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Parameter Learning

Given: - The graph underlying a graphical model for the domain.
- A database of samples from domain of interest.

C

Goal: - Find „good“ values (estimates) for the numeric parameters (e.g. 
probabilities) of the model.

Naive Bayes Classifiers
A naive Bayes classifier is a Bayesian network with star-like structure.
The class attribute is the only unconditional attribute.  

All other attributes are conditioned on the class C only.
A 2
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· ··

An

The structure of a naive Bayes classifier is fixed if the
attributes have been selected.

The only remaining task is to estimate the parameters of
the needed (conditional) probability distributions.
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Probabil ist ic Classification

A classifier is an algorithm that assigns a class from a predefined set to a case or  
object, based on the values of descriptive attributes.
An optimal probabilistic classifier assigns the most probable class. 
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Bayes Rule
P (A1 = a1, . . . , A m = a m  | C = cj) · P (C = cj) .

P (A1 = a1, . . . , A m = am) 
=

=

P (A1 = a1 | C = cj) x . . .x P (A m = a m  | C = cj) · P (C = cj) .
P (A1 = a1, . . . , A m = am)

„Naive“ Assumption

unrealistic, simplifying, but often successful!



Naive Bayes Classifiers (cont inued)

Consequence: Manageable amount of data to store.
Store distributions P (C = cj) and P (Ak = ak | C = cj).

Classification: Compute for all classes cj

and predict the class ci  for which this value is largest.
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P (A1 = a1 | C = cj) x . . .x P (A m = a m  | C = cj) · P (C = cj) .
P (A1 = a1, . . . , A m = am)



Naive Bayes Classifiers: P a r a me t e r Est imat ion
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Naive Bayes Classifiers: P a r a me t e r Est imat ion
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Naive Bayes Classifiers: Example

No Sex Age Blood pr. Drug
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1 male 20 normal A
2 female 73 normal B

3 female 37 high A

4 male 33 low B
5 female 48 high A

6 male 29 normal A
7 female 52 normal B

8 male 42 low B
9 male 61 normal B

10 female 30 normal A

11 female 26 low B

12 male 54 high A

P (Drug) A B
0.5 0.5

P (Sex| Drug) A B
male 0.5 0.5
female 0.5 0.5

P (Age| Drug) A B
µ  
σ2

36.3
161.9

47.8
311.0

P (Blood Pr.| Drug) A B
low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.



Naive Bayes Classifiers: Example

Which Drug for (male,61,normal)?    
P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

= 0.5 · 0.5 · 0.004787 · 0.5 = 5.984· 10−4

P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)
= 0.5 · 0.5 · 0.017120 · 0.5 = 2.140 ·10

P (Drug A | male, 61, normal) = 0.219 ,  P(Drug B | male, 61, normal) = 0.781
Decision: B

Which Drug for (female,30,normal)?    
P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

= 0.5 · 0.5 · 0.027703 · 0.5 = 3.471· 10−3

P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)
= 0.5 · 0.5 · 0.013567 · 0.5 = 1.696 · 10−3 

P (Drug A | female, 30, normal) = 0.671 ,  P(Drug B | female, 30,normal) = 0.329
Decision: A

Using this method a decision can be made for combinations of attribute values, that
are not in the data base, i.e. new data.
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Naive Bayes Classifiers: Simple Example

100 labelled data points: red, blue

Two classes red or blue, assumed to be normal distributed

The landscape indicates the classification of all point of the
plane, the intensity of the color indicates the probability of
the most probable class

The two conditional probabilities are shown
Small squares: mean values
Inner ellipses: one standard deviation
Outer ellipses: two standard deviations

Classes overlap:  classification is good, cannot be not perfect

Naive Bayes Classifier
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Naive Bayes Classifiers: Simple Example

Naive Bayes Classifier
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20 labelled data points: red, blue

Two classes red or blue, assumed to be normal 
distributed

The landscape indicates the classification of all point of 
the plane, the intensity of the color indicates the 
probability of the most probable class

The two conditional probabilities are shown
Small squares: mean values  
Inner ellipses: one standard deviation
Outer ellipses: two standard deviations

Attributes are NOT conditionally independent given the 
class, classification still rather good. 



Parameter Learning for Bayesian Networks

P(G) P(M)

P(F|G,M)

Probability values can estimated by using methods of inductive statistics:
(i) Given a data set and a decomposition
(ii)    Estimation of the parameters for the decomposed representation

.

V = {G, M, F}

dom(G) = {g, g}

dom(M) = {m,m}

dom(F) = {f, f}
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Parameter Learning using Parameter Est imating Methods
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Note: Relative frequencies constitute optimal estimators in the case of multinomial distributions. The estimates are
calculated for parameters according to the decomposition (i.e. less parameter estimates are needed)  



Parameter Learning using the Maximum Likelihood Approach
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Maximum likelihood estimation (MLE): General method of estimating the parameters of 
an (unknown) probability distribution by maximizing a likelihood function, so that under 
the assumed statistical model the observed data is most probable. 

A given set of observations (x1,…xn) is considered as a random sample from an unknown 
population. The goal of maximum likelihood estimation is to make inferences about the 
population that is most likely to have generated the sample, specifically the joint 
probability distribution of the random variables. 

Associated with each probability distribution is a unique vector of parameters (p1,…,pm) 
that index the probability distribution within a parametric family gives a real-valued 
function, the likelihood function Ln((x1,…xn); (p1,…,pm)) . The goal of maximum likelihood 
estimation is to find the values of the model parameters that maximize the likelihood 
function over the parameter space. 

This optimization task is often very complex. So approximation methods based on 
iterative procedures are used.



Parameter Learning using the Maximum Likelihood Approach
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Example:  How biased is an unfair coin? 

Probability of tossing H is p, T is 1-p. The goal is to determine the parameter p, which is known 
to be 1/3, 1/2 or 2/3. The coin is tossed 80 times, we assume an iid sequence (identical-
independent-distributed) of random variables. The  resulting random sample might be 
something like x1 = H, x2 = T, ..., x80 = T, and the count of the number of heads "H" is observed. 
Suppose the outcome is 49 heads and 31 tails.

Using maximum likelihood approach, the coin with the largest likelihood can be found, given 
the data that were observed. The distribution of the binomial distribution with sample size 
equal to 80 and number of H’s equal to 49 but for different values of p (the "probability of 
success"), the likelihood function L80 (p,(x1,…,x80)) for p equal to 1/3, 1/2, 2/3 takes the values:

The likelihood is maximized when p = 2⁄3, and so this is the maximum likelihood estimate (MLE) for p.



Likelihood of a D a t a b a s e g i v e n a  k n o w n B a y e s i a n N e t w o r k  s t r u c t u r e
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Maximum Likelihood Estimate of a Database

Let BP be the description of the parameters, BS be the given structure and D  the  data.
The likelihood of the calculated probabilities P (D | BS, BP ) can be computed under  
presence of three assumptions:

1. The data generation process can be described exactly by a Bayesian network  (BS, BP )

2. The single tuples of the dataset are independent of each other.

3. All tuples are complete, therefore no missing values hinder the probability inference

The first assumption legitimates the search of an appropriate Bayesian network.  The 

second assumption is required for an unbiased observation of dataset tuples.

Assumption three ensures the inference of BP using D and BS as shownon the previous  slides.
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Example Maximum Likelihood Estimate of a Database
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D: 100 random samples BS : The given DAG        BP :  The unknown parameters

Likelihood Function with data D and parameters

P(g), P(m), P(f I g,m),…,P(f I         )

How to maximize
the likelihood? 



Likelihood Estimate: Fully Observed Data
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- Random Variables F,A,S,H and N with two values 0 and 1 each.
- Database of the K observed cases

Kronecker-Delta



Likelihood Estimate: Fully Observed Data
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- Random Variables F,A,S,H and N with two values 0 and 1 each.
- Database of the K fully observed cases

Why?

Kronecker-Delta



Likelihood Estimate: How to solve the maximization task?
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Learning a parameter via maximization

Log likelihood function

- Random Variables F,A,S,H and N with two values 0 and 1
- Database of fully observed K cases



Useful methods for Parameter  Learning in Bayesian Networks 
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Missing Values

To deal with missing values, we need to make the missing at random (MAR) assumption:
Actual value of X and the event X-is-missing are conditionally independent given other observed variables:          

P(X|X-is-missing, other observed variables) = P(X|other observed variables)
The assumption is sometimes not true. However, it can be made often true by introducing an auxiliary 
variable.

Adaptation
Often the model is incomplete, the modeled domain is drifting over time, or the model quite simple does 
not reflect the modeled domain properly.

Sequential updating, also known as adaptation or sequential learning, makes it possible to update and 
improve the conditional probability distribution for a domain as observations are made. 



Likelihood Estimate: Partly Observed Data
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- Random Variables F,A,S,H and N with two values 0 and 1
- Data base of cases with values in F,A,N,H , but no observations for S

X all  observed variable values (over all examples) , Z all unobserved variable values

Maximum Likelihood cannot be calculated in the case of missing values. Instead the
expectation-maximization (EM) algorithm is used. 
The EM tries to optimize 

In the above example:



Likelihood Estimate: Partly Observed Data
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Likelihood Estimate: Partly Observed Data
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Likelihood Estimate: Partly Observed Data

Rudolf Kruse Bayesian Networks

More general situation:   Given observed set X, unobserved set Z of Boolean values



Example: Naive Bayes Classifier with Unlabeled Data 
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Example:  Naive Bayes Classif ier with Unlabeled Data
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