

Evolutionäre Algorithmen

Kapitel 4: Operatoren

Sanaz Mostaghim
Lehrstuhl für Intelligente Systeme
SS 2016

Outline

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Zusammenfassung

Variation durch Mutation [Weicker, 2007]

- Variationen (Mutationen): kleine Veränderungen in der Biologie
- Mutationsoperator: ändert möglichst wenig am Lösungskandidaten bzgl. Fitnessfunktion

- ▶ im Folgenden: Untersuchung im Zusammenspiel mit Selektion
- hier: Verhalten eines einfachen Optimierungsalgorithmus auf sehr einfachem Optimierungsproblem (Abgleich mit einem vorgegebenen Bitmuster)

Bedeutung der Mutation

Exploration oder Erforschung

- stichprobenartiges Erkunden
- auch: weiter entfernte Regionen des Suchraums

Exploitation oder Feinabstimmung

- ▶ lokale Verbesserung eines Lösungskandidaten
- wichtig: Einbettung der phänotypischen Nachbarschaft

Binäre Mutation

Algorithm 1 Binäre Mutation

```
Input: Individuum A mit A.G \in \{0,1\}^I
Output: Individuum B
B \leftarrow A
for i \in \{1, \dots, I\} {
u \leftarrow wähle zufällig gemäß U([0,1))
if u \leq p_m {
B.G_i \leftarrow 1 - A.G_i
}
return B
```

Gauß-Mutation

alternative reellwertige Mutation

- direkt auf den reellwertigen Zahlen
- Addition einer normalverteilten Zufallszahl auf jede Komponente

Algorithm 2 Gauß-Mutation

```
Input: Individuum A mit A.G \in \mathbb{R}^I
Output: Individuum B
for i \in \{1, \dots, I\} {
u_i \leftarrow wähle zufällig gemäß N(0, \sigma) /* Standardabweichung \sigma
*/
B_i \leftarrow A_i + u_i
B_i \leftarrow \max\{B_i, ug_i\} /* untere Wertebereichsgrenze ug_i */
B_i \leftarrow \min\{B_i, og_i\} /* obere Wertebereichsgrenze og_i */
}
return B
```

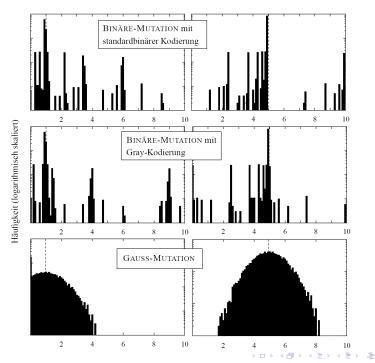
Vergleich der Mutationsverfahren

Ansatz

Optimierung der einfachen Funktion

$$f_2(x) = \begin{cases} x & \text{falls } x \in [0, 10] \subset \mathrm{I\!R}, \\ \text{undef.} & \text{sonst} \end{cases}$$

- zwei Elternindividuen (1.0 und 4.99)
- nwendung von drei Mutationsoperatoren auf diese beiden Individuen , jeweils 10000 Mal
- ightharpoonup Häufigkeitsverteilungen (bei Gauss-Mutation $\sigma=1$)



Vergleich der Mutationsverfahren

- ▶ Gauss-Mutation mit kleinem σ sehr gut für Exploitation
- ightharpoonup mit großem σ sehr breite Erforschung
- \blacktriangleright binäre Mutation detektiert schneller interessante Regionen in Ω

- binäre Mutation eines GA hat mehrerer verteilte Schwerpunkte
- Hamming-Klippen = Brüche in Häufigkeitsverteilung
- Gray-Kodierung schafft es, phänotypische Nachbarn einzubinden
- tendiert dennoch zu einer Seite des Suchraums

Genetische Operatoren

- werden auf bestimmten Teil ausgewählter Individuen (Zwischenpopulation) angewandt
- Erzeugung von Varianten und Rekombinationen bestehender Lösungskandidaten
- allgemeine Einteilung genetischer Operatoren nach Zahl der Eltern:
 - Ein-Elter-Operatoren ("Mutation")
 - Zwei-Elter-Operatoren ("Crossover")
 - Mehr-Elter-Operatoren
- genetischen Operatoren haben bestimmte Eigenschaften (abhängig von Kodierung)
 - wenn Lösungskandidaten Permutationen sind, dann permutationserhaltende genetische Operatoren verwenden
 - allgemein: falls bestimmte Allelkombinationen unsinnig sind, sollten sie vermieden werden

Outline

Motivation

Ein-Elter-Operatoren

Standardmutation und Zweiertausch Operationen auf Teilstücke

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Zusammenfassung

Standardmutation und Zweiertausch

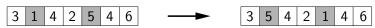
• Standardmutation:

Austausch der Ausprägung eines Gens durch anderes Allel

- ggf. werden mehrere Gene mutiert (vgl. n-Damen-Problem)
- Parameter: Mutationswahrscheinlichkeit p_m , $0 < p_m \ll 1$ für Bitstrings der Länge / ist $p_m = 1/I$ annähernd optimal

• Zweiertausch:

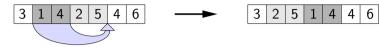
Austausch der Ausprägungen zweier Gene eines Chromosoms



- Voraussetzung: gleiche Allelmengen der ausgetauschten Gene
- Verallgemeinerung: zyklischer Tausch von 3, 4, ..., k Genen

Operationen auf Teilstücke

• Verschieben eines Teilstücks:



• Mischen/Permutieren eines Teilstücks:

• Umdrehen/Invertieren eines Teilstücks:

- Voraussetzung: gleiche Allelmengen im betroffenen Bereich
- Parameter: ggf. W'keitsverteilung über Längen (und Verschiebungsweiten für Verschieben eines Teilstücks)

Outline

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Ein-Punkt- und Zwei-Punkt-Crossover n-Punkt- und uniformes Crossover Shuffle Crossover Permutationserhaltende Crossover

Diagonal-Crossover

Charakterisierung

Charakterisierung

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Ein-Punkt- und Zwei-Punkt-Crossover

Ein-Punkt-Crossover

- Bestimmen eines zufälligen Schnittpunktes
- Austausch der Gensequenzen auf einer Seite des Schnittpunktes

Zwei-Punkt-Crossover

- Bestimmen zweier zufälliger Schnittpunkte
- Austausch der Gensequenzen zwischen den beiden Schnittpunkten

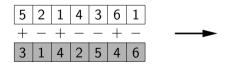
n-Punkt- und uniformes Crossover

n-Punkt-Crossover

- Verallgemeinerung des Ein- und Zwei-Punkt-Crossover
- Bestimmen von *n* zufälligen Schnittpunkten
- Abwechselndes Austauschen / Nicht-Austauschen der Gensequenzen zwischen zwei aufeinanderfolgenden Schnittpunkten

Uniformes Crossover

für jedes Gen: bestimme ob es getauscht wird oder nicht (+: ja,
 -: nein, Parameter: W'keit p_x für Austausch)



 3
 2
 4
 4
 3
 4
 1

 5
 1
 1
 2
 5
 6
 6

ullet Beachte: uniformes Crossover entspricht nicht dem (I-1)-Punkt-Crossover! Zahl der Crossoverpunkte ist zufällig

Shuffle Crossover

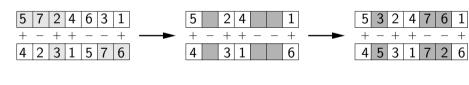
- vor Ein-Punkt-Crossover: zufälliges Mischen der Gene
- danach: Entmischen der Gene

Mise	chen	Crossover	Entmis	chen
5 2 1 4 3 6	4 2 6 3	5 1 4 2	6 5 3 4	3 2 4 4 5 6
1 2 3 4 5 6	4 2 6 5	1 3 4 2	6 5 1 3	1 2 3 4 5 6
3 1 4 2 5 4	2 1 4 5	3 4 2 1	4 3 5 1	5 1 1 2 3 4

- Shuffle Crossover ist nicht äquivalent zum uniformen Crossover!
 iede Anzahl von Vertauschungen von Genen zwischen
- jede Anzahl von Vertauschungen von Genen zwischen Chromosomen ist gleichwahrscheinlich
- ullet uniformen Crossover: Anzahl ist binomialverteilt mit Parameter p_{x}
- Shuffle Crossover: eines der empfehlenswertesten Verfahren

Uniformes ordnungsbasiertes Crossover

- ähnlich wie uniformes Crossover: entscheide für jedes Gen, ob es erhalten bleibt oder nicht
 (+: ja, -: nein, Parameter: W'keit p_k für Erhalt)
- fülle Lücken durch fehlende Allele auf (in Reihenfolge der Vorkommen im anderen Chromosom)



- erhält Reihenfolgeinformation
- alternativ: Erhalten der "+" bzw. "—" markierten Gene im einen bzw. anderen Chromosom

Kantenrekombination (speziell für TSP)

- Chromosom wird als Graph (Kette oder Ring) aufgefasst jedes
 Gen besitzt Kanten zu seinen Nachbarn im Chromosom
- Kanten der Graphen zweier Chromosomen werden gemischt, daher Name
- erhält Nachbarschaftsinformation

Vorgehen: 1. Aufbau einer Kantentabelle

- liste zu jedem Allel seine Nachbarn (in beiden Eltern) (ggf. erstes und letztes Gen des Chromosoms benachbart)
- ► falls ein Allel in beiden Eltern gleichen Nachbarn (Seite irrelevant), dann liste diesen Nachbar nur 1x auf (aber markiert)

Vorgehen: 2. Aufbau eines Nachkommen

- wähle erstes Allel zufällig aus einem der beiden Eltern
- lösche ausgewähltes Allel aus Kantentabelle (aus Listen der Nachbarn der Allele)
- wähle jeweils nächstes Allel aus den noch nicht gelöschten Nachbarn des vorangehenden mit folgender Priorität:
 - 1. markierte (d.h. doppelt auftretende) Nachbarn
 - 2. Nachbarn mit kürzester Nachbarschaftsliste (wobei markierte Nachbarn einfach zählen)
 - 3. zufällige Auswahl eines Nachbarn

Erzeugung des zweiten Nachkommen analog aus erstem Allel des anderen Elter (meist jedoch nicht gemacht)

Beispiel:

A: 6 3 1 5 2 7 4 B: 3 7 2 5 6 1

Aufbau der Kantentabelle

	Nachbarn		
Allel	in A	in ${f B}$	zusammengefasst
1	3, 5	6, 4	3, 4, 5, 6
2	5, 7	7, 5	5*, 7*
3	6, 1	4, 7	1, 4, 6, 7
4	7, 6	1, 3	1, 3, 6, 7
5	1, 2	2, 6	1, 2*, 6
6	4, 3	5, 1	1, 3, 4, 5
7	2, 4	3, 2	2*, 3, 4

- beide Chromosomen =
 Ring (erstes und letztes
 Gen benachbart): in A ist
 4 linker Nachbar der 6, 6
 ist rechter Nachbar der 4;
 B analog
- in beiden: 5, 2 und 7 stehen nebeneinander – sollte erhalten werden (siehe Markierungen)

Aufbau eines Nachkommen

6 5 2 7 4 3 1

Allel	Nachbarn	Wahl: 6	5	2	7	4	3	1
1	3, 4, 5, 6	3, 4, 5	3, 4	3, 4	3, 4	3		
2	5*, 7*	5*, 7*	7*	7*		_		_
3	1, 4, 6, 7	1, 4, 7	1, 4, 7	1, 4, 7	1, 4	1	1	_
4	1, 3, 6, 7	1, 3, 7	1, 3, 7	1, 3, 7	1, 3	1, 3		_
5	1, 2*, 6	1, 2*	1, 2*	_	_	_	_	_
6	1, 3, 4, 5	1, 3, 4, 5	_	1		_		_
7	2*, 3, 4	2*, 3, 4	2*, 3, 4	3, 4	3, 4	_	_	_

- starte mit erstem Allel des Chromosoms A (also 6) und streiche 6 aus allen Nachbarschaftslisten (dritte Spalte)
- ▶ da unter Nachbarn der 6 (1, 3, 4, 5) die 5 kürzeste Liste hat, wird 5 für zweites Gen gewählt
- dann folgt die 2, die 7 usw.

- Nachkomme hat meist neue Kante (vom letzten zum ersten Gen)
- kann auch angewendet werden, wenn erstes und letztes Gen nicht als benachbart gelten: Kanten werden dann nicht in Kantentabelle aufgenommen
- sind erstes und letztes Gen benachbart, dann Startallel beliebig falls nicht, dann ein am Anfang stehendes Allel
- Aufbau eines Nachkommen: es ist möglich, dass Nachbarschaftsliste des gerade ausgewählten Allels leer (Prioritäten sollen W'keit dafür gering halten; sind aber nicht perfekt)
 - in diesem Fall: zufällige Auswahl aus den noch übrigen Allelen

Drei- und Mehr-Elter-Operatoren

Diagonal-Crossover

- ▶ ähnlich wie 1-, 2- und *n*-Punkt-Crossover, aber für mehr Eltern
- bei drei Eltern: zwei Crossover-Punkte
- verschiebt Gensequenzen an Schnittstellen über Chromosomen diagonal und zyklische

- ▶ Verallgemeinerung auf > 3 Eltern: wähle für k Eltern k − 1 Crossover-Punkte
- ▶ führt zu sehr guter Durchforstung des Suchraums, besonders bei großer Elternzahl (10–15 Eltern)

Charakterisierung von Crossover-Operatoren

Ortsabhängige Verzerrung (engl. positional bias):

- falls W'keit, dass 2 Gene zusammen vererbt werden (im gleichen Chromosom bleiben, zusammen ins andere Chromosom wandern) von ihrer relativen Lage im Chromosom abhängt
- unerwünscht, weil Anordnung der Gene im Chromosom entscheidenden Einfluss auf Erfolg/Misserfolg des EA haben (bestimmte Anordnungen lassen sich schwerer erreichen)

Beispiel: Ein-Punkt-Crossover

- ▶ 2 Gene werden voneinander getrennt (gelangen in verschiedene Nachkommen), falls Crossover-Punkt zwischen sie fällt
- ▶ je näher 2 Gene im Chromosom beieinander, desto weniger mögliche Crossover-Punkte gibt es zwischen ihnen
- ⇒ nebeneinanderliegende Gene werden mit höherer W'keit als entferntliegende in gleichen Nachkommen gelangen

Charakterisierung von Crossover-Operatoren

Verteilungsverzerrung (engl. distributional bias):

- ► falls Wahrscheinlichkeit, dass best. Anzahl von Genen ausgetauscht wird, nicht für alle Anzahlen gleich
- unerwünscht, weil Teillösungen unterschiedl. Größe unterschiedl. gute Chancen haben, in nächste Generation zu gelangen
- Verteilungsverzerrung meist weniger kritisch (d.h. eher tolerierbar) als ortabhängige Verzerrung
- Beispiel: uniformes Crossover
 - ▶ da jedes Gen unabhängig von allen anderen mit W'keit p_x ausgetauscht, Anzahl k der ausgetauschten Gene ist binomialverteilt mit Parameter p_x :

$$P(K = k) = \binom{n}{k} p_x^k (1-p_x)^{n-k}$$
 mit $n = Gesamtzahl der Gene$

⇒ sehr kleine und sehr große Anzahlen sind unwahrscheinlicher

Outline

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination Interpolierende Operatoren Extrapolierende Operatoren

Selbstanpassende Algorithmen

Zusammenfassung

Motivation

- bisher: nur kombinierende Operatoren für Verknüpfung mehrerer Individuen
 - Ein-Punkt-, Zwei-Punkt- und n-Punkt-Crossover
 - Uniformes (ordnungsbasiertes) Crossover
 - Shuffle Crossover
 - Kantenrekombination
 - Diagonal-Crossover
- alle stark abhängig von Diversität der Population
- ightharpoonup erschaffen keine neuen Genbelegungen und können somit nur Teilbereiche von Ω erreichen, die in Individuen der Population enthalten
- \blacktriangleright hohe Diversität einer Population ist Zeichen für sehr gute Erforschung von Ω durch kombinierende Operatoren

Interpolierende Operatoren

- fügen Eigenschaften der Eltern zusammen, sodass die Eigenschaften des neuen Individuums zwischen denen der Eltern liegt
- lacktriangle dies führt zu geringerer Durchforstung von Ω
- interpolierende Rekombination konzentriert Population auf 1 Schwerpunkt
- ▶ fördert damit Feinabstimmung von sehr guten Individuen
- ightharpoonup um Ω anfangs genügend zu erforschen: Verwenden einer stark zufallsbasierte, diversitätserhaltende Mutation

Arithmetischer Crossover

- ▶ ist Beispiel für interpolierende Rekombination
- arbeitet auf reellwertigen Genotypen
- geometrisch: kann alle Punkte auf Strecke zwischen beiden Eltern erzeugen

Algorithm 3 Arithmetischer Crossover

Input: Individuen A, B mit $A.G, B.G \in \mathbb{R}^I$

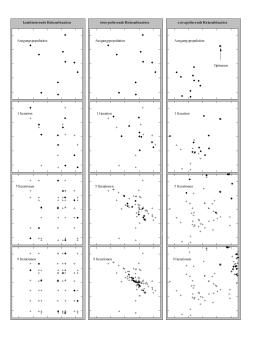
Output: neues Individuum C

- 1: $u \leftarrow \text{ w\"{a}hle zuf\"{a}llig aus } U([0,1])$
- 2: **for** $i \in \{1, ..., l\}$ {
- 3: $C.G_i \leftarrow u \cdot A.G_i + (1-u) \cdot B.G_i$
- 4: }
- 5: return C

Extrapolierende Operatoren

- Versuchen gezielt Information aus mehreren Individuen abzuleiten
- ► Erstellen eine Prognose, wo Güteverbesserungen zu erwarten sind
- lacktriangle Extrapolierende Rekombination kann bisherigen Ω verlassen
- ▶ Ist einzige Art der Rekombination die Gütewerte benutzt
- ▶ Einfluss der Diversität ist hier schwer nachzuvollziehen
- ▶ Algorithmus: z.B. Arithmetisches Crossover mit $u \in U([1,2])$

Vergleich



- Vergleich der drei Rekombinationsarten
- Kreuze: Individuen vorheriger Iterationen
- Rauten: aktuelle Individuen

Outline

Motivation

Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Experiment anhand des TSP Lokalität des Mutationsoperators Anpassungsstrategien

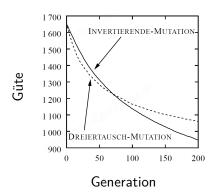
Zusammenfassung

Selbstanpassende Algorithmen

 Idee: Rückkopplung vom Verlauf der Optimierung zur Wirkungsweise von Operatoren

- Experiment TSP (hier 51 Städte)
- Hillclimbing: nur Mutation, keine Rekombination
- Lokale Mutationsoperatoren:
 - Invertieren eines Teilstücks,
 - zyklischer Tausch dreier zufälliger Städte

Einfluss des Stands der Suche



- ► Ein (vermeintlich ungeeigneter) Dreiertausch ist in den ersten 50 Generationen besser
- ▶ Deshalb: Analyse der relativen erwarteten Verbesserung als Maß dafür, welche Verbesserung ein Operator bringt

Relative erwartete Verbesserung

Definition

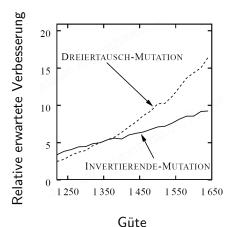
Die *Güteverbesserung* von einem Individuums $A \in \mathcal{G}$ zu einem Individuum $B \in \mathcal{G}$ wird definiert als

$$Verbesserung(A, B) = \begin{cases} |B.F - A.F| & \text{falls } B.F \succ A.F, \\ 0 & \text{sonst.} \end{cases}$$

Dann lässt sich die relative erwartete Verbesserung eines Operators Mut bzgl. Individuum A definieren als

$$\mathsf{relEV}_{\mathsf{Mut},\mathcal{A}} = E\left(\mathsf{Verbesserung}(\mathcal{A},\mathsf{Mut}^{\xi}(\mathcal{A})\right).$$

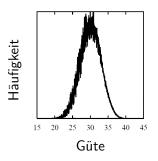
Einfluss des Stands der Suche

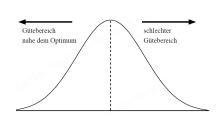


- Ermitteln der relativen erwarteten Verbesserung in unterschiedlichen Gütebereichen durch Stichproben aus Ω
- verantwortlich für dargestellten Effekt

Gesamter Suchraum

• Wie häufig sind einzelne Fitnesswerte in Ω ?

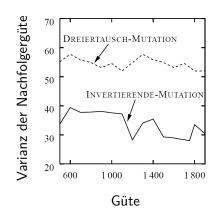




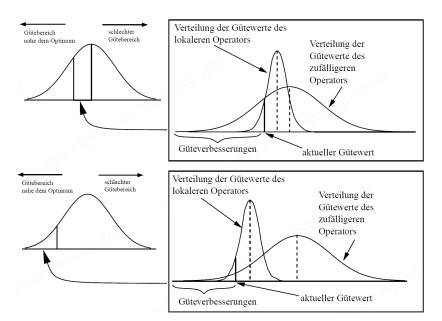
Dichteverteilung der Gütewerte eines einfachen TSP mit 11 Städten

Varianz der erzeugten Güte

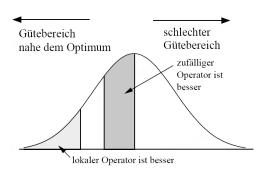
- wichtig ist, wie lokal Mutationsoperator arbeitet
- sehr lokal, erzeugt Gütewerte nahe der Güte des Elternindividuums
- wenig lokal, deckt größerer Bereich an Gütewerten ab



 invertierende Mutation ist über gesamten Gütebereich lokaler als Dreiertausch



Ergebnis der Überlegungen



- Qualität eines Mutationsoperators kann nicht unabhängig vom aktuellen Güteniveau beurteilt werden
- Operator ist niemals optimal über gesamten Verlauf der Optimierung
- bei zunehmender Annäherung an Optimum: lokalere Operatoren!

Anpassungsstrategien: 3 Techniken

Vordefinierte Anpassung:

► lege Veränderung vorab fest

Adaptive Anpassung:

- erhebe Maßzahlen für Angepasstheit
- ▶ leite Anpassung von Regeln ab

Selbstadaptive Anpassung:

- nutze Zusatzinformation im Individuum
- zufallsbasiert sollen sich Parameter individuell einstellen

Vordefinierte Anpassung

Betrachtete Parameter:

- reellwertige Gauss-Mutation
- σ bestimmt durchschnittliche Schrittweite
- ▶ Modifikationsfaktor $0 < \alpha < 1$ lässt σ exponentiell fallen

Umsetzung:

Algorithm 4 Vordefinierte Anpassung

Input: Standardabweichung σ , Modifikationsfaktor α

Output: angepasste Standardabweichung σ

1:
$$\sigma' \leftarrow \alpha \cdot \sigma$$

2: return
$$\sigma'$$

Adaptive Anpassung

7: return σ

- Maß: Anteil der verbessernden Mutationen der letzten k Generationen
- ightharpoonup falls dieser Anteil "hoch" ist, soll σ vergrößert werden

Algorithm 5 Adaptive Anpassung

Input: Standardabweichung σ , Erfolgsrate p_s , Schwellwert θ , Modifikationsfaktor $\alpha > 1$

```
Output: angepasste Standardabweichung \sigma
1: if p_s > \theta {
2: return \alpha \cdot \sigma
3: }
4: if p_s < \theta {
5: return \sigma/\alpha
6: }
```

Selbstadaption

Umsetzung:

- ightharpoonup Speichern der Standardabweichung σ bei Erzeugung des Individuums als Zusatzinformation im Individuum
- das heißt, dass ein Strategieparameters verwendet wird (wird beim Mutieren leicht zufällig variiert)
- lacktriangle "gute" Werte für σ setzen sich durch bessere Güte der Kinder durch

Experimenteller Vergleich

Versuch mit verschiedenen Adaptionsverfahren [Weicker, 2007]

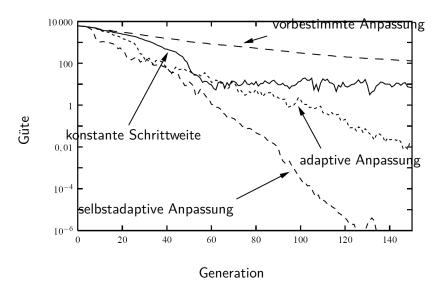
- 10-dimensionaler Suchraum
- Algorithmus: paralleler Hillclimber
- **b aber** pro Generation werden $\lambda=10$ Kindindividuen erzeugt
- lacktriangle reellwertige Gauß-Mutation mit $\sigma=1$
- Selektion der Besten von Eltern und Kindern
- $\theta = \frac{1}{5} \text{ und } \alpha = 1.224$

Selbstadaptive Gauß-Mutation

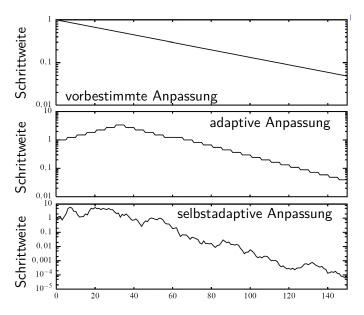
Algorithm 6 Selbstadaptive Gauß-Mutation

```
Input: Individuum A mit A.G \in \mathbb{R}^I
Output: variiertes Individuum B mit B.G \in \mathbb{R}^{I}
 1: u \leftarrow \text{ wähle zufällig gemäß } \mathcal{N}(0,1)
 2: B.S_1 \leftarrow A.S_1 \cdot \exp(\frac{1}{\sqrt{t}}u)
 3: for each i \in \{1, ..., l\} {
     u \leftarrow \text{wähle zufällig gemäß } \mathcal{N}(0, B.S_1)
 5: B.G_i \leftarrow A.G_i + u_i
 6: B.G_i \leftarrow \max\{B.G_i, ug_i\} /* untere Wertebereichsgrenze ug_i
 7: B.G_i \leftarrow \min\{B.G_i, ug_i\} /* obere Wertebereichsgrenze og_i
 8: }
 9: return B
```

Ergebnis des Vergleichs



Ergebnis des Vergleichs



Outline

Motivation

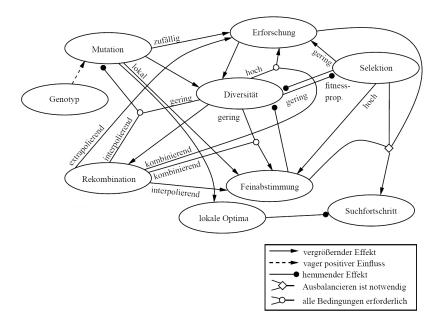
Ein-Elter-Operatoren

Zwei- oder Mehr-Elter-Operatoren

Interpolierende und extrapolierende Rekombination

Selbstanpassende Algorithmen

Zusammenfassung



Zusammenhänge I

Bedingung	Zielgröße	Erwarteter Effekt
Genotyp	Mutation	Nachbarschaft des Mutationsope-
		rators wird beeinflüsst
Mutation	Erforschung	zufällige Mutationen unterstützen
		Erforschung
Mutation	Feinabst.	gütelokale Mutationen unterstüt-
		zen Feinabstimmung
Mutation	Diversität	Mutation vergrößert Diversität
Mutation	lokale Optima	gütelokale Mutationen erhalten
		lokale Optima des Phänotyps (zu-
		fällige Mutationen können noch
		mehr einführen)
Rekombination	Erforschung	extrapolierende Operatoren stär-
		ken Erforschung
Rekombination	Feinabst.	interpolierende Operatoren stären
		Feinabstimmung

Zusammenhänge II

	Bedingung	Zielgröße	Erwarteter Effekt
٠	Div./Rekomb.	Mutation	geringe Diversität und interpo-
			lierende Rekombination dämpfen
			Ausreißer der Mutation
-	Diversität	Rekombination	hohe Diversität unterstützt Funk-
			tionsweise der Rekombination
-	Selektion	Erforschung	geringer Selektionsdruck stärkt
			Erforschung
	Selektion	Feinabst.	hoher Selektionsdruck stärkt Fein-
			abstimmung
-	Selektion	Diversität	Selektion verringert meist Diversi-
			tät
	Div./Rekomb.	Erforschung	kombinierende Rekombination
			stärkt Erforschung bei hoher
			Diversität
	Div./Rekomb.	Feinabst.	kombinierende Rekombination
			stärkt Feinabstimmung bei hoher
			Diversität , AB

Zusammenhänge III

Bedingung	Zielgröße	Erwarteter Effekt
Erforschung	Diversität	erforschende Operationen erhöhen
		Diversität
Feinabst.	Diversität	feinabstimmende Operationen
		verringern Diversität
Diversität	Selektion	geringe Diversität verringert Se-
		lektionsdruck der fitnessproportio-
		nalen Selektion
lokale Optima	Suchfortschritt	viele lokale Optima hemmen
		Suchfortschritt
Erf./Fein./Sel.	Suchfortschritt	Ausbalancieren der drei Faktoren
		ist notwendig

Literatur zur Lehrveranstaltung

Weicker, K. (2007).

Evolutionäre Algorithmen.

Teubner Verlag, Stuttgart, Germany, 2nd edition.