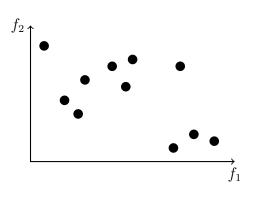
Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau

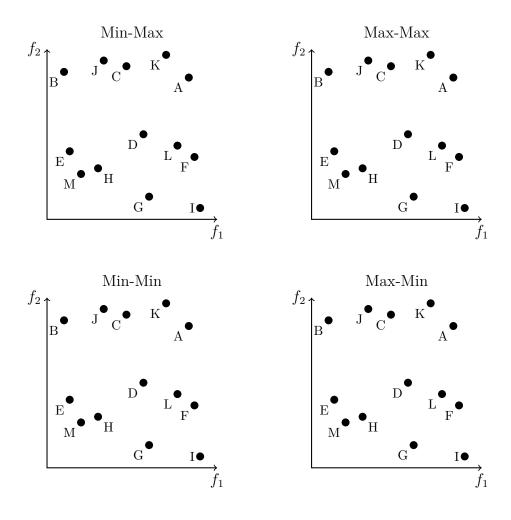

6. Exercise Sheet

Exercise 1 Methods for solving MOPs

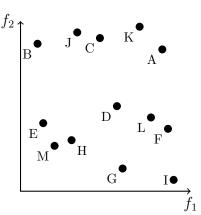
- a) Describe the basic structure of one a priori and one a posteriori method for solving MOPs. Name their advantages and disadvantages.
- b) Explain why it is impossible for the Weighted Sum Method to report points that are not on point set's convex hull.

Exercise 2 Ranking method

- a) Rank all the particles in terms of the number of superior individuals by which they are dominated when both features need to be minimized.
- b) This measure in the first subtask does only optimize the convergence of the pareto-front. Name and describe an alternative method, which takes the divergence of solutions into account.
- c) Explain the importance of knee points. How can the dominance criterion be modified to extract them using a ranking method?


See the next two pages for the remaining tasks!

Computational Intelligence in Games


Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau

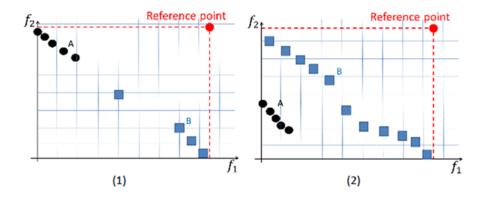
Exercise 3 Pareto-Fronts and NSGA-II

a) Determine the Pareto-Front for all combinations of minimization and maximization of features f_1 and f_2 . You can just mark the individuals of the Pareto-Front in each of the following plots.

- b) In the following set of solutions shown in the objective space (assuming minimization of both objectives), identify the different nondominated fronts of solutions by using the concept of the NSGA-II algorithm.
- c) Which solutions will be selected for the next population using crowding distance if we have a population size of 8?

Computational Intelligence in Games

Sanaz Mostaghim, Alexander Dockhorn, Christian Wustrau


Exercise 4 Marginal Hypervolume

	х	У
a) Which one of the following solutions has the largest marginal HV?	0.2	2.3
b) Which one of the following solutions has the smallest marginal HV?	0.4	2.2
f_2 \uparrow D f_2 h	0.7	1.5
Reference Point	1.4	1.2
	1.6	1.0
	1.9	0.9
•	2.1	0.8
•••	3.4	0.1
	3.5	2.5
$\overbrace{\hspace{1.5cm}}^{\bullet}\overbrace{\hspace{1.5cm}}^{\bullet}\overbrace{\hspace{1.5cm}}^{\bullet}_{f_{1}}$		

Exercise 5 Hypervolume

Suppose we are comparing two sets of non-dominated points A and B with each other using their hypervolume.

- a) For which of the following scenarios can the following inequality be true: HV(A) < HV(B)? Remember that the hypervolume needs to be computed on all points (A=•, B =).
- b) How does the position of the reference point influence the comparison of A and B?

