Computational Intelligence in Games
Summer 2017
Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn

3. Exercise Sheet

Assignment 14 Monte Carlo method

In Monte Carlo method, if we start with a deterministic π, some/many (s, a)-pairs will never be visited! How can we make sure that (almost) all pairs are visited?

Assignment 15 Race track (MC)

- States: grid squares, velocity horizontal and vertical
- Rewards: -1 on track, -5 off track
- Only the right turns allowed
- Actions: $+1,-1,0$ to velocity
- $0<$ Velocity <2 in each direction
- Stochastic: 50% of the time it moves 1 extra square up or right
- Goal: reach the finish line as fast as possible without leaving the track
- No discounting $(\gamma=1)$
- Return for each state is the negative number of steps to go from that state
- $\mathrm{V}(\mathrm{s})$: predicted negative number of steps

Computational Intelligence in Games
Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn
a) Complete the table below for the Race track example:

State $s($ cell, $h, v)$	Rewards so far	G_{t}	$\mathrm{~V}(\mathrm{~s})$
$(2,0,0)$	0	-3	-3
$(4,1,0)$			
$(4,0,0)$			
$(13,0,1)$			
$(17,1,1)$			

b) Compute an iteration of Monte Carlo with $\alpha=0.5$ for the Race track example

Iteration	$K=0$	$K=1,(\alpha=0.5)$
$G_{t}(2,0,0)$		
$V(2,0,0)$		
$G_{t}(4,1,0)$		
$V(4,1,0)$		
$G_{t}(4,0,0)$		
$V(4,0,0)$		
$G_{t}(13,0,1)$		
$V(13,0,1)$		

Assignment 16 Race track (TD)

Compute an iteration of $T D(0)$ with $\alpha=0.5$ for the Race track example

Iteration		$K=0$	$K=1,(\alpha=0.5)$
$V(2,0,0)$,	$R_{1}=-1$		
$V(4,1,0)$,	$R_{2}=-1$		Error δ
$V(4,0,0)$,	$R_{3}=-1$		
$V(13,0,1)$,	$R_{4}=-1$		

