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Given a data set D. The elements of the data set define a subset R of
the (unknown) relation S consisting of all possible tuples.

The learning task is to choose a graph G which represents a (perfect or approximate)
decomposition of R.

Each graph G defines conditional or marginal relations of R. In the perfect case the
relation R can be represented as the intersection of the cylindrical extension of the
projections of R to the relevant subspaces defined by the graph.

Example Let δ be a relation in BxExT and
G the undirected graph B - E – T .
There is a (perfect) decomposition.

How to find a „good“ decomposition?
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Graph No 5 gives a perfect decomposition of R. In most cases there is no perfect decomposition, for large 
numbers of attributes the task is extremely complex. That’s why (depending on the application) finding an 
approximate solution is the aim.

Example ( Test all Decompositions)

Structure Learning for the Rela t ional  Case



Most learning algorithm for relational (possibilistic) graphical models consists of an evaluation measure,
by which a candidate model is assessed, and a (heuristic) search method, which determines the candidate
models to be inspected.

1. Test whether a distribution is decomposable w. r. t. a given graph:
The most direct approach, very complex for higher dimensions.

2. Find a suitable graph by measuring the strength of dependences

A heuristic, but often highly successful

3. Find an independence map by conditional independence tests 

Based on the connection of conditional independence graphs  and graphs that represent decompositions. 
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Method 1 Tes t ing for Decomposabi l i ty by C o m p a r i n g Rela t ions
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Evaluation of Candidates
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subspace color × shape shape × size size × color
possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

The relational network can be obtained by interpreting the relative numbers as  
edge weights and constructing the minimum weight spanning tree.

Method 2  S t r e n g t h of Marg ina l Dependences



Rudolf Kruse Bayesian Networks

Method  2 S t r e n g t h  of Marg ina l Dependences : Har t l ey  In fo rma t ion
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The graph can be obtained by interpreting the relative numbers as  edge weights 
and constructing the minimum weight spanning tree.

Method 2  Strength of Marginal Dependences: Comparing Local Relations



Kruskal’s algorithm is a greedy algorithm in graph theory, which finds a minimum spanning
tree for a connected weighted graph.

A minimum spanning tree consists of a subset of edges that forms a tree, which includes
every vertex, where the total weight of all the edges in the tree is minimized.

Algori thm :
1. Create a forest (a set of trees) F, where each vertex in the graph is a separate tree

2. Create a set S containing all the edges in the graph

3. While S is nonempty and F is not yet spanning:

(a) remove an edge with minimum weight from S
(b) if the removed edge connects two different trees then add it to the forest F,  

combining two trees into a single tree

At the termination of the algorithm, the forest forms a minimum spanning tree of the
graph. If the graph is connected, the forest has a single component and forms a minimum
spanning tree.
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https://de.wikipedia.org/wiki/Algorithmus_von_Kruskal#/media/Datei:KruskalDemo.gif

Method 2  Strength of Marginal Dependences: Comparing Local Relations



Method  3  F i n d  a n  I n d e p e n d e n c e  Ma p u s i n g C o n d i t i o n a l  I n d e p e n d e n c e Tes t s

General Idea
Exploit the theorems that connect conditional independence graphs and graphs that represent
decompositions: We want a graph describing a decomposition, but we search for a conditional 
independence graph.

This approach has the advantage that a single conditional independence test,  if it fails, can 
exclude several candidate graphs.

Assumptions
Faithfulness: The domain under consideration can be accurately described with  a graphical model 
(more precisely: there exists a perfect map).
Reliability of Tests: The result of all conditional independence tests coincides  with the actual 
situation in the underlying distribution.

Algorithm
In order to test for (approximate conditional independence)
- Compute the Hartley Information Gain for each possible instantiation of the conditioning

attributes
- Aggregate the results over all possible instantiations , e.g. bei averaging them
Then use Kruskal‘s algorithm
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Method 3 Cond i t iona l I n d ep en d ence Tests: S imple E x a mp l e

large  
medium

small

color Hartley information gain
log2 1 + log2 2− log2 2 = 0
log2 2 + log2 3− log2 4≈ 0.58
log2 1 + log2 1− log2 1 = 0
log2 2 + log2 2− log2 2 = 1

average: ≈ 0.40

shape Hartley information gain

log2 2 + log2 2− log2 4 = 0
log2 2 + log2 1− log2 2 = 0
log2 2 + log2 2− log2 3≈0.42

average: ≈ 0.14

Rudolf Kruse Bayesian Networks

size Hartley information gain
large
medium  
small

log2 2 + log2 1− log2 2 = 0
log2 4 + log2 3− log2 5≈1.26
log2 2 + log2 1− log2 2 = 0

average: ≈ 0.42

Note: In the above relation (in comparison to our standard example) one tuple is removed

None of the averages is zero, neither B     C I A ,   A     C I B  ,   A     B I C  hold. A and C show a „weak“ 
conditional dependence given B, so we may decide to treat them as conditional independent:



Learning the Network Structure from Data

Part 2 Bayesian Networks
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Part 2: Structure Learning in Bayesian Nets

Given a data set, the learning task is to choose a DAG  G  that indicates, which 
conditional or marginal distributions constitute the represented decomposition.

There are several families of methods, most commonly used are

- Constraint-based Methods
Find independences and conditional independences in given data via     
statistical tests and choose a DAG with the same (or similar) independences. 

- Score-based Method
Search over all possible DAGs and choose the one with a maximum score. 
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How to decide A     B  ,  A     B I  C  from a given dataset?

Let P be the (unknown) probability distribution that „induced“ the given data set D. 

Note: P is unknown, but we can estimate the information gain by using the corresponding frequences in the
data set instead. Large deviance of P(AIC) x P(BIC)  from P(A,B I C) rejects the null hypothesis of conditional
independence. Often an analyst assumes conditional independence if the information gain is below a given
treshhold Ɛ.

Constraint Based Methods:  (Condi t ional)  Independence Tests
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Constrained Based Methods: A Simple Example

A        B

C        D
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The resulting directed graph is a (minimal) perfect I-map.  



Constraint Based Methods: Find a DAG with a same set of conditional independences

Given: Data Set with good Conditional Independence Tests (CI-Tests)

Goal : Find a Perfect Independance Map (P-Map) , i.e. a DAG with a same set of 
conditional independences as the underlying probability distribution P that
generated the data set (the iid sample assumption) 

Restrictions: Not every distribution has P-Map. If the distribution P has a P-Map (its
faithfulness), then it is not unique. We can only determine a class of faithful DAGs. If
two DAGs are in the same class, they are called I-equivalent.  Two I-equivalent DAGs 
share the same undirected skeleton and the same immoral set of v-structures

PC Algorithm

1. find the undirected skeleton using CI tests
2. identify immoralities in the undirected graph
3. add directions that follow from immoralities and DAG structure

In case of exact CI tests, faithfullness the so called PC-algorithm guarantees to find 
the exact I-equivalence family. 
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Constraint Bases Methods: Perfect map from CI Oracles

Idea: Find appropriate separation sets S(X,Y) for all variables X and Y in order to remove edges
The  check X      Y| 𝑆𝑆(X , Y)  for all possible separation sets 𝑆𝑆 (X,Y) ⊆ 𝑉𝑉 ∖ {X,Y} is infeasible for large spaces.

Step 1 Construction of an (undirected) skeleton of the graph by iteration over the size of the separation sets.
A separation is verified by a CI-test ( a so called CI Oracle)

Pseudocode PC Algorithm for step 1 



Constraint Bases Methods: Perfect map from CI Oracles

Step 2 If Y        S(X,Z) then replace X – Y – Z    by X → Y  ← Z

Idea Find V-Structures (so called immoralities)  in the skeleton



Ground truth DAG

undirected skeleton
+ immoralities using rules R1,R2,R3

Constraint Bases Methods: Perfect map from CI Oracles

Idea: At this point we have a mix of directed and undirected edges. Add directions using 
constraints , that are needed to preserve immoralities or follow from the DAG structure.

Step 3  Propagate Contraints Example



Constraint Bases Methods: Perfect map from CI tests

Pseudocode PC Algorithm for steps 2 and 3

G

Evaluation of the PC algorithm 
- Works under the (strong) assumptions of causal sufficiency, faithfulness and Global Markov Condition.
- Testing all sets 𝑆𝑆(𝑋𝑋,𝑌𝑌) containing the adjacencies of 𝑋𝑋 is sufficient
- Polynomial complexity for graph of 𝑁𝑁 vertices of bounded degree, but in the worst case exponential complexity to N



Score  Based Methods :  Di f f e ren t  sco res ava i l ab le

Rudolf Kruse Bayesian Networks

Score-based approaches cast the learning problem as an optimization problem. 
Given a scoring criterium S and a data set D, the optimal graph is the one with the
highest score:     

G* = arg max S(G,D)
G

There are lots of different scores from the area of model selection such Bayesian
Information Criterium (BIC), Akaike Information Criterion (AIC), Minimum 
Description lenght (MDL), or Log Likelihood. 

In this course we study mainly the discrete case, so we present the Bayesian
Dirichlet Score, which conjugates with multinomial probability distributions.

The process of solving can be seen as a search over the space of all possible graphs.
For trees the Chow-Liu algorithm gives good results, for more general DAGs (several
parents) the problem of finding an optimal structure is NP-hard. So one uses
heuristic search methods or Monte Carlo Methods (e.g. Markov Chain Monte 
Carlo).



Score-based methods: Kullback-Leibler Information Divergence
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Score-based methods: Kullback-Leibler Information Divergence
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Score-based methods: Kullback-Leibler Information Divergence
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Score  Based Methods :  L ike l ihood scores



Note: The distribution associated to the tree constructed by Chow-Liu algorithm is the one that is
closest to the distribution associated to the data as measured by the Kullbach-Leibler divergence -
in case of no missing data , discrete variables, and iid data.

https://de.slideshare.net/vangjee/a-quick-introduction-to-the-chow-liu-algorithm

Score  Based Methods :  L ike l ihood scores fo r t r ees



Score  Based Methods :  Bayes ian scores



Bayesian Statistics

The Dirichlet distribution is a conjugate prior for the multinomial distribution. This means that if the
prior distribution of the multinomial parameters is Dirichlet then the posterior distribution is also a
Dirichlet distribution (with parameters different from those of the prior). The benefit of this is that
(a) the posterior distribution is easy to compute and (b) it in some sense is possible to quantify how
much our beliefs have changed after collecting the data.

https://en.wikipedia.org/wiki/Dirichlet_distribution

https://en.wikipedia.org/wiki/Dirichlet_distribution


Example :  Di r i ch le t Bayes ian Equ iva len t Uni fo rm Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score



Rudolf Kruse Bayesian Networks

Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score
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Score  Based  Algor i thms :  Bayes ian  Di r i ch le t  Score



Demo of K2 Algori thm

Step
graph

1 – Edgeless Step 2 – Insert M
temporarily.

Step 3 – Insert KA
temporarily.

Step 4 – Node L
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maximizes K2 value
and thus is added
permantently.



Demo of K2 Algori thm

Step 5 – Insert M
temporarily.

Step 6 – KA is
added as second
par- ent node of
KV.

Step 7 – M does not
increase the quality
of the network if in-
sertes as third parent
node.

Step 8 – Insert KA
temporarily.
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Demo of K2 Algori thm

Step 9 – Node L be-
comes parent node
of M.

Step 10
KA does

– Adding  
not in-

crease overall Net-
work quality.

Step 11 – Node L
becomes parent
node of KA.

Result
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State of the Art Procedure for Structure Learning

Step 1 Feature Selection
To support feature selection, the p-value of the test for marginal independence is computed.    
The p-value is the tail probability under the independence assumption. 
The higher the value the more likely the nodes are to be independent. 

Step 2 Structure constraints
Specification of any known dependences or independences in the data set

Step 3 Structure Learning
NPC, PC, Greedy search and score, Chow-Liu Tree, Rebane Pearl Polytree, 
Tree augmented Naive Bayes mit Scores AIC, BIC

Step 4 Structure Uncertainty
The structure learning algorithms (e.g. NPC algorithm) contains ambiguous regions 
(i.e., groups of inter-dependent uncertain links) and/or other undirected links. There are     
intuitive graphical interfaces for resolving these structural uncertainties.

Step 5 Data Dependences
Detect relative strenght of the dependences found in the data, use these information
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