

Computational Intelligence in Games Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn

Summer 2017

3. Exercise Sheet

Assignment 14 Monte Carlo method

In Monte Carlo method, if we start with a deterministic π , some/many (s, a)-pairs will never be visited! How can we make sure that (almost) all pairs are visited?

Assignment 15 Race track (MC)

- States: grid squares, velocity horizontal and vertical
- Rewards: -1 on track, -5 off track
- Only the right turns allowed
- Actions: +1, -1, 0 to velocity
- 0 <Velocity < 2 in each direction
- Stochastic: 50% of the time it moves 1 extra square up or right
- Goal: reach the finish line as fast as possible without leaving the track
- No discounting $(\gamma = 1)$
- Return for each state is the negative number of steps to go from that state
- V(s): predicted negative number of steps

Finish line 23 24 25 26 27 18 19 20 21 22 14 15 16 35 10 11 12 13 5 6 7 8 9 0 1 2 5 4	Finish line 23 24 25 26 27 18 19 20 21 22 14 15 16 17 10 11 12 13 5 6 7 8 9 0 1 2 5 2	23 24 25 26 27 18 19 20 21 22 14 15 16 17 10 1.1 1.2 1.3 5 5 7 8 9 2 2 5 5 7	23 24 25 26 27 18 19 20 21 22 14 15 16 77 10 11 12 14 5 5 7 8 9 1 2 5 5 7 1 2 5 5 7 1 2 5 5 7 5 5 7 8 9 5 5 7 8 9 5 5 7 8 9 5 5 7 8 9 5 5 7 8 9 5 5 7 8 9 6 1 2 5 5
You start from cell 2 with no velocity	After one move, west wind brings you to cell 4 (instead of 3)	You stay in cell 4	A wind from south mo- ves you to cell 13 (ins- tead of 9)
Estimated return of -3	Estimated return of $-4 \rightarrow 5$ steps in total	Estimated return of $-3 \rightarrow 5$ steps in total	Estimated return of -1 $\rightarrow 4$ steps in total
You add +1 to hori- zontal velocity.	You add -1 to hori- zontal velocity.	You add +1 to verti- cal velocity.	You add +1 to hori- zontal velocity.
	Reward -1	Reward -1	Reward -1
State = (2, 0, 0)	State = $(4, 1, 0)$	State = $(4, 0, 0)$	State = $(13, 0, 1)$ Final State = $(17, 1, 1)$

Computational Intelligence in Games Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn

a) Complete the table below for the Race track example:

State $s(cell, h, v)$	Rewards so far	$ \qquad G_t$	V(s)	
(2, 0, 0)	0	-3	-3	
(4, 1, 0)				
(4, 0, 0)				
(13, 0, 1)				
(17, 1, 1)				

b) Compute an iteration of Monte Carlo with $\alpha = 0.5$ for the Race track example

Iteration	K = 0	$K = 1, \ (\alpha = 0.5)$
$G_t(13, 0, 1) \ V(13, 0, 1)$		

Assignment 16 Race track (TD)

Compute an iteration of TD(0) with $\alpha = 0.5$ for the Race track example

Iteration	K = 0	$K = 1, (\alpha = 0.5)$	Error δ
$V(2,0,0), R_1 = -1$			
$V(4,1,0), R_2 = -1$			
$V(4,0,0), R_3 = -1$			
$V(13,0,1), R_4 = -1$			