

# **Evolutionäre Algorithmen**

**Kapitel 4: Operatoren** 

Sanaz Mostaghim
Lehrstuhl für Intelligente Systeme
SS 2016

### **Outline**

#### **Motivation**

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

**Selbstanpassende Algorithmen** 

Zusammenfassung

# Variation durch Mutation [Weicker, 2007]

- Variationen (Mutationen): kleine Veränderungen in der Biologie
- Mutationsoperator: ändert möglichst wenig am Lösungskandidaten bzgl. Fitnessfunktion

- ▶ im Folgenden: Untersuchung im Zusammenspiel mit Selektion
- hier: Verhalten eines einfachen Optimierungsalgorithmus auf sehr einfachem Optimierungsproblem (Abgleich mit einem vorgegebenen Bitmuster)

# Bedeutung der Mutation

### **Exploration oder Erforschung**

- stichprobenartiges Erkunden
- auch: weiter entfernte Regionen des Suchraums

### **Exploitation oder Feinabstimmung**

- ▶ lokale Verbesserung eines Lösungskandidaten
- wichtig: Einbettung der phänotypischen Nachbarschaft

### **Binäre Mutation**

### Algorithm 1 Binäre Mutation

```
Input: Individuum A mit A.G \in \{0,1\}^I
Output: Individuum B
B \leftarrow A
for i \in \{1, \dots, I\} {
u \leftarrow wähle zufällig gemäß U([0,1))
if u \leq p_m {
B.G_i \leftarrow 1 - A.G_i
}
return B
```

### **Gauß-Mutation**

### alternative reellwertige Mutation

- direkt auf den reellwertigen Zahlen
- Addition einer normalverteilten Zufallszahl auf jede Komponente

### Algorithm 2 Gauß-Mutation

```
Input: Individuum A mit A.G \in \mathbb{R}^I
Output: Individuum B
for i \in \{1, \dots, I\} {
u_i \leftarrow wähle zufällig gemäß N(0, \sigma) /* Standardabweichung \sigma
*/
B_i \leftarrow A_i + u_i
B_i \leftarrow \max\{B_i, ug_i\} /* untere Wertebereichsgrenze ug_i */
B_i \leftarrow \min\{B_i, og_i\} /* obere Wertebereichsgrenze og_i */
}
return B
```

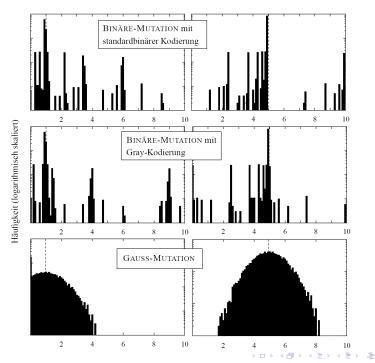
# Vergleich der Mutationsverfahren

#### Ansatz

Optimierung der einfachen Funktion

$$f_2(x) = \begin{cases} x & \text{falls } x \in [0, 10] \subset \mathrm{I\!R}, \\ \text{undef.} & \text{sonst} \end{cases}$$

- zwei Elternindividuen (1.0 und 4.99)
- nwendung von drei Mutationsoperatoren auf diese beiden Individuen , jeweils 10000 Mal
- ightharpoonup Häufigkeitsverteilungen (bei Gauss-Mutation  $\sigma=1$ )



# Vergleich der Mutationsverfahren

- ▶ Gauss-Mutation mit kleinem  $\sigma$  sehr gut für Exploitation
- ightharpoonup mit großem  $\sigma$  sehr breite Erforschung
- $\blacktriangleright$  binäre Mutation detektiert schneller interessante Regionen in  $\Omega$

- binäre Mutation eines GA hat mehrerer verteilte Schwerpunkte
- Hamming-Klippen = Brüche in Häufigkeitsverteilung
- Gray-Kodierung schafft es, phänotypische Nachbarn einzubinden
- tendiert dennoch zu einer Seite des Suchraums

# **Genetische Operatoren**

- werden auf bestimmten Teil ausgewählter Individuen (Zwischenpopulation) angewandt
- Erzeugung von Varianten und Rekombinationen bestehender Lösungskandidaten
- allgemeine Einteilung genetischer Operatoren nach Zahl der Eltern:
  - Ein-Elter-Operatoren ("Mutation")
  - Zwei-Elter-Operatoren ("Crossover")
  - Mehr-Elter-Operatoren
- genetischen Operatoren haben bestimmte Eigenschaften (abhängig von Kodierung)
  - wenn Lösungskandidaten Permutationen sind, dann permutationserhaltende genetische Operatoren verwenden
  - allgemein: falls bestimmte Allelkombinationen unsinnig sind, sollten sie vermieden werden



### **Outline**

#### Motivation

### Ein-Elter-Operatoren

Standardmutation und Zweiertausch Operationen auf Teilstücke

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Zusammenfassung

### Standardmutation und Zweiertausch

#### • Standardmutation:

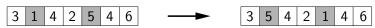
Austausch der Ausprägung eines Gens durch anderes Allel



- ggf. werden mehrere Gene mutiert (vgl. n-Damen-Problem)
- Parameter: Mutationswahrscheinlichkeit  $p_m$ ,  $0 < p_m \ll 1$  für Bitstrings der Länge / ist  $p_m = 1/I$  annähernd optimal

#### • Zweiertausch:

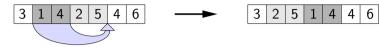
Austausch der Ausprägungen zweier Gene eines Chromosoms



- Voraussetzung: gleiche Allelmengen der ausgetauschten Gene
- Verallgemeinerung: zyklischer Tausch von 3, 4, ..., k Genen

# Operationen auf Teilstücke

• Verschieben eines Teilstücks:



• Mischen/Permutieren eines Teilstücks:

• Umdrehen/Invertieren eines Teilstücks:



- Voraussetzung: gleiche Allelmengen im betroffenen Bereich
- Parameter: ggf. W'keitsverteilung über Längen (und Verschiebungsweiten für Verschieben eines Teilstücks)

### **Outline**

#### **Motivation**

### Ein-Elter-Operatoren

### Zwei- oder Mehr-Elter-Operatoren

Ein-Punkt- und Zwei-Punkt-Crossover n-Punkt- und uniformes Crossover Shuffle Crossover Permutationserhaltende Crossover

Diagonal-Crossover

Charakterisierung

Charakterisierung

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen



### Ein-Punkt- und Zwei-Punkt-Crossover

#### Ein-Punkt-Crossover

- Bestimmen eines zufälligen Schnittpunktes
- Austausch der Gensequenzen auf einer Seite des Schnittpunktes



#### Zwei-Punkt-Crossover

- Bestimmen zweier zufälliger Schnittpunkte
- Austausch der Gensequenzen zwischen den beiden Schnittpunkten



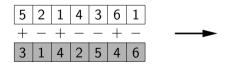
### n-Punkt- und uniformes Crossover

#### n-Punkt-Crossover

- Verallgemeinerung des Ein- und Zwei-Punkt-Crossover
- Bestimmen von *n* zufälligen Schnittpunkten
- Abwechselndes Austauschen / Nicht-Austauschen der Gensequenzen zwischen zwei aufeinanderfolgenden Schnittpunkten

#### **Uniformes Crossover**

für jedes Gen: bestimme ob es getauscht wird oder nicht (+: ja,
 -: nein, Parameter: W'keit p<sub>x</sub> für Austausch)



 3
 2
 4
 4
 3
 4
 1

 5
 1
 1
 2
 5
 6
 6

ullet Beachte: uniformes Crossover entspricht nicht dem (I-1)-Punkt-Crossover! Zahl der Crossoverpunkte ist zufällig

### **Shuffle Crossover**

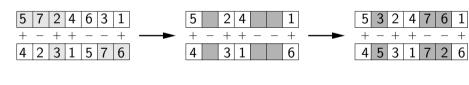
- vor Ein-Punkt-Crossover: zufälliges Mischen der Gene
- danach: Entmischen der Gene

| Mise        | chen    | Crossover | Entmis  | chen        |
|-------------|---------|-----------|---------|-------------|
| 5 2 1 4 3 6 | 4 2 6 3 | 5 1 4 2   | 6 5 3 4 | 3 2 4 4 5 6 |
| 1 2 3 4 5 6 | 4 2 6 5 | 1 3 4 2   | 6 5 1 3 | 1 2 3 4 5 6 |
| 3 1 4 2 5 4 | 2 1 4 5 | 3 4 2 1   | 4 3 5 1 | 5 1 1 2 3 4 |

- Shuffle Crossover ist nicht äquivalent zum uniformen Crossover!
  iede Anzahl von Vertauschungen von Genen zwischen
- jede Anzahl von Vertauschungen von Genen zwischen Chromosomen ist gleichwahrscheinlich
- ullet uniformen Crossover: Anzahl ist binomialverteilt mit Parameter  $p_{x}$
- Shuffle Crossover: eines der empfehlenswertesten Verfahren

# **Uniformes ordnungsbasiertes Crossover**

- ähnlich wie uniformes Crossover: entscheide für jedes Gen, ob es erhalten bleibt oder nicht
  (+: ja, -: nein, Parameter: W'keit p<sub>k</sub> für Erhalt)
- fülle Lücken durch fehlende Allele auf (in Reihenfolge der Vorkommen im anderen Chromosom)



- erhält Reihenfolgeinformation
- alternativ: Erhalten der "+" bzw. "—" markierten Gene im einen bzw. anderen Chromosom

# Kantenrekombination (speziell für TSP)

- Chromosom wird als Graph (Kette oder Ring) aufgefasst jedes
   Gen besitzt Kanten zu seinen Nachbarn im Chromosom
- Kanten der Graphen zweier Chromosomen werden gemischt, daher Name
- erhält Nachbarschaftsinformation

### Vorgehen: 1. Aufbau einer Kantentabelle

- liste zu jedem Allel seine Nachbarn (in beiden Eltern) (ggf. erstes und letztes Gen des Chromosoms benachbart)
- ► falls ein Allel in beiden Eltern gleichen Nachbarn (Seite irrelevant), dann liste diesen Nachbar nur 1x auf (aber markiert)

### Vorgehen: 2. Aufbau eines Nachkommen

- wähle erstes Allel zufällig aus einem der beiden Eltern
- lösche ausgewähltes Allel aus Kantentabelle (aus Listen der Nachbarn der Allele)
- wähle jeweils nächstes Allel aus den noch nicht gelöschten Nachbarn des vorangehenden mit folgender Priorität:
  - 1. markierte (d.h. doppelt auftretende) Nachbarn
  - 2. Nachbarn mit kürzester Nachbarschaftsliste (wobei markierte Nachbarn einfach zählen)
  - 3. zufällige Auswahl eines Nachbarn

Erzeugung des zweiten Nachkommen analog aus erstem Allel des anderen Elter (meist jedoch nicht gemacht)



### Beispiel:

A: 6 3 1 5 2 7 4 B: 3 7 2 5 6 1

#### Aufbau der Kantentabelle

|       | Nachbarn    |            |                 |
|-------|-------------|------------|-----------------|
| Allel | in <b>A</b> | in ${f B}$ | zusammengefasst |
| 1     | 3, 5        | 6, 4       | 3, 4, 5, 6      |
| 2     | 5, 7        | 7, 5       | 5*, 7*          |
| 3     | 6, 1        | 4, 7       | 1, 4, 6, 7      |
| 4     | 7, 6        | 1, 3       | 1, 3, 6, 7      |
| 5     | 1, 2        | 2, 6       | 1, 2*, 6        |
| 6     | 4, 3        | 5, 1       | 1, 3, 4, 5      |
| 7     | 2, 4        | 3, 2       | 2*, 3, 4        |

- beide Chromosomen =
   Ring (erstes und letztes
   Gen benachbart): in A ist
   4 linker Nachbar der 6, 6
   ist rechter Nachbar der 4;
   B analog
- in beiden: 5, 2 und 7 stehen nebeneinander – sollte erhalten werden (siehe Markierungen)

#### Aufbau eines Nachkommen

6 5 2 7 4 3 1

| Allel | Nachbarn   | Wahl: 6    | 5        | 2       | 7    | 4    | 3 | 1 |
|-------|------------|------------|----------|---------|------|------|---|---|
| 1     | 3, 4, 5, 6 | 3, 4, 5    | 3, 4     | 3, 4    | 3, 4 | 3    |   |   |
| 2     | 5*, 7*     | 5*, 7*     | 7*       | 7*      |      | _    |   | _ |
| 3     | 1, 4, 6, 7 | 1, 4, 7    | 1, 4, 7  | 1, 4, 7 | 1, 4 | 1    | 1 | _ |
| 4     | 1, 3, 6, 7 | 1, 3, 7    | 1, 3, 7  | 1, 3, 7 | 1, 3 | 1, 3 |   | _ |
| 5     | 1, 2*, 6   | 1, 2*      | 1, 2*    | _       | _    | _    | _ | _ |
| 6     | 1, 3, 4, 5 | 1, 3, 4, 5 | _        | 1       |      | _    |   | _ |
| 7     | 2*, 3, 4   | 2*, 3, 4   | 2*, 3, 4 | 3, 4    | 3, 4 | _    | _ | _ |

- starte mit erstem Allel des Chromosoms A ( also 6) und streiche 6 aus allen Nachbarschaftslisten (dritte Spalte)
- ▶ da unter Nachbarn der 6 (1, 3, 4, 5) die 5 kürzeste Liste hat, wird 5 für zweites Gen gewählt
- dann folgt die 2, die 7 usw.



- Nachkomme hat meist neue Kante (vom letzten zum ersten Gen)
- kann auch angewendet werden, wenn erstes und letztes Gen nicht als benachbart gelten: Kanten werden dann nicht in Kantentabelle aufgenommen
- sind erstes und letztes Gen benachbart, dann Startallel beliebig falls nicht, dann ein am Anfang stehendes Allel
- Aufbau eines Nachkommen: es ist möglich, dass Nachbarschaftsliste des gerade ausgewählten Allels leer (Prioritäten sollen W'keit dafür gering halten; sind aber nicht perfekt)
  - in diesem Fall: zufällige Auswahl aus den noch übrigen Allelen

# Drei- und Mehr-Elter-Operatoren

### Diagonal-Crossover

- ▶ ähnlich wie 1-, 2- und *n*-Punkt-Crossover, aber für mehr Eltern
- bei drei Eltern: zwei Crossover-Punkte
- verschiebt Gensequenzen an Schnittstellen über Chromosomen diagonal und zyklische



- ▶ Verallgemeinerung auf > 3 Eltern: wähle für k Eltern k − 1 Crossover-Punkte
- ▶ führt zu sehr guter Durchforstung des Suchraums, besonders bei großer Elternzahl (10–15 Eltern)

# **Charakterisierung von Crossover-Operatoren**

### Ortsabhängige Verzerrung (engl. positional bias):

- falls W'keit, dass 2 Gene zusammen vererbt werden (im gleichen Chromosom bleiben, zusammen ins andere Chromosom wandern) von ihrer relativen Lage im Chromosom abhängt
- unerwünscht, weil Anordnung der Gene im Chromosom entscheidenden Einfluss auf Erfolg/Misserfolg des EA haben (bestimmte Anordnungen lassen sich schwerer erreichen)

#### Beispiel: Ein-Punkt-Crossover

- ▶ 2 Gene werden voneinander getrennt (gelangen in verschiedene Nachkommen), falls Crossover-Punkt zwischen sie fällt
- ▶ je näher 2 Gene im Chromosom beieinander, desto weniger mögliche Crossover-Punkte gibt es zwischen ihnen
- ⇒ nebeneinanderliegende Gene werden mit höherer W'keit als entferntliegende in gleichen Nachkommen gelangen

# **Charakterisierung von Crossover-Operatoren**

### Verteilungsverzerrung (engl. distributional bias):

- ► falls Wahrscheinlichkeit, dass best. Anzahl von Genen ausgetauscht wird, nicht für alle Anzahlen gleich
- unerwünscht, weil Teillösungen unterschiedl. Größe unterschiedl. gute Chancen haben, in nächste Generation zu gelangen
- Verteilungsverzerrung meist weniger kritisch (d.h. eher tolerierbar) als ortabhängige Verzerrung
- Beispiel: uniformes Crossover
  - ▶ da jedes Gen unabhängig von allen anderen mit W'keit  $p_x$  ausgetauscht, Anzahl k der ausgetauschten Gene ist binomialverteilt mit Parameter  $p_x$ :

$$P(K = k) = \binom{n}{k} p_x^k (1-p_x)^{n-k}$$
 mit  $n = Gesamtzahl der Gene$ 

⇒ sehr kleine und sehr große Anzahlen sind unwahrscheinlicher



### **Outline**

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination Interpolierende Operatoren Extrapolierende Operatoren

Selbstanpassende Algorithmen

Zusammenfassung

### **Motivation**

- bisher: nur kombinierende Operatoren für Verknüpfung mehrerer Individuen
  - Ein-Punkt-, Zwei-Punkt- und n-Punkt-Crossover
  - Uniformes (ordnungsbasiertes) Crossover
  - Shuffle Crossover
  - Kantenrekombination
  - Diagonal-Crossover
- alle stark abhängig von Diversität der Population
- ightharpoonup erschaffen keine neuen Genbelegungen und können somit nur Teilbereiche von  $\Omega$  erreichen, die in Individuen der Population enthalten
- $\blacktriangleright$  hohe Diversität einer Population ist Zeichen für sehr gute Erforschung von  $\Omega$  durch kombinierende Operatoren

### Interpolierende Operatoren

- fügen Eigenschaften der Eltern zusammen, sodass die Eigenschaften des neuen Individuums zwischen denen der Eltern liegt
- lacktriangle dies führt zu geringerer Durchforstung von  $\Omega$
- interpolierende Rekombination konzentriert Population auf 1 Schwerpunkt
- ▶ fördert damit Feinabstimmung von sehr guten Individuen
- ightharpoonup um  $\Omega$  anfangs genügend zu erforschen: Verwenden einer stark zufallsbasierte, diversitätserhaltende Mutation

### **Arithmetischer Crossover**

- ▶ ist Beispiel für interpolierende Rekombination
- arbeitet auf reellwertigen Genotypen
- geometrisch: kann alle Punkte auf Strecke zwischen beiden Eltern erzeugen

### **Algorithm 3** Arithmetischer Crossover

**Input:** Individuen A, B mit  $A.G, B.G \in \mathbb{R}^I$ 

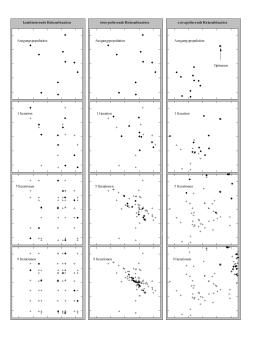
Output: neues Individuum C

- 1:  $u \leftarrow \text{ w\"{a}hle zuf\"{a}llig aus } U([0,1])$
- 2: **for**  $i \in \{1, ..., l\}$  {
- 3:  $C.G_i \leftarrow u \cdot A.G_i + (1-u) \cdot B.G_i$
- 4: }
- 5: return C

# **Extrapolierende Operatoren**

- Versuchen gezielt Information aus mehreren Individuen abzuleiten
- ► Erstellen eine Prognose, wo Güteverbesserungen zu erwarten sind
- lacktriangle Extrapolierende Rekombination kann bisherigen  $\Omega$  verlassen
- ▶ Ist einzige Art der Rekombination die Gütewerte benutzt
- ▶ Einfluss der Diversität ist hier schwer nachzuvollziehen
- ▶ Algorithmus: z.B. Arithmetisches Crossover mit  $u \in U([1,2])$

### Vergleich



- Vergleich der drei Rekombinationsarten
- Kreuze: Individuen vorheriger Iterationen
- Rauten: aktuelle Individuen

### **Outline**

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

### Selbstanpassende Algorithmen

Experiment anhand des TSP Lokalität des Mutationsoperators Anpassungsstrategien

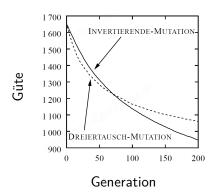
Zusammenfassung

# Selbstanpassende Algorithmen

 Idee: Rückkopplung vom Verlauf der Optimierung zur Wirkungsweise von Operatoren

- Experiment TSP (hier 51 Städte)
- Hillclimbing: nur Mutation, keine Rekombination
- Lokale Mutationsoperatoren:
  - Invertieren eines Teilstücks,
  - zyklischer Tausch dreier zufälliger Städte

### Einfluss des Stands der Suche



- ► Ein (vermeintlich ungeeigneter) Dreiertausch ist in den ersten 50 Generationen besser
- ▶ Deshalb: Analyse der relativen erwarteten Verbesserung als Maß dafür, welche Verbesserung ein Operator bringt



# Relative erwartete Verbesserung

#### **Definition**

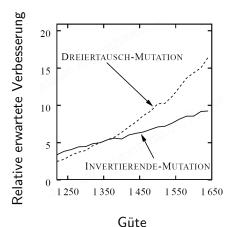
Die *Güteverbesserung* von einem Individuums  $A \in \mathcal{G}$  zu einem Individuum  $B \in \mathcal{G}$  wird definiert als

$$Verbesserung(A, B) = \begin{cases} |B.F - A.F| & \text{falls } B.F \succ A.F, \\ 0 & \text{sonst.} \end{cases}$$

Dann lässt sich die relative erwartete Verbesserung eines Operators Mut bzgl. Individuum A definieren als

$$\mathsf{relEV}_{\mathsf{Mut},\mathcal{A}} = E\left(\mathsf{Verbesserung}(\mathcal{A},\mathsf{Mut}^{\xi}(\mathcal{A})\right).$$

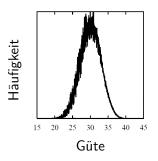
#### Einfluss des Stands der Suche

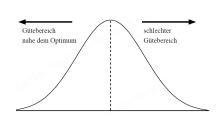


- Ermitteln der relativen erwarteten Verbesserung in unterschiedlichen Gütebereichen durch Stichproben aus Ω
- verantwortlich für dargestellten Effekt

## **Gesamter Suchraum**

• Wie häufig sind einzelne Fitnesswerte in  $\Omega$ ?

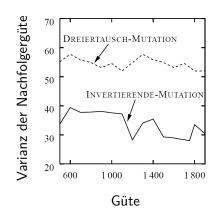




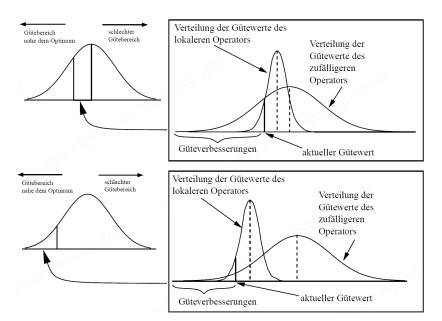
Dichteverteilung der Gütewerte eines einfachen TSP mit 11 Städten

## Varianz der erzeugten Güte

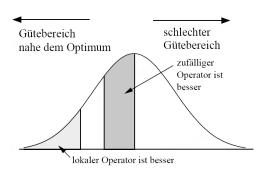
- wichtig ist, wie lokal Mutationsoperator arbeitet
- sehr lokal, erzeugt Gütewerte nahe der Güte des Elternindividuums
- wenig lokal, deckt größerer Bereich an Gütewerten ab



 invertierende Mutation ist über gesamten Gütebereich lokaler als Dreiertausch



# Ergebnis der Überlegungen



- Qualität eines Mutationsoperators kann nicht unabhängig vom aktuellen Güteniveau beurteilt werden
- Operator ist niemals optimal über gesamten Verlauf der Optimierung
- bei zunehmender Annäherung an Optimum: lokalere Operatoren!

# Anpassungsstrategien: 3 Techniken

## **Vordefinierte Anpassung:**

► lege Veränderung vorab fest

#### **Adaptive Anpassung:**

- erhebe Maßzahlen für Angepasstheit
- ▶ leite Anpassung von Regeln ab

## **Selbstadaptive Anpassung:**

- nutze Zusatzinformation im Individuum
- zufallsbasiert sollen sich Parameter individuell einstellen

# **Vordefinierte Anpassung**

#### Betrachtete Parameter:

- reellwertige Gauss-Mutation
- σ bestimmt durchschnittliche Schrittweite
- ▶ Modifikationsfaktor  $0 < \alpha < 1$  lässt  $\sigma$  exponentiell fallen

## Umsetzung:

## Algorithm 4 Vordefinierte Anpassung

**Input:** Standardabweichung  $\sigma$ , Modifikationsfaktor  $\alpha$ 

**Output:** angepasste Standardabweichung  $\sigma$ 

1: 
$$\sigma' \leftarrow \alpha \cdot \sigma$$

2: return 
$$\sigma'$$

# **Adaptive Anpassung**

7: return  $\sigma$ 

- Maß: Anteil der verbessernden Mutationen der letzten k Generationen
- ightharpoonup falls dieser Anteil "hoch" ist, soll  $\sigma$  vergrößert werden

## Algorithm 5 Adaptive Anpassung

**Input:** Standardabweichung  $\sigma$ , Erfolgsrate  $p_s$ , Schwellwert  $\theta$ , Modifikationsfaktor  $\alpha > 1$ 

```
Output: angepasste Standardabweichung \sigma
1: if p_s > \theta {
2: return \alpha \cdot \sigma
3: }
4: if p_s < \theta {
5: return \sigma/\alpha
6: }
```

## **Selbstadaption**

#### **Umsetzung:**

- ightharpoonup Speichern der Standardabweichung  $\sigma$  bei Erzeugung des Individuums als Zusatzinformation im Individuum
- das heißt, dass ein Strategieparameters verwendet wird (wird beim Mutieren leicht zufällig variiert)
- lacktriangle "gute" Werte für  $\sigma$  setzen sich durch bessere Güte der Kinder durch

## **Experimenteller Vergleich**

# Versuch mit verschiedenen Adaptionsverfahren [Weicker, 2007]

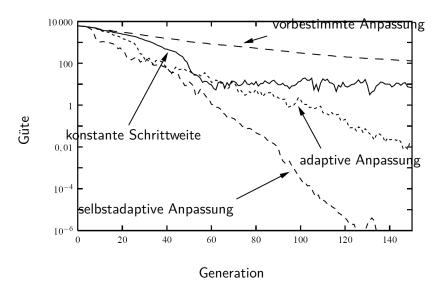
- 10-dimensionaler Suchraum
- Algorithmus: paralleler Hillclimber
- **b aber** pro Generation werden  $\lambda=10$  Kindindividuen erzeugt
- lacktriangle reellwertige Gauß-Mutation mit  $\sigma=1$
- Selektion der Besten von Eltern und Kindern
- $\theta = \frac{1}{5} \text{ und } \alpha = 1.224$

## Selbstadaptive Gauß-Mutation

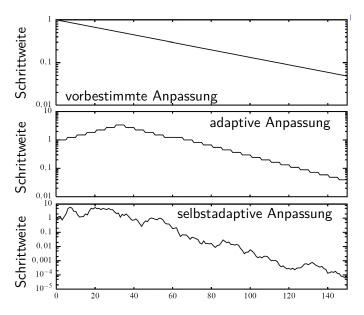
## **Algorithm 6** Selbstadaptive Gauß-Mutation

```
Input: Individuum A mit A.G \in \mathbb{R}^I
Output: variiertes Individuum B mit B.G \in \mathbb{R}^{I}
 1: u \leftarrow \text{ wähle zufällig gemäß } \mathcal{N}(0,1)
 2: B.S_1 \leftarrow A.S_1 \cdot \exp(\frac{1}{\sqrt{t}}u)
 3: for each i \in \{1, ..., l\} {
     u \leftarrow \text{wähle zufällig gemäß } \mathcal{N}(0, B.S_1)
 5: B.G_i \leftarrow A.G_i + u_i
 6: B.G_i \leftarrow \max\{B.G_i, ug_i\} /* untere Wertebereichsgrenze ug_i
 7: B.G_i \leftarrow \min\{B.G_i, ug_i\} /* obere Wertebereichsgrenze og_i
 8: }
 9: return B
```

## Ergebnis des Vergleichs



# Ergebnis des Vergleichs



## **Outline**

**Motivation** 

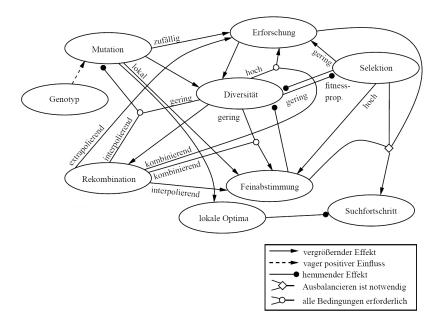
Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

**Selbstanpassende Algorithmen** 

Zusammenfassung



# Zusammenhänge I

| Bedingung     | Zielgröße     | Erwarteter Effekt                 |
|---------------|---------------|-----------------------------------|
| Genotyp       | Mutation      | Nachbarschaft des Mutationsope-   |
|               |               | rators wird beeinflüsst           |
| Mutation      | Erforschung   | zufällige Mutationen unterstützen |
|               |               | Erforschung                       |
| Mutation      | Feinabst.     | gütelokale Mutationen unterstüt-  |
|               |               | zen Feinabstimmung                |
| Mutation      | Diversität    | Mutation vergrößert Diversität    |
| Mutation      | lokale Optima | gütelokale Mutationen erhalten    |
|               |               | lokale Optima des Phänotyps (zu-  |
|               |               | fällige Mutationen können noch    |
|               |               | mehr einführen)                   |
| Rekombination | Erforschung   | extrapolierende Operatoren stär-  |
|               |               | ken Erforschung                   |
| Rekombination | Feinabst.     | interpolierende Operatoren stären |
|               |               | Feinabstimmung                    |

Zusammenhänge II

|   | Bedingung    | Zielgröße     | Erwarteter Effekt                                   |
|---|--------------|---------------|-----------------------------------------------------|
| ٠ | Div./Rekomb. | Mutation      | geringe Diversität und interpo-                     |
|   |              |               | lierende Rekombination dämpfen                      |
|   |              |               | Ausreißer der Mutation                              |
| - | Diversität   | Rekombination | hohe Diversität unterstützt Funk-                   |
|   |              |               | tionsweise der Rekombination                        |
| - | Selektion    | Erforschung   | geringer Selektionsdruck stärkt                     |
|   |              |               | Erforschung                                         |
|   | Selektion    | Feinabst.     | hoher Selektionsdruck stärkt Fein-                  |
|   |              |               | abstimmung                                          |
| - | Selektion    | Diversität    | Selektion verringert meist Diversi-                 |
|   |              |               | tät                                                 |
|   | Div./Rekomb. | Erforschung   | kombinierende Rekombination                         |
|   |              |               | stärkt Erforschung bei hoher                        |
|   |              |               | Diversität                                          |
|   | Div./Rekomb. | Feinabst.     | kombinierende Rekombination                         |
|   |              |               | stärkt Feinabstimmung bei hoher                     |
|   |              |               | Diversität , AB |

# Zusammenhänge III

| Bedingung       | Zielgröße       | Erwarteter Effekt                   |
|-----------------|-----------------|-------------------------------------|
| Erforschung     | Diversität      | erforschende Operationen erhöhen    |
|                 |                 | Diversität                          |
| Feinabst.       | Diversität      | feinabstimmende Operationen         |
|                 |                 | verringern Diversität               |
| Diversität      | Selektion       | geringe Diversität verringert Se-   |
|                 |                 | lektionsdruck der fitnessproportio- |
|                 |                 | nalen Selektion                     |
| lokale Optima   | Suchfortschritt | viele lokale Optima hemmen          |
|                 |                 | Suchfortschritt                     |
| Erf./Fein./Sel. | Suchfortschritt | Ausbalancieren der drei Faktoren    |
|                 |                 | ist notwendig                       |

# Literatur zur Lehrveranstaltung



Weicker, K. (2007).

Evolutionäre Algorithmen.

Teubner Verlag, Stuttgart, Germany, 2nd edition.