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Problem:  Loops   

The propagation algorithm as presented can only deal with trees.

Can be extended to polytrees (i. e. singly connected graphs with  
multiple parents per node).

However, it cannot handle networks that contain loops!
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Plan for solution

Transform the acyclic directed graph into a secondary structure with tree
structure.

Find a decomposition of the underlying joint distribution.
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Example:  Join-Tree Const ruc t ion

A B

EF

G H

Given directed graph.

C D
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Example Join-Tree Const ruc t ion

Transformation Algorithm
• Moral graph
• Triangulated graph
• MCS yields perfect ordering
• Clique order has RIP
• Form a join-tree
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The result is a decomposition, represented in form of a join-tree



Plan for solut ion

In more detail

- Generation of an undirected graph mimicking (some of) the conditional 
independence statements of the cyclic directed graph.

- Identification of maximal cliques of the undirected graph
- Creation of a clique tree such that the running intersection property 

(RIP) is satisfied.

- Factorization with Potential Fuctions

Justification

Probability distribution: Decomposition using the clique tree 

Tree: Unique path of evidence propagation
RIP: Update of an attribute reaches all cliques which contain it
Potential functions: Efficient algorithms
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C o m p l e t e G r a p h s

Complete G r a p h

An undirected Graph G = (V, E) is called complete, if every pair of (distinct) 
nodes  is connected by an edge.

Induced Subgraph

Let G  =  (V, E) be an undirected graph and W ⊆ V a selection of nodes.
GW = (W, EW ) is called the subgraph of G induced by W with 
EW = {(u, v) ∈ E | u, v ∈ W }.

Then,

C D C

Incomplete graph Subgraph (W, EW )  
with W = {A, B, C, E}

A B A B A

E E

B

C D

Complete
(sub)graph
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Perfect Ordering in Undirected Graphs 

Perfect Ordering

Let G = (V, E) be an undirected graph with n nodes and α = (v1, . . . , vn) a 
total  ordering on V . Then α is called perfect, if the sets

adj(vi) ∩ {v1, . . . , vi−1} i = 1, . . . , n

are all complete. adj(vi) = {w | (vi, w) ∈ E} is the set of adjacent nodes of vi.

A B

C D E

1 6

2 3 5

G F H
8 4 7

α = (A, C, D, F, E,  B,  H, G)

i adj(vi) {v1, . . . , vi−1} ∩ adj(vi)
= ∅
= {A}
= {C}
= {C,D}
= {D, F }
= {D, E}
= {F,E}

1 {C} ∅ ∩{C}
2 {A, D, F } {A} ∩ {A, D, F }
3 {C, B, E, F } {A, C} ∩ {C, B, E, F }
4 {G, C, D, E, H} {A, C, D} ∩ {G, C, D, E, H}
5 {B, D, F, H} {A, C, D, F } ∩ {B, D, F, H}
6 {D, E} {A, C, D, F, E} ∩ {D, E}
7 {F, E} {A, C, D, F, E, B } ∩ {F, E}
8 {F } {A, C, D, F, E, B , H} ∩ {F } = {F}

complete
complete
complete
complete
complete
complete
complete
complete
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α is a perfect ordering



Cliques

Complete Set, Clique

Let G = (V, E) be an undirected graph. A set W ⊆ V is called complete iff it
induces a complete subgraph. It is further called a clique, iff W is maximal, i.
e. it is not possible to add a node to W without violating the completeness
condition.

a) W is complete ⇔ W induces a complete subgraph

b) W is a clique ⇔ W is complete and maximal

A B

C D

E F

3 cliques
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C1 = {A, B, C, D}
C2 = {B, D, E}
C3 = {E, F }



Running Intersection property
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Finding a Clique Ordering with RIP 

Theorem If a node ordering α of an undirected graph G = (V, E) is perfect
and the cliques of G are ordered according to the highest rank (w. r. t. α) of
the containing nodes, then this clique ordering has RIP.

Clique Rank
{A, C} max{α(A), α(C)}
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{C, D, F }
{D, E, F } max{α(D), α(E), α(F )} → C3
{B, D, E} max{α(B), α(D), α(E)} → C4
{F, E, H} max{α(F ), α(E), α(H)} → C5

{F, G} max{α(F ), α(G)}

= 2 → C1
max{α(C), α(D), α(F )} = 4 → C2

= 5
= 6
= 7
= 8 → C6

How to get a perfect ordering?



Tr i angu la t ed Graphs  

Triangulated G r a p h

An undirected graph is called triangulated if every simple loop (i. e. path with
identical start and end node but with any other node occurring at most once)
of lengthgreater 3 has a chord.

A

B

D

not triangulated

A

C B

D

triangulated

A

C B D

E

not triangulated

A

C B C

D

E

no chord for (A, B, E, C)
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Maximum Card ina l i ty Sea rch

Ma x i mum Cardinali ty Search

Let G = (V, E) be an undirected graph. An ordering according maximum
cardinality search (MCS) is obtained by first assigning 1 to an arbitray node. If
n numbers are assigned the node that is connected to most of the nodes
already numbered gets assigned number n +1.

A
1

B
6

C
2

D
3

E
5

F
4

G
8

H
7

3 can be assigned to D or F
6 can be assigned to H or B
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Tr i angu la t ion

Theorem If an undirected graph is triangulated, then the ordering obtained by
MCS is perfect.

To check whether a graph is triangulated is efficient to implement.

How to find a „good“ triangulation?

The corresponding optimization problem („best“ triangulation, minimal number
of additional edges) is NP-hard. However, there are heuristics for suboptimal
but „good" solutions.
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Mora l i za t ion

Moral G r a p h
Let G = (V, E) be a directed acyclic graph. If u, w ∈ W are parents of v ∈ V, then
connect u and w with an (arbitrarily oriented) edge. After the removal of all
edge directions the resulting graph Gm = (V, E ′) is called the moral graph of G.
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Example:  Join-Tree Const ruc t ion (1)

A B

EF

G H

Given directed graph.

C D
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Join-Tree Const ruc t ion (2)

A BC D

F E

G H

• Moral graph
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Join-Tree Const ruc t ion (3)

A BC D

EF

G H

• Moral graph
• Triangulated graph
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Join-Tree Const ruc t ion (4)

G H

1
A
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6
B

2
C

3
D

E

5

4 F

8 7

• Moral graph
• Triangulated graph
• MCS yields perfect ordering



Join-Tree Const ruc t ion (5)

• Moral graph
• Triangulated graph
• MCS yields perfect ordering
• Clique order has RIP
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Join-Tree Const ruc t ion (6)

• Moral graph
• Triangulated graph
• MCS yields perfect ordering
• Clique order has RIP
• Form a join-tree

Two cliques can be connected if
they have a non-empty intersec-
tion. The generation of the tree
follows the RIP. In case of a tie,
connect cliques with the largest in-
tersection. (e. g. D BE—F ED in-
stead of DBE—CFD ) Break
remaining ties arbitrarily.
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Example: E x p e r t Knowledge

Qualitative knowledge
Metastatic cancer is a possible cause of brain tumor, and is also an 
ex- planation for increased total serum calcium. In turn, either of 
these could  explain a patient falling into a coma. Severe headache is 
also possibly  associated with a brain tumor.

Special case

The patient suffers from heavy headache.

Query
Will the patient fall into coma?
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Example: Choice of S ta t e Space

Attribute Possible Values
A metastatic cancer dom(A) = {a1,a2}

dom(B) ={b1, b2}
dom(C) = {c1,c2}
dom(D) = {d1,d2}
dom(E) ={e1, e2}

·1
·2

=
=

existing
not existingB increased total serum calcium

C brain tumor
D coma
E severe headache
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Exhaustive state space:

Ω = dom(A) × dom(B) × dom(C) × dom(D) × dom(E)

Marginal and conditional probabilities are of interest for the user!



C h o i c e  o f t h e c o n d i t i o n a l p r o b a b i l i t i e s

Rudolf Kruse Bayesian Networks

E x a m p l e  3 :       



Example (1)

A

B C

D E

Example: Metastatic
Cancer

Dependencies

A

B C

D E

Moralization/Triangulation MCS, hyper graph
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Example (2)

Quantitative
knowledge:

(a, b,c) P (a, b, c) (b, c,d) P (b, c, d)
a1,b1, c1 0.032 b1, c1,d1 0.032
a2,b1, c1

.
0.008

.
b2, c1,d1

.
0.032

.
a2,b2, c2 0.608 b2, c2,d2 0.608

(c, e) P (c, e)
c1, e1 0.064
c2, e1 0.552
c1, e2 0.016
c2, e2 0.368

Decomposition:

P (A, B, C, D, E) = P (A)P (B | A)P (C | A)P (D | BC)P (E | C)

=
P (A, B,C)P (B, C, D)P (C, E)

P (BC)P (C)
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Example (3)

Marginal distributions in the HUGIN tool.
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Example (4)

Conditional marginal distributions with evidence E = e1
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Potent ia l Representa t ion
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E xam p le 1

V = {A, B, C} , W1 = {A, B } , W2 = {B , C }

dom(A) = {a1, a2}
dom(B) = {b1,b2}
dom(C) = {c1, c2}
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P (a, b, c) = 1

ψ1 : {a1, a2} × {b1, b2} → IR
ψ2 : {b1, b2} × {c1, c2} → IR

ψ1(a, b) = 1
4ψ2(b, c) = 1

2

({W1, W2}, {ψ1, ψ2}) is a representation of P



Factorization of a  Belief Network

Let (V, E, P ) be a belief network and {C1, . . . , Cp} the cliques of the join tree.
For every node v ∈ V choose a clique C such that v and all of its parents are
contained in C, i. e. { v } ∪ c(v) ⊆ C. The chosen clique is designated as f (v).

To arrive at a factorization ({C1, . . . , Cp}, {ψ1, . . . , ψp}) of P, we define

In the Markov random field literature the clique functions are generally referred
to as potential functions.
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ψi(Ci) = Π P (v | c(v))
v : f (v)=Ci



Decomposi t ion w. r . t . a Join-Tree

Given a clique ordering {C1, . . . , Cp} that satisfies the running intersection
property (RIP), we can conclude the  following separation statements:

Ri (C1 ∪· · · ∪Ci−1)\Si | Si for i > 1
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Separator Sets and  Residual Sets

Let {C1, . . . , Cp} be a set of cliques w. r. t. V . The sets

Si = Ci ∩ (C1 ∪· · ·∪Ci−1), i = 2, . . . , p,

are called separator sets with their corresponding residual
sets

S1 = ∅

Ri = Ci \Si



E xam p le 2 

S1 = ∅
S2 = {B , C }   
S3 = { C }

R1 = {A, B, C }   
R2 = { D }
R3 = { E }

f (A) = C1
f (B) = C1
f (C) = C1
f (D) = C2
f (E) = C3

AB C

B CD

CE

C1

C2

C3

S1

S2

S3

ψ1(C1) = P (A) · P (C | A) · P (B|A)
ψ2(C2) = P (D | B, C)
ψ3(C3) = P (E | C)
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Propagation is accomplished by sending
messages across the cliques in the tree. The
emerging potentials are maintained by each
clique.



A Few Applications of Bayesian Networks

• Medical Diagnosis
• Clinical Decision Support
• Complex Genetic Models
• Crime Risk Factors Analysis
• Spatial Dynamics in

Geography
• Risk Management in Robotics
• Conservation of a threatened

Bird
• Classification of Wines
• Student Modelling
• Sensor Validation
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• An Information Retrieval System
• Reliability Analysis of Systems
• Terrorism Risk Management
• Credit-Rating of Companies
• Modelling of Mineral Potential
• Pavement and Bridge Management
• Complex Industrial Process Operation
• Probability of Default for Large

Corporates
• Inference Problems in Forensic

Science
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