Learning the Network Structure from Data




Learning the Network Structure from Data

Part 1 Relational Networks

Rudolf Kruse Bayesian Networks



Part 1 Structure Learning for the Relational Case

Given a data set D. The elements of the data set define a subset R of
the (unknown) relation S consisting of all possible tuples.

The learning task is to choose a graph G which represents a (perfect or approximate)
decomposition of R.

Each graph G defines conditional or marginal relations of R. In the perfect case the
relation R can be represented as the intersection of the cylindrical extension of the
projections of R to the relevant subspaces defined by the graph.

Example Let 6 be a relation in BXEXT and
G the undirected graph B-E-T .
There is a (perfect) decomposition. |,
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How to find a ,,good”“ decomposition?
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Structure Learning for the Relational Case

Example ( Test all Decompositions)
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Graph No 5 gives a perfect decomposition of R. In most cases there is no perfect decomposition, for large
numbers of attributes the task is extremely complex. That’s why (depending on the application) finding an

approximate solution is the aim.
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Structure Learning for the Relational Case

Most learning algorithm for relational (possibilistic) graphical models consists of an evaluation measure,
by which a candidate model is assessed, and a (heuristic) search method, which determines the candidate

models to be inspected.

1. Test whether a distribution is decomposable w. r. t. a given graph:
The most direct approach, very complex for higher dimensions.

An exhaustive search over all graphs is too expensive:

1
o 2(2) possible undirected graphs for n attributes.

[t
o f(n)= Z(—'l _‘JH_l (2.’)2"(”_"]_)"{” — 1) possible directed acyclic graphs.
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8 possible undirected graphs with 3 nodes

2. Find a suitable graph by measuring the strength of dependences

A heuristic, but often highly successful

3. Find an independence map by conditional independence tests

Based on the connection of conditional independence graphs and graphs that represent decompositions.
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Method 1 Testing for Decomposability by Comparing Relations

Evaluation of Candidates

In order to evaluate a graph structure, we need a measure that compares the actual
relation to the relation represented by the graph.

For arbitrary R, Eq, and Es it is

R(EZ1N Ey) <min{R(E1), R(Eb)}.
This relation entails that for any family M of subsets of U it is always:

Vap € dom(Aq) :...Vay € dom(Ay) :

I‘U( /\ Aj; ai) < min {I'M( /\ A; ai)}.
AU MeM AeM

Thercfore: Measure the quality of a family M as:

Z s Z ( min {rﬂ( /\ Ap= af) }—rU( /\ A = Gf))
a1€dom(Ay) ap€dom(Ay,) MeM A,eM A;eU

Intuitively: Count the number of additional tuples.
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Method 2 Strength of Marginal Dependences
HE [N HE [N
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subspace color X shape | shape X size | size X color
possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

The relational network can be obtained by interpreting the relative numbers as

edge weights and constructing the minimum weight spanning tree.
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Method 2 Strength of Marginal Dependences: Hartley Information

Definition: Let A be an attribute and R a discrete possibility measure with da €

dem{A) : B(A =a) =1. Then
(Hartley)(A) = logy (Zaedom(A) R(A = a))

is called the Hartley information of A wr.t. RR.
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Method 2 Strength of Marginal Dependences: Comparing Local Relations

Definition: Let A and B be two attributes and R a discrete possibility measure with

da € dom(A) : 3b € dom(B) : R(A =a, B =b) = 1. Then

1A, B) = logy (zaedomm) R(Aa)) + logy (zbedom@ R(Bb))

— logy ZaEdom(A) Zbedom(B) R(A=a, B =1b)

(ZQEdOHl(A) R(A - O.')) ; (Zbedom(B) R(B = b))
2_aedom(A) 2-bedom(B) B(A=a,B =17 :

= logy

is called the Hartley information gain of A and B w.r.t. R.

Hartley information needed to determine
coordinates: logo 4 + logg 3 = logy 12 =~ 3.58
coordinate pair: logy 6 == 2.8
gain: logy 12 — logg 6 = logy 2 =1
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Method 2 Strength of Marginal Dependences: Comparing Local Relations

The graph can be obtained by interpreting the relative numbers as edge weights
and constructing the minimum weight spanning tree.

Intuitive interpretation of Hartley information gain:

The binary logarithm measures the number of questions to find the obtaining value
with a scheme like a binary search. Thus Hartley information gain measures the
reduction in the number of necessary questions.

Results for the simple example:

i (E.Si?lmey)(color, shape) = 1.00 bit
s Eiirt’ley)( shape,size) = (.86 bit
I Eiirtlew(color, size) = 0.58 bit

Applying the Kruskal algorithm yields as a learning result:

shape

As we know, this graph describes indeed a decomposition of the relation.
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Method 2 Strength of Marginal Dependences: Comparing Local Relations

Kruskal’s algorithm is a greedy algorithm in graph theory, which finds a minimum spanning
tree for a connected weighted graph.

A minimum spanning tree consists of a subset of edges that forms a tree, which includes
every vertex, where the total weight of all the edges in the tree is minimized.

Algorithm:
1. Create a forest (a set of trees) F, where each vertex in the graph is a separate tree

2. Create a set S containing all the edges in the graph
3. While Sis nonempty and F is not yet spanning:

(a) remove an edge with minimum weight from S
(b) if the removed edge connects two different trees then add it to the forest F,

combining two trees into a single tree

At the termination of the algorithm, the forest forms a minimum spanning tree of the
graph. If the graph is connected, the forest has a single component and forms a minimum

spanning tree.

https://de.wikipedia.org/wiki/Algorithmus_von_Kruskal#/media/Datei:KruskalDemo.gif
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Method 3 Find an Independence Map using Conditional Independence Tests

General Idea

Exploit the theorems that connect conditional independence graphs and graphs that represent
decompositions: We want a graph describing a decomposition, but we search for a conditional
independence graph.

This approach has the advantage that a single conditional independence test, if it fails, can
exclude several candidate graphs.

Assumptions

Faithfulness: The domain under consideration can be accurately described with a graphical model
(more precisely: there exists a perfect map).

Reliability of Tests: The result of all conditional independence tests coincides with the actual
situation in the underlying distribution.

Algorithm

In order to test for (approximate conditional independence)

- Compute the Hartley Information Gain for each possible instantiation of the conditioning
attributes

- Aggregate the results over all possible instantiations , e.g. bei averaging them

Then use Kruskal‘s algorithm
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Method 3 Conditional Independence Tests: Simple Example

HE [ E color | Hartley information gain
ZAN L] logy1+logy2 —log;2 =0
[] [] log>2+log>3 —logy4 = 0.58
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average: = 0.14

None of the averages is zero, neither BALLCIA, AJ[CIB, AL BIC hold. AandCshow a ,weak”
conditional dependence given B, so we may decide to treat them as conditional independent:

|\ color ,)—(Hilil]ll'/)—{ SIVAR )

Note: In the above relation (in comparison to our standard example) one tuple is removed
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Learning the Network Structure from Data

Part 2 Bayesian Networks




Part 2: Structure Learning in Bayesian Nets

Given a data set, the learning task is to choose a DAG G that indicates, which
conditional or marginal distributions constitute the represented decomposition.

(&) - ® \ U\ / \A\ //\\

&) \ /
= \_, / I / = /D/

()
(E)

/ \

There are several families of methods, most commonly used are

- Constraint-based Methods
Find independences and conditional independences in given data via
statistical tests and choose a DAG with the same (or similar) independences.

- Score-based Method
Search over all possible DAGs and choose the one with a maximum score.
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Constraint Based Methods: (Conditional) Independence Tests

How to decide A1 B , Al Bl C from a given dataset?

Let P be the (unknown) probability distribution that ,induced” the given data set D.

Igoin(4, B) = ~Pla)log Pla) — 3P0 (—%:P(alb)logzP(ﬂlh))

The Shannon information gain can be used directly to test for (approximate)
marginal independence.

Conditional independence tests may be carried out by summing the information
gain for all instantiations of the conditioning variables:

[gain(A: B C)
P(a,b| c)

= 2 B ¥, 2, Plabld e em

c€dom(C) ac€dom(A) bedom(B)

where P(c) is an abbreviation of P(C' = ¢) etc.

Note: P is unknown, but we can estimate the information gain by using the corresponding frequences in the
data set instead. Large deviance of P(AIC) x P(BIC) from P(A,B I C) rejects the null hypothesis of conditional

independence. Often an analyst assumes conditional independence if the information gain is below a given
treshhold €.
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Constrained Based Methods: A Simple Example

Suppose that the following conditional independence statements hold:

All,B|0 Bl pAlD
AllxD € DiLsA|C
Bil=B | € DAL | €

All other possible conditional independence statements that can be formed with the
attributes A, B, C, and D (with single attributes on the left) do not hold.

Step 1: Since there is no set rendering A and C, B and C and C and D
independent, the edges A — C', B — C', and C' — D are inserted.

Step 2: Since C' is a common neighbor of A and B and we have A 1L P B0,
but AU , B | C', the first two edges must be directed A — C' + B,

Step 3: Since A and D are not adjacent, C' — D and A — C, the edge C' — D
must be directed C' — D.
(Otherwise step 2 would have already fixed the orientation C' <— D.)

A B

l/ The resulting directed graph is a (minimal) perfect I-map.
C—D
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Constraint Based Methods: Find a DAG with a same set of conditional independences

Given: Data Set with good Conditional Independence Tests (Cl-Tests)

Goal : Find a Perfect Independance Map (P-Map) , i.e. a DAG with a same set of
conditional independences as the underlying probability distribution P that
generated the data set (the iid sample assumption)

Restrictions: Not every distribution has P-Map. If the distribution P has a P-Map (its
faithfulness), then it is not unique. We can only determine a class of faithful DAGs. If
two DAGs are in the same class, they are called I-equivalent. Two I-equivalent DAGs
share the same undirected skeleton and the same immoral set of v-structures

-
PC Algorithm G R

1. find the undirected skeleton using Cl tests
2. identify immoralities in the undirected graph
3. add directions that follow from immoralities and DAG structure

In case of exact Cl tests, faithfullness the so called PC-algorithm guarantees to find
the exact I-equivalence family.
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Constraint Bases Methods: Perfect map from CI Oracles

Idea: Find appropriate separation sets S(X,Y) for all variables X and Y in order to remove edges
The check X LLY| S(X,Y) for all possible separation sets S (X,Y) € V \ {X,Y}is infeasible for large spaces.

Step 1 Construction of an (undirected) skeleton of the graph by iteration over the size of the separation sets.
A separation is verified by a Cl-test ( a so called Cl Oracle)

Pseudocode PC Algorithm for step 1

1: INPUT: Vertex Set V', Conditional Independence Information
: OUTPUT: Estimated skeleton (', separation sets § (only needed when directing the skeleton

(%]

afterwards)
3: Form the complete undirected graph € on the vertex set V.
&: I=—-1; C= [;'
5: repeat
6 f=f+1
T repeat
8: Select a (new) ordered pair of nodes i,/ that are adjacent in C such that |ad j(C.i)\{/j}| = ¢
9: repeat
10: Choose (new) k C ad j(C,i)\ {j} with |k| = (.
11: if i and j are conditionally independent given k then
12: Delete edge i, j
13: Denote this new graph by C
14 Save k in §(i, j) and S(/,1)
15: end if
16: until edge i, j is deleted or all k C adj(C, i)\ {j} with |k| = £ have been chosen

17:  until all ordered pairs of adjacent variables i/ and j such that |adj(C.i)\ {j}| = f and k C
ad j(C,i)\ {/} with |k| = £ have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i,j: |adj(C.i)\ {/}| < L.



Constraint Bases Methods: Perfect map from CI Oracles

Idea Find V-Structures (so called immoralities) in the skeleton

Assume the skeleton is given by: e e

Given X — Y — Z with X and Z nonadjacent
Given S(X,Z) with X L Z | S(X,Z) o

(|

A priori, there are 4 possible orientations ‘Y ¢ S5(X,7Z)
LT+ ONNO
Xe¥Y-o7Z YeSX,Z)

Xe=Ye2Z
X>Yez yYe&SKX2)

Step2 IfY & S(X,Z) thenreplace X—Y—-Z by X>Y «Z



Constraint Bases Methods: Perfect map from CI Oracles

Idea: At this point we have a mix of directed and undirected edges. Add directions using
constraints, that are needed to preserve immoralities or follow from the DAG structure.

Step 3 Propagate Contraints Example

undirected skeleton
+ immoralities using rules R1,R2,R3

R1

?9

) (

)

) (

R2

(
(N
(
(N

:
/

)

rR3 (M

»@

®
l
&

N A
&

lf._

@

l‘f—_

&



Constraint Bases Methods: Perfect map from CI tests

Pseudocode PC Algorithm for steps 2 and 3

INPUT: Skeleton G, separation sets S
OUTPUT: G
for all pairs of nonadjacent variables i, j with common neighbour & do

if k ¢ S(i, /) then

Replace i —k— jin Gy byi —k+— j

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated application
of the following three rules:
R1 Orient j — k into j — k whenever there is an arrow i — j such that i/ and & are nonadjacent.
R2 Orient i — j into i — j whenever there is a chain i — k — .
R3 Orient i — j into i — j whenever there are two chains i —k — j and i —/ — j such that k and
[ are nonadjacent,
R4 Orient i — j into i — j whenever there are two chains i — k — [ and kK — [ — j such that k and
J are nonadjacent.

Evaluation of the PC algorithm

- Works under the (strong) assumptions of causal sufficiency, faithfulness and Global Markov Condition.

- Testing all sets S(X,Y) containing the adjacencies of X is sufficient

- Polynomial complexity for graph of N vertices of bounded degree, but in the worst case exponential complexity to N



Score Based Methods: Different scores avaitlable

Score-based approaches cast the learning problem as an optimization problem.
Given a scoring criterium S and a data set D, the optimal graph is the one with the
highest score:

G* = arg max S(G,D)

G

There are lots of different scores from the area of model selection such Bayesian
Information Criterium (BIC), Akaike Information Criterion (AIC), Minimum
Description lenght (MDL), or Log Likelihood.

In this course we study mainly the discrete case, so we present the Bayesian
Dirichlet Score, which conjugates with multinomial probability distributions.

The process of solving can be seen as a search over the space of all possible graphs.
For trees the Chow-Liu algorithm gives good results, for more general DAGs (several
parents) the problem of finding an optimal structure is NP-hard. So one uses
heuristic search methods or Monte Carlo Methods (e.g. Markov Chain Monte
Carlo).
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Score-based methods: Kullback-Leibler Information Divergence

Definition: Let P; and Py be two strictly positive probability distributions on the
same set € of events. Then

P1(F)
eianlPr P= 5 PiF
i FZE:g PQ(F)

is called the Kullback-Leibler information divergence of P| and .

The Kullback-Leibler information divergence is non-negative.
It is zero if and only if P = P».

Therefore it is plausible that this measure can be used to assess the quality of the
approximation of a given multi-dimensional distribution /7] by the distribution P
that is represented by a given graph:

The smaller the value of this measure, the better the approximation.
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Score-based methods: Kullback-Leibler Information Divergence

Mutual Information / Cross Entropy / Information Gain

mn
Based on Shannon Entropy H = — Z pi logo p; (Shannon 1948)
=1

Ipin(A, B) = H(A) - H(A|B)

L LN
L b a2 ™

= —> P(a)logg P(a) — Y P(b) (—ZP(a|b)log2P(a|b))

@ b
&Hia) Entropy of the distribution on attribute A
H(A|B) Expected entropy of the distribution on attribute A

it the value of attribute B becomes known
H(A)— H(A|B) Expected reduction in entropy or information gain
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Score-based methods: Kullback-Leibler Information Divergence

[gain(A: B) = _ZP(G) logy P(a) — ZP(b) ( ZP ab) logg P( a|b))
(l b #
= —3"%" P(a,b)logy Pla) + 33" P(a|b) P(b) logy P(alb)
a p b 4
) MU
_ ;%:P(a,b)(lobg o~ e P ))
P(a,b)

The information gain equals the Kullback-Leibler information divergence between the
actual distribution P(A, B) and a hypothetical distribution P* in which A and B are
marginal independent:

P*(A,B) = P(4) - P(B)
Igain(Az B) = IKLdiv(P. P*)
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Score Based Methods: Likelithood scores

MLE in BayeS'nets mutual information form

log-likelihood UD;0) =3 ,ep 2 log (i | Paz;;0iipa;)
= i Z{'L,Pa,!-.{}E’D log p(zi | Pag,;0ipa,)
using the empirical distribution — NZa ng,Pa;;-- pﬂ(xjpaxi)]ogp(mi | Pax_i_; 91|Pa,-)

use MLE estimate 4D,0") =N 3>.;> . po, Pp(%i, Pas;)logpp(zi | Paz,)

‘D -Ii":Paxt'-
=N Zi Z;EE,PG,,,-J; pp(ﬂji, Pa;l’i) (log p;n[;vf)p;n(Pf::i) T Ingp(:Ei))

using the definition of mutual information = N Zi I’D (X.i’ PGXE-) — HD(Xz)



Score Based Methods: Likelithood scores for trees

Optimal solution for trees

likelihood score  4(D,0") = N ), Ip(Xi, Pax,) — Hp(X;)

l does not depend on structure

In(X;, X;)

structure Iearning algorithms use mutual information in the structure search:

¢ Chow-Liu algorithm: find the max-spanning tree:

B edge-weights = mutual information
® add direction to edges later X X)) —=B(X,X;)

O make sure each node has at most one parent (i.e., no v-structure)

Note: The distribution associated to the tree constructed by Chow-Liu algorithm is the one that is
closest to the distribution associated to the data as measured by the Kullbach-Leibler divergence -
in case of no missing data, discrete variables, and iid data.

https://de.slideshare.net/vangjee/a-quick-introduction-to-the-chow-liu-algorithm



Score Based Methods: Bayesian scores

Bayesian Score for BayesNets

Bayesian about both structure G and parameters 6

P(G|D) x P(D|G)P(G) 10% scores(G, D) = log P(D|G) + log P(G)

l

fg -0 D‘ﬁ g) (9 \ Q)d9 marginal likelihood forastructureg

laswming local and global parameter independence for large sample size

) ) . ) any exp-family member
factorizes to the marginal likelihood of each node
for Dirichlet-multinomial has closed form

#parameters

Bayesian Information Criterion (BIC) scores (G, D) ~ (D, 0%g) — 5 log(|D|) K
Akaike Information Criterion (AIC) UD,Fg)— 5K



Bayesian Statistics

Central in Bavesian statistics is Baves theorem, which can be written as follows:
w(8|z) o< flz|B)=(H).

Given the likelithood function f(z|f) and the prior =(#), it is easy to calculate the posterior
distribution of #, m(#|z ), whicl is used for doing inference. Animportant problem in Bayesian
analvsis is how to define the prior distribution. I prior information about the parameter # is
available, it should be incorporated in the prior density, If we have no prorinformation, we

want a prior with minimal influence on the inference. We call such a prior a noninformative

prior,

The Dirichlet distribution is a conjugate prior for the multinomial distribution. This means that if the
prior distribution of the multinomial parameters is Dirichlet then the posterior distribution is also a
Dirichlet distribution (with parameters different from those of the prior). The benefit of this is that
(a) the posterior distribution is easy to compute and (b) it in some sense is possible to quantify how
much our beliefs have changed after collecting the data.

https://en.wikipedia.org/wiki/Dirichlet distribution



https://en.wikipedia.org/wiki/Dirichlet_distribution

Example: Dirichlet Bayesian Equivalent Uniform Score

Model Averaging

We first consider P(Bg, D) to be the marginalization of P(Bg, Bp, D)
over all possible parameters B p.

P(Bs.D) = [, P(Bs.Bp.D)dBp

= P(D | Bs,Bp) P(Bs, Bp)dBp
P

= [, P(D|Bs Bp) {(Bp | Bs)P(Bs)dBp

= PBs) [ PWD|BsB Bp|Bs) dB
.( ‘5) - (. '| Bs. Bp)  {(Bp | s) p
A priori prob. Likelihood of D Parameter densities
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Score Based Algorithms: Bayesian Dirichlet Score

The a priori distribution P(Bg) can be used to bias the evaluation measure to-
wards user-specific network structures.

Substitute the likelihood P(D | Bg, Bp) for its specific form:

n 4q; 7T;

ITII I

Li= I 5=1 k=1
P(D|Bs,Bp)

P(Bs,D) = / f(Bp | Bg) dBp
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Score Based Algorithms: Bayesian Dirichlet Score

The parameter densities f(Bp | Bg) describe the probabilities of the parameters
oiven a network structure.

They are densities of second order (distribution over distributions)

For fixed i and j, a vector (6; jlo s ,0jr;) represents a probability distribution,
namely the j-th column of the i-th potentlal table.

Assuming mutual independence between the potential tables, we arrive
for f(Bp | Bg) at the following:

T q;

fBp|Bs) = 1111 f6ij,---,bijr,)

==l
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Score Based Algorithms: Bayesian Dirichlet Score
Thus, we can further concretize the equation for P(Bg, D):

=1 4=1 k=1 =17=

no 4 Ty no g
P(BSD) e BS / / l]:[ H H QOEJR] [H H f B s 92]?“) dfq11, ... ?dgnann
?,jk

Q;
= P(Bg) H H f / [H ngik] ?]1. or :Qij?’gﬁ) d@z’jl: b adeij-r?;

=1 =
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Score Based Algorithms: Bayesian Dirichlet Score

A last assumption: For fixed 7 and j the density f(6;;1....,0;j;) is uniform:
f(gljl ----- 91]?‘ ) = (ri —1)!

[t simplifies P(Bg, D) further:

==

P(Bg,D) = P(Bg) HH/ f[]‘[ 9,_,;;31“] ri — 1)1 d6;1, . .., 0y,
zgk

=1 4=

n 4
= P(By)[] H 1) / / Hf’gffl‘ db;1,. .., dby,.
ZJL o=

Dirichlet’s integral =
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Score Based Algorithms: Bayesian Dirichlet Score

We finally arrive at an expression for P(Bg, D):

n 4q;

P(Bs,D) = KxBs|D) = PBs)IIII f\ — H i
=1 3=l ] t

n number of attributes describing the domain under consideration

T number of values of the i-th attribute A;, i.e., r; = |dom(A4;)]

i number of instantiations of the parents of the i-th attribute in & :

1.€., q; = HAjEpa.rentS(Az-) = HAjEpa.rentS(Ai) |dom(A;)|
;). number of sample cases in which the ¢-th attribute has its k-th value

and its parents in G have their j-th instantiation

.
Nij =D aijk
=1
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Score Based Algorithms: Bayesian Dirichlet Score

Global — Refers to the outer product: The total value of the K2 metric is the
product over all K2 values of attribute families.

Local - The likelihood equation assumes that given a parents instantiation, the
probabilities for the respective child attribute values are mutual independent. This
is reflected in the product over all ¢; different parent attributes’ value combinations
of attribute A;.

We exploit the global property to write the K2 metric as follows:

n
K2(Bs | D) = P(Bg) || K2ipcal(4; | D)
—1
with
d;
K2 (4; | D = %
local 2| ) H T\zj‘i‘fz H fjk
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Score Based Algorithms: Bayesian Dirichlet Score

Prerequisites:
Choose a topological order on the attributes (A, ..., Ap)
Start out with a network that consists of n isolated nodes.
Let (; be the quality of the i-th attribute given the (tentative) set of parent
attributes M:

G(M) =K21,00(A; | D) with parents(A4;) = M

Rudolf Kruse Bayesian Networks



Score Based Algorithms: Bayesian Dirichlet Score

Execution:

1. Determine for the parentless node A; the quality measure ;(0)

’ 7

the quality measure would increase. Let Y be the node that yields the highest

2. Evaluate for every predecessor {41, ..., A;_1} whether inserted as parent of A;,

quality (increase):

Y = argmax (;({4;})
1<I<i—1

This best quality measure be ¢ = (;({Y'}).

3. If ¢ is better than (;(0), Y is inserted permanently as a
parent node: parents(A;) = parents(A4;) U{Y}

4. Repeat steps 2 and 3 to increase the parent set until no quality increase can be
achieved or no nodes are left or a predefined maximum number of parent nodes
per node is reached.

Rudolf Kruse Bayesian Networks



Score Based Algorithms: Bayesian Dirichlet Score

. for i < 1...n do / Initialization
parents(A;) < ()

2:
5. end for
+ for i < n,...,1 do // Iteration

repeat

6 Select Y € {A4;,..., A;_1} \ parents(A4;),

) J

which maximizes ¢ = (;(parents(A;) U {Y})
§ ¢ — i(parents(Ay))

g |

=]

8: if 0 > 0 then

0 parents(A;) < parents(A;) U{Y'}

10: end if

n: until 0 < 0 or parents(A4;) = {A1,...,A;_1} or |parents(A4;)| = nmax
2. end for

Rudolf Kruse Bayesian Networks



Demo of K2 Algorithm

© ®
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© «

—43942.99 —43950.53
Step 1 - Edgeless Step 2 — Insert M
graph temporarily.
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—43949.30

Step 3 — Insert KA
temporarily.
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—43942.48

Step 4 — Node L
maximizes K2 value
and thus is added
permantently.



Demo of K2 Algorithm

—43964.12

Step 5 — Insert M
temporarily.
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()

—43933.71

Step 6 — KA is
added as second

par- ent node of
KV.

—43995.02

Step 7 — M does not
increase the quality
of the network if in-
sertes as third parent
node.

Bayesian Networks

—13492.08

Step 8 — Insert KA
temporarily.



Demo of K2 Algorithm
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Step 9 — Node L be-
comes parent node
of M.
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—10903.39

Step 10 — Adding

KA does not
crease overall
work quality.

in-
Net-

—39190.67

Step 11 — Node L
becomes parent
node of KA.
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State of the Art Procedure for Structure Learning

Step 1 Feature Selection
To support feature selection, the p-value of the test for marginal independence is computed.
The p-value is the tail probability under the independence assumption.

The higher the value the more likely the nodes are to be independent.

Step 2 Structure constraints
Specification of any known dependences or independences in the data set

Step 3 Structure Learning
NPC, PC, Greedy search and score, Chow-Liu Tree, Rebane Pearl Polytree,
Tree augmented Naive Bayes mit Scores AIC, BIC

Step 4 Structure Uncertainty

The structure learning algorithms (e.g. NPC algorithm) contains ambiguous regions
(i.e., groups of inter-dependent uncertain links) and/or other undirected links. There are
intuitive graphical interfaces for resolving these structural uncertainties.

Step 5 Data Dependences

Detect relative strenght of the dependences found in the data, use these information
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