

Computational Intelligence in Games Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn

5. Exercise Sheet

Assignment 27 Methods for solving MOPs

- a) Describe the basic structure of one a priori method for solving MOPs. Name its advantages and disadvantages.
- b) Describe the basic structure of one a posteriori method for solving MOPs. Name its advantages and disadvantages.

Assignment 28 Ranking method

Rank all the particles in terms of the number of superior individuals by which they are dominated.

- a) In the following set of solutions shown in the objective space (assuming minimization of both objectives), identify the different nondominated fronts of solutions by using the concept of the NSGA-II algorithm.
- b) Which solutions will be selected for the next population using crowding distance if we have a population size of 8?

Computational Intelligence in Games Prof. Dr. Sanaz Mostaghim, Alexander Dockhorn

Assignment 30 Marginal Hypervolume

a)	Which one of the following solutions has the largest marginal HV?	х	у
b)	Which one of the following solutions has the smallest marginal HV?	0.1	2.4
	f_{2}	0.2	2.3
	Reference Point	0.4	2.2
		0.7	1.5
		1.4	1.2
		1.6	1.0
		1.9	0.9
		2.1	0.8
		3.4	0.1
		3.5	2.4
	f_1		

Assignment 31 Hypervolume

Suppose we are comparing two sets A and B with each other. For which one of the following scenarios the following inequality can be true: HV(A) < HV(B)?

