it z-value.

c1 | 0.10075| 1 | 0.10075
C2 | 0.89925| 1 |0.89925
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Propagation in Belief Trees (8)

Belief Tree: Initialization Phase:
LA Set all A-messages and
a1 . .
a, |09 109 A-values to 1.

m(a1) =P(a1) and z(az) = P(az).
A sends 7-messagesto B and D.
d; [0.44| 1044 B and D update their 7-values.
%0611 10 B sends z-message to C.

C updates it 7-value.

b1 b,
(0.25, 0.75)/

Initialization finished.

c; | 0.10075| 1 |0.10075
C2 | 0.89925| 1 | 0.89925
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Example 5: Larger Tree (1)

PBIA) [a1 | &
by 0.2 0.3
b, 0.8

Rudolf Kruse

P(A) | @
a 0.4
ar 0.6

P(F[C)
f1 0306
f 0.7 04

P(H[F) f2
h1 0.65 0.2
hy 035058

Bayesian Networks

P(CJA) [a1 | &
G |01]025
¢, 09075

P(G|C)

C1

C2

0.25

0.1

0.75

0.9

PITF)

i1

12




Larger Tree (2): After Initialization

D P
dq 10.1285
dy 108715

hi | 0.4444 | 1 | 0.4444 i [0.3643 | 1 |0.3643
h, [0.5556 | 1 | 0.5556 1 {0.6357| 1 |0.6357
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Larger Tree (3):

Rudolf Kruse

Set Evidence e1, 01,1

—| T

Bayesian Networks

—| O

i1

0.3643

12

0.6357




Larger Tree (4): Propagate Evidence

~| O

f1 f
(0.65,0.2)

hi 11 i [0.3643 | 1 |0.3643
h 0]0 1 {0.6357| 1 |0.6357
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Larger Tree (5):

ai

0.4

1(04

az

0.6

1|06

Rudolf Kruse

f1
(0.65,0.2)

Bayesian Networks

Propagate Evidence, cont.

~| O

i1

0.3643

12

0.6357




Larger Tree (6):

Al x P
a, | 0.4 0.4
a, | 06 0.6

by [ 0.26 | 0.15 | 0.1048
b, | 0.74 | 0.45 | 0.8952

al ap
(0.39,0.36)

by by
(0.0390, 0.3339/

Hlz|1]|P
hy 111
h; 00

Rudolf Kruse

/ C1 C2
(0.335,0.47)

f1

Propagate Evidence, cont.

€1 10.19|0.25

0.3696

c,|081| 0.1

0.6304

fa

WBSZQ, 0.0914)

[EEY
=

i1

0.3643

12

0.6357
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Larger Tree (7):

Propagate Evidence, cont.

a; | 0.40.39|0.4194
ap | 0.6 | 0.36 | 0.5806

by [ 0.26 | 0.15 | 0.1048

c1 | 0.19 | 0.0838

0.2948

b, | 0.74 | 0.45 | 0.8952

cy | 0.81 | 0.047

0.7052

al ap
(0.39,0.36)

b1 by
(0.0390, 0.3339/

/ C1 (o)
(0.335,0.47)

f1 fa

\(0.3529, 0.0914)

0.2360| 1 | 0.6343 e 0|0

Rudolf Kruse

NN

~| O

H =z P ] T A P
hy 1)1 i; |0.1339| 1 |0.3014
h 0]0 1 10.3104 | 1 |0.6986
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Larger Tree (8):

by | 0.26

0.15 | 0.1048

b, | 0.74

0.45 | 0.8952

Rudolf Kruse

Propagate Evidence, cont.

ai

0.4

0.39]0.4194

az

0.6

0.36 | 0.5806

ap YNNG
(0.0507,0.0562)

C1 C2
(0.0475, 0.0819/

A P

¢ | 0.19

0.0838

0.2948

cy | 0.81

0.047

0.7052

[EEY
=

i1

0.3014

12

0.6986
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Larger Tree (9):

by | 0.26

0.15 | 0.1048

b, | 0.74

0.45 | 0.8952

Rudolf Kruse

Propagate Evidence, cont.

ai

0.4

0.0198 | 0.3945

az

0.6

0.0202 | 0.6055

ap YNNG
(0.0507,0.0562)

C1 C2
(0.0475, 0.0819/

A P

¢ | 0.19

0.0838

0.2948

cy | 0.81

0.047

0.7052

[EEY
=

i1

0.3014

Hiz]|Z
hy 1
h; 0|0

12

0.6986
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Larger Tree (10):

Propagate Evidence, cont.

ai ay
(0.0203,0.0337

0.6343

€ 0|0

Rudolf Kruse

ai

0.4

0.0198 | 0.3945

az

0.6

0.0202 | 0.6055

al ap
\S0.1560, 0.2160)

H|x P
hy 111
h; 0|0

Bayesian Networks

f1

0.2948

0.7052

fa

\(0.0409, 0.0131)

NN

| O

i1

0.3014

12

0.6986




Larger Tree (11):

0.6343
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ai

Propagate Evidence, cont.

az

(0.0203, 0.0339/

ap | 0.4 |0.0198 | 0.3945
ap | 0.6 | 0.0202 | 0.6055

al ay
\!0.1560, 0.2160)

0.2910

0.7090

€2

fq f2
\(0.0409, 0.0131)

NN

| O

Hlz AP [ 7 [A] P
h1 11 iy | 0.0062 | 1 |0.3108
h; 0|0 1 | 0.0138 | 1 | 0.6892

Bayesian Networks




Larger Tree (12):

b; [0.0142 | 0.15

b, | 0.0398 | 0.45

by b

2
(0.0021, 0.0179/

Rudolf Kruse

Propagate Evidence, cont.

ai

0.4 |1 0.0198 | 0.3945

az

0.6 [ 0.0202 | 0.6055

H AP
hy 111
h; 00

Bayesian Networks

C1

0.0696 | 0.0838

0.2910

C2

0.3024 | 0.047

0.7090

NN

~| O

i1

1(0.3108

12

1 (0.6892




Larger Tree (13):

Propagate Evidence, cont.

ap | 0.4 |0.0198 | 0.3945

ap | 0.6 | 0.0202 | 0.6055

0.0696 | 0.0838

0.2910

0.3024 | 0.047

b; [0.0142 | 0.15

0.7090

b, | 0.0398 | 0.45

by by
(0.0021, 0.017?/

Rudolf Kruse

NN

~| O

Hlz AP [ 7 [A] P
h1 11 iy | 0.0062 | 1 |0.3108
ha 0[]0 i, [0.0138 | 1 [0.6892

Bayesian Networks




Larger Tree (14):

Propagate Evidence, cont.

ai

0.4

0.0198

0.3945

az

0.6

0.0202

0.6055

0.6341

Rudolf Kruse

€2

H AP
hy 111
h; 00

Bayesian Networks

0.2910

0.7090

fa

\(0.0152, 0.0049)

[EEY
=

| T P
i7 | 0.0062 0.3108
i [0.0138 0.6892




Larger Tree (15): Finished

ap | 0.4 |0.0198 | 0.3945
ap | 0.6 | 0.0202 | 0.6055

P
b1 0.2910
b, 0.7090
f1 fa
D T ‘?.0152, 0.0049)
dq | 0.0073 1|11
d, [0.0127 | 1 | 0.6341 e, 0|0 gz 0|0

H =z P I T A P
hy 1)1 i; | 0.0062| 1 |0.3106
h 0|0 1 {0.0138| 1 [ 0.6894
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Complexity of Belief Propagation in Trees

Properties of the updating scheme:
o efficient in storage and time
o Me-ary tree with n states per node:
o every node stores N2 +mn +2n real numbers and performes 2n2 +mn +2n

multiplications per update
o The time complexity to obtain the posterior probability of all the variables in

the tree is proportional to the diameter of the network (the number of arcs
in the trajectory from the root to the most distant leaf).
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Reasoning in a singly connected networks

The message passing mechanism can be directly extended to polytrees, as these
are also singly connected networks. In this case, a node can have multiple
parents, sothe A messages should be sent from a node to all its parents.

Example 6

answering probabilistic queries 06 | 04

PY=y|E=¢) ?
evidence 03

i%.d" | 0.05

; -0 g0 . 0 .1
PITJb Byt i%d4° 1 09 | 0.08 | 0.02 sO | s
P(L =3 ‘ o Sl) = (p( c’-,:'gl)q ) i%d' o5 |03 |02 m i% 1095 | 0.0

it 102 |08
Jv 1°1n

P = 31) - Zd,f.g.z P(d.i,g,s,1)
an inference problem

0.99 | 0.01
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Reasoning in a singly connected networks

causal reasoning (top-down)
more difficult more intelligent

e marginal prior

B of getting a good letter

P(ll) ﬁ -50 ..-t]l}d-ﬂ
i 41
;'“;.:IU

. . i%d'
e marginal posterior
- & better SAT score_
B given low intelligence P(I* | ") ~ .389 g (01 |09 4
B ..andaneasyexam P(I! 4% d°) ~ .52 ii S
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Reasoning in a singly connected networks

evidential reasoning (bottom-up)

more intelligent
Y

more difficult
3

0 .1

e (marginal) prior d’| d il

0.7 1] 03
Intelligence

B of a high intelligence P(i') ~ .30

A B C
g | g | g
. " i"d%lo03 |04 |03
e (marginal) posterior ,d" | 005 [025 | 07
0 70
. = 0\ i’%d" 109 |0.08]0.02
B oiven a bad letter PG |I7)~ .14 i%d' o5 |03 | o2
better -1
1§30 3N 3 i' 102 |08
B . andabadgrade P(:" | I”,g°) ~ .08 TR s
gtlo1 |09
g*| 04 |06
g% 0099 | 0.01
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Reasoning in a singly connected

Explaining
more difficult more intelligent
3 —
& re
dﬂ crﬂ .iu .t'l
- P(-il) - 06 | 04
8
A
| 70° g |2
] 1 .U ~
: P(s '! ) 14 i"d" 03 |04
B .. andabaderade P(it | 1°,¢%) ~ .08 i%d" [ 005|025
- S - i%d° [ 0o | o008
B 3 difficult exam explains away the grade i%d' o5 |03 e
= i' lo2 |08
1 0 .3 1) ~ ¥ better SAT score
Pl | g°,a) e .11 T
g2l 04 |06
g% | 099 | 0.01

Problem: How to do the propagation in a general Bayesian Network,
i.e. in a directed acyclic graph?

Rudolf Kruse Bayesian Networks
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