## Clique Tree Representation

## Problem: Loops



The propagation algorithm as presented can only deal with *trees*.

Can be extended to *polytrees* (i. e. singly connected graphs with multiple parents per node).

However, it cannot handle networks that contain loops!

Transform the acyclic directed graph into a secondary structure with tree structure.

Find a decomposition of the underlying joint distribution.



## Example: Join-Tree Construction



Given directed graph.

Rudolf Kruse

Bayesian Networks

## Example Join-Tree Construction

The result is a decomposition, represented in form of a join-tree

#### **Transformation Algorithm**

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP
- Form a join-tree



#### In more detail

- Generation of an undirected graph mimicking (some of) the conditional independence statements of the cyclic directed graph.
- Identification of maximal cliques of the undirected graph
- Creation of a clique tree such that the running intersection property (RIP) is satisfied.
- Factorization with Potential Fuctions

#### Justification

Probability distribution: Decomposition using the clique tree

Tree: Unique path of evidence propagation

RIP: Update of an attribute reaches all cliques which contain it

Potential functions: Efficient algorithms

## Complete Graphs

#### **Complete Graph**

An undirected Graph G = (V, E) is called *complete*, if every pair of (distinct) nodes is connected by an edge.

#### **Induced Subgraph**

Let G = (V, E) be an undirected graph and  $W \subseteq V$  a selection of nodes. Then,  $G_W = (W, E_W)$  is called the *subgraph of G induced by W* with  $E_W = \{(u, v) \in E \mid u, v \in W\}.$ 



Incomplete graph



Subgraph (W,  $E_W$ ) with  $W = \{A, B, C, E\}$ 



Complete (sub)graph

#### **Perfect Ordering**

Let G = (V, E) be an undirected graph with *n* nodes and  $\alpha = (v_1, \ldots, v_n)$  a total ordering on *V*. Then  $\alpha$  is called *perfect*, if the sets

$$adj(v_i) \cap \{v_1, ..., v_{i-1}\}$$
  $i = 1, ..., n$ 

are all complete.  $adj(v_i) = \{w \mid (v_i, w) \in E\}$  is the set of adjacent nodes of  $v_i$ .



### Complete Set, Clique

Let G = (V, E) be an undirected graph. A set  $W \subseteq V$  is called *complete* iff it induces a complete subgraph. It is further called a *clique*, iff W is maximal, i. e. it is not possible to add a node to W without violating the completeness condition.

- *a*) *W* is complete  $\Leftrightarrow$  *W* induces a complete subgraph
- b) W is a clique  $\Leftrightarrow$  W is complete and maximal



## Running Intersection property

#### **Running Intersection Property**

Let G = (V, E) be an undirected graph with p cliques. An ordering of these cliques has the *running intersection property (RIP)*, if for every j > 1 there exists an i < j such that:

$$C_j \cap \left(C_1 \cup \cdots \cup C_{j-1}\right) \subseteq C_i$$



**Theorem** If a node ordering  $\alpha$  of an undirected graph G = (V, E) is perfect and the cliques of G are ordered according to the highest rank (w. r. t.  $\alpha$ ) of the containing nodes, then this clique ordering has RIP.



How to get a perfect ordering?

#### Triangulated Graph

An undirected graph is called *triangulated* if every simple loop (i. e. path with identical start and end node but with any other node occurring at most once) of length greater 3 has a chord.



#### Maximum Cardinality Search

Let G = (V, E) be an undirected graph. An ordering according *maximum* cardinality search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers are assigned the node that is connected to most of the nodes already numbered gets assigned number n + 1.



**Theorem** If an undirected graph is triangulated, then the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement.

How to find a "good" triangulation?

The corresponding optimization problem ("best" triangulation, minimal number of additional edges) is NP-hard. However, there are heuristics for suboptimal but "good" solutions.

#### Moral Graph

Let G = (V, E) be a directed acyclic graph. If  $u, w \in W$  are parents of  $v \in V$ , then connect u and w with an (arbitrarily oriented) edge. After the removal of all edge directions the resulting graph  $G_m = (V, E')$  is called the *moral graph* of G.



## Example: Join-Tree Construction (1)



Given directed graph.

## Join-Tree Construction (2)



• Moral graph

## Join-Tree Construction (3)



- Moral graph
- Triangulated graph

## Join-Tree Construction (4)



- Moral graph
- Triangulated graph
- MCS yields perfect ordering

## Join-Tree Construction (5)



- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP

## Join-Tree Construction (6)



- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP
- Form a join-tree

Two cliques can be connected if they have a non-empty intersection. The generation of the tree follows the RIP. In case of a tie, connect cliques with the largest intersection. (e. g. DBE-FED instead of DBE-CFD) Break remaining ties arbitrarily.

#### Qualitative knowledge

Metastatic cancer is a possible cause of brain tumor, and is also an ex-planation for increased total serum calcium. In turn, either of these could explain a patient falling into a coma. Severe headache is also possibly associated with a brain tumor.

#### Special case

The patient suffers from heavy headache.

#### Query

Will the patient fall into coma?

| Attribute |                               | Possible Values         |                                 |
|-----------|-------------------------------|-------------------------|---------------------------------|
| A         | metastatic cancer             | $dom(A) = \{a_1, a_2\}$ | $\cdot_1$ = existing            |
| В         | increased total serum calcium | $dom(B) = \{b_1, b_2\}$ | $\cdot_2 = \text{not existing}$ |
| С         | brain tumor                   | $dom(C) = \{c_1, c_2\}$ |                                 |
| D         | coma                          | $dom(D) = \{d_1, d_2\}$ |                                 |
| E         | severe headache               | $dom(E) = \{e_1, e_2\}$ |                                 |

Exhaustive state space:

 $\Omega = \operatorname{dom}(A) \times \operatorname{dom}(B) \times \operatorname{dom}(C) \times \operatorname{dom}(D) \times \operatorname{dom}(E)$ 

Marginal and conditional probabilities are of interest for the user!

| $P(e_1 \mid c_1) \\ P(e_1 \mid c_2)$                                                                                        | = 0.8<br>= 0.6                    | $\left. \right\}$ headaches common, but more common if tumor present |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| $\begin{array}{l} P(d_1 \mid b_1, c_1) \\ P(d_1 \mid b_1, c_2) \\ P(d_1 \mid b_2, c_1) \\ P(d_1 \mid b_2, c_2) \end{array}$ | = 0.8<br>= 0.8<br>= 0.8<br>= 0.05 | <pre>coma rare but common, if either cause is present</pre>          |
| $\begin{array}{c} P(b_1 \mid a_1) \\ P(b_1 \mid a_2) \end{array}$                                                           | = 0.8<br>= 0.2                    | <pre>but common consequence of metastases</pre>                      |
| $\begin{array}{c c} P(c_1 \mid a_1) \\ P(c_1 \mid a_2) \end{array}$                                                         | = 0.2<br>= 0.05                   | } brain tumor rare, and uncommon consequence of metastases           |
| $P(a_1)$                                                                                                                    | = 0.2                             | } incidence of metastatic cancer in relevant clinic                  |

Example (1)



Dependencies

Moralization/Triangulation

MCS, hyper graph

Example (2)

# Quantitative knowledge:

| (a, b, c)       | P(a, b, c) | (b, c, d)                          | P(b, c, d) | ( <i>c</i> , <i>e</i> ) | P(c, e) |
|-----------------|------------|------------------------------------|------------|-------------------------|---------|
| $a_1, b_1, c_1$ | 0.032      | $b_1, c_1, d_1$                    | 0.032      | <i>c</i> 1, <i>e</i> 1  | 0.064   |
| a2, b1, c1      | 0.008      | $b_2, c_1, d_1$                    | 0.032      | <i>c</i> 2, <i>e</i> 1  | 0.552   |
|                 | -          |                                    |            | <i>c</i> 1, <i>e</i> 2  | 0.016   |
| a2, b2, c2      | 0.608      | <i>b</i> 2, <i>c</i> 2, <i>d</i> 2 | 0.608      | <i>c</i> 2, <i>e</i> 2  | 0.368   |

Decomposition:

$$P(A, B, C, D, E) = P(A)P(B | A)P(C | A)P(D | BC)P(E | C)$$
  
= 
$$\frac{P(A, B, C)P(B, C, D)P(C, E)}{P(BC)P(C)}$$

## Example (3)



Marginal distributions in the HUGIN tool.

## Example (4)



Conditional marginal distributions with evidence  $E = e_1$ 

Let  $V = \{X_j\}$  be a set of random variables  $X_j : \Omega \to \operatorname{dom}(X_j)$  and P the joint distribution over V. Further, let

 $\{W_i \mid W_i \subseteq V, 1 \le i \le p\}$ 

a family of subsets of V with associated functions

$$\psi_i: \underset{X_j \in W_i}{\mathsf{X}} \operatorname{dom}(X_j) \to \mathbb{R}$$

It is said that P(V) factorizes according  $(\{W_1, \ldots, W_p\}, \{\psi_1, \ldots, \psi_p\})$  if P(V) can be written as:

$$P(v) = k \cdot \prod_{i=1}^{p} \psi_i(w_i)$$

where  $k \in \mathbb{R}$ ,  $w_i$  is a realization of  $W_i$  that meets the values of v.

Rudolf Kruse

Example 1



$$V = \{A, B, C\}, W_1 = \{A, B\}, W_2 = \{B, C\}$$
  
dom(A) = {a<sub>1</sub>, a<sub>2</sub>}  
dom(B) = {b<sub>1</sub>, b<sub>2</sub>}  
dom(C) = {c<sub>1</sub>, c<sub>2</sub>}  
$$P(a, b, c) = \frac{1}{8}$$

$$\psi_1 : \{a_1, a_2\} \times \{b_1, b_2\} \rightarrow \mathrm{IR}$$
  

$$\psi_2 : \{b_1, b_2\} \times \{c_1, c_2\} \rightarrow \mathrm{IR}$$
  

$$\psi_1(a, b) = -\frac{1}{2}$$
  

$$\psi_2(b, c) = \frac{1}{2}^4$$

 $(\{W_1, W_2\}, \{\psi_1, \psi_2\})$  is a representation of *P* 

Rudolf Kruse

Let (V, E, P) be a belief network and  $\{C_1, \ldots, C_p\}$  the cliques of the join tree. For every node  $v \in V$  choose a clique *C* such that *v* and all of its parents are contained in *C*, i.e.  $\{v\} \cup c(v) \subseteq C$ . The chosen clique is designated as f(v).

To arrive at a factorization ({ $C_1, \ldots, C_p$ }, { $\psi_1, \ldots, \psi_p$ }) of *P*, we define

$$\psi_i(C_i) = \prod_{v:f(v)=C_i} P(v \mid c(v))$$

In the Markov random field literature the clique functions are generally referred to as potential functions.

Rudolf Kruse

**Bayesian Networks** 

#### Separator Sets and Residual Sets

Let  $\{C_1, \ldots, C_p\}$  be a set of cliques w.r.t. V. The sets

$$S_i = C_i \cap (C_1 \cup \cdots \cup C_{i-1}), \quad i = 2, \dots, p, \qquad S_1 = \emptyset$$

are called separator sets with their corresponding residual sets

$$R_i = C_i \backslash S_i$$

Given a clique ordering  $\{C_1, \ldots, C_p\}$  that satisfies the running intersection property (RIP), we can conclude the following separation statements:

$$R_i \coprod C_1 \cup \cdots \cup C_{i-1} \setminus S_i \mid S_i \quad \text{for } i > 1$$

Example 2



| $S_1 = \emptyset$<br>$S_2 = \{B, C\}$<br>$S_3 = \{C\}$ | $R_1 = \{A, B, C\}$<br>$R_2 = \{D\}$<br>$R_3 = \{E\}$ | $f (A) = C_1$<br>$f (B) = C_1$<br>$f (C) = C_1$<br>$f (D) = C_2$ |
|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
|                                                        |                                                       | $f(E) = C_3$                                                     |



$$\psi_1(C_1) = P(A) \cdot P(C \mid A) \cdot P(B \mid A)$$
  
$$\psi_2(C_2) = P(D \mid B, C)$$
  
$$\psi_3(C_3) = P(E \mid C)$$

Propagation is accomplished by sending messages across the cliques in the tree. The emerging potentials are maintained by each clique.

## A Few Applications of Bayesian Networks

- Medical Diagnosis
- Clinical Decision Support
- Complex Genetic Models
- Crime Risk Factors Analysis
- Spatial Dynamics in Geography
- Risk Management in Robotics
- Conservation of a threatened Bird
- Classification of Wines
- Student Modelling
- Sensor Validation

- An Information Retrieval System
- Reliability Analysis of Systems
- Terrorism Risk Management
- Credit-Rating of Companies
- Modelling of Mineral Potential
- Pavement and Bridge Management
- Complex Industrial Process Operation
- Probability of Default for Large Corporates
- Inference Problems in Forensic Science