

Evolutionäre Algorithmen

Kapitel 5: Metaheuristik 2

Sanaz Mostaghim
Lehrstuhl für Intelligente Systeme
SS 2016

Outline

Schwarm- und populationsbasierte Optimierung

Populationsbasiertes inkrementelles Lernen Teilchenschwarmoptimierung Ameisenkolonieoptimierung

Organic Computing

Zusammenfassung

Schwarm- und populationsbasierte Optimierung

Schwarm-Intelligenz

- Bereich der KI, der intelligente Multi-Agentensysteme entwickelt
- ▶ Inspiration durch das Verhalten bestimmter Tierarten, speziell
 - sozialer Insekten (z.B. Ameisen, Termiten, Bienen, etc.) und
 - ▶ in Schwärmen lebender Tiere (z.B. Fische, Vögel, etc.)

Tiere dieser Arten können recht komplexe Aufgaben lösen (Finden von Nahrungsquellen, Wegesuche, Nestbau, etc.), indem sie kooperieren.

Wesentliche Ideen

- i.A. ziemlich einfache Einzelindividuen mit begrenzten Fähigkeiten
- Koordination ohne zentrale Steuerung, lediglich Selbstorganisation
- Austausch von Informationen zwischen Individuen (Kooperation)

Klassifizierung der Verfahren nach Art des Informationsaustausches

Verfahren

Genetische/Evolutionäre Algorithmen

- biologisches Vorbild: Evolution der Lebewesen
- ► Informationsaustausch durch Rekombination der Genotypen
- jedes Individuum ist ein Lösungskandidat

Populationsbasiertes inkrementelles Lernen

- biologisches Vorbild: Evolution der Lebewesen
- ▶ Informationsaustausch durch Häufigkeiten in der Population
- jedes Individuum ist ein Lösungskandidat

Verfahren

Teilchenschwarmoptimierung

- biologisches Vorbild: Futtersuche von Fisch- und Vogelschwärmen
- Informationsaustausch über einfache Aggregation der Einzellösungen
- jedes Individuum ist ein Lösungskandidat

Ameisenkoloniealgorithmen

- biologisches Vorbild: Wegesuche zu Futterquellen durch Ameisen
- ► Informationsaustausch über Veränderung der Umgebung (Stigmergie, erweiterter Phänotyp nach Dawkins)
- ▶ Individuen konstruieren Lösungskandidaten

Populationsbasiertes inkrementelles Lernen (PBIL)

- genetischer Algorithmus ohne Population
- ▶ stattdessen: nur Populationsstatistik speichern \Rightarrow bei $\mathcal{G} = \{0,1\}^L$ für alle L Bits die Häufigkeit der "1"
- konkrete Individuen (z.B. für Bewertung) werden zufällig gemäß der Häufigkeiten erzeugt
- ▶ Rekombination: uniformer Crossover ⇒ implizit bei Erzeugung eines Individuums
- ▶ Selektion: Wahl des besten Individuums B für Aktualisierung der Populationsstatistik $Pr_k^{(t)} \leftarrow B_k \cdot \alpha + Pr_k^{(t-1)}(1-\alpha)$
- ► Mutation: Bit-Flipping ⇒ leichte zufällige Verschiebung der Populationsstatistik

Algorithm 1 PBIL

```
Input: Bewertungsfunktion F
Output: bestes Individuum Abest
 1: t ← 0
 2: A_{\text{best}} \leftarrow \text{erzeuge zufälliges Individuum aus } \mathcal{G} = \{0, 1\}^L
 3: Pr^{(t)} \leftarrow (0.5, \dots, 0.5) \in [0, 1]^L
 4: while Terminierungsbedingung nicht erfüllt {
 5:
          P \leftarrow \emptyset
 6:
          for i \leftarrow 1, \ldots, \lambda {
 7:
                A \leftarrow \text{erzeuge Individuum aus } \{0,1\}^L \text{ gemäß } Pr^{(t)}
 8:
                P \leftarrow P \cup \{A\}
 9:
           bewerte P durch F
10:
11:
           B \leftarrow selektiere die besten Individuen aus P
12:
          if F(B) > F(A_{best}) {
13:
                A_{\text{best}} \leftarrow B
14:
15:
           t \leftarrow t + 1
16:
           for each k \in \{1, \ldots, L\} {
                Pr_{t}^{(t)} \leftarrow B_k \cdot \alpha + Pr_{t}^{(t-1)}(1-\alpha)
17:
18:
19:
           for each k \in \{1, \ldots, L\} {
20:
                u \leftarrow \text{wähle Zufallszahl gemäß } U((0, 1])
21:
                if u < p_m {
                      u' \leftarrow \text{wähle Zufallszahl gemäß } U(\{0,1\})
22:
                     Pr_{i}^{(t)} \leftarrow u' \cdot \beta + Pr_{i}^{(t)}(1-\beta)
23:
24:
25:
26: }
27: return Abest
```

PBIL: Typische Parameter

Lernrate α

niedrig: betont Erforschung

▶ hoch: betont Feinabstimmung

Paramter	Wertebereich
Populationsgröße λ	20–100
Lernrate α	0.05-0.2
Mutationsrate p_m	0.001-0.02
Mutationskonstate β	0.05

PBIL: Probleme

- ► GA kann Abhängigkeit zwischen einzelnen Bits lernen
- ▶ PBIL betrachtet einzelnen Bits isoliert

Beispiel:

Population 1				Population 2				
1	1	0	0	Individuum 1	1	0	1	0
1	1	0	0	Individuum 2	0	1	1	0
0	0	1	1	Individuum 3	0	1	0	1
0	0	1	1	Individuum 4	1	0	0	1
0.5	0.5	0.5	0.5	Populationsstatistik	0.5	0.5	0.5	0.5

 gleiche Populationsstatistik kann unterschiedliche Populationen repräsentieren

PBIL: Alternative Verfahren

- bessere Techniken zur Schätzung der Verteilung guter Lösungskandidaten
- insbesondere: interne Abhängigkeiten modellieren (z.B. durch Bayes'sche Netze)
- ▶ Beispiel: Bayes'scher Optimierungsalgorithmus (BOA)
 - initiale Population wird zufällig erzeugt
 - Population wird für bestimmte Anzahl von Iterationen aktualisiert mittels Selektion und Variation
 - Selektion wie gehabt
 - Variation konstruiert nach Selektion ein Bayes'sche Netz als Modell von vielversprechend Lösungskandidaten
 - neue Lösungskandidaten werden dann durch Stichprobe vom Bayes'sche Netz generiert

Teilchenschwarmoptimierung

© Eric T. Schulz http://www.seb.uconn.edu/courses/eeb296/ © Ariel Bravy http://www.skphoton.com/albums/

- Fische, Vögel suchen in Schwärmen nach ergiebigen Futterplätzen
- Orientierung anhand individueller Suche (kognitiver Anteil) und an anderen Mitgliedern des Schwarmes in ihrer Nähe (sozialer Anteil)
- ▶ außerdem: Leben im Schwarm schützt Individuen gegen Fressfeinde

Teilchenschwarmoptimierung

Particle Swarm Optimization [Kennedy and Eberhart, 1995]

- Motivation: Verhalten von z.B. Fischschwärmen bei der Futtersuche: zufälliges Ausschwärmen, aber stets auch Rückkehr zum Schwarm, Informationsaustausch zwischen Mitgliedern
- ► Ansatz: verwende statt nur einzelnen aktuellen Lösungskandidaten "Schwarm" von *m* Lösungskandidaten
- ▶ Voraussetzung: $\Omega \subseteq \mathbb{R}^n$ und somit zu optimierende (o.B.d.A.: zu maximierende) Funktion $f: \mathbb{R}^n \to \mathbb{R}$
- **Vorgehen:** fasse jeden Lösungskandidaten als "Teilchen" auf, das Ort x_i im Suchraum und Geschwindigkeit v_i hat (i = 1, ..., m)
- ⇒ vereinigt Elemente der bahnorientierten Suche (z.B. Gradientenverfahren) und populationsbasierter Suche (z.B. EA)

Teilchenschwarmoptimierung

Aktualisierung für Ort und Geschwindigkeit des *i-*ten Teilchens:

$$\mathbf{v}_i(t+1) = \alpha \mathbf{v}_i(t) + \beta_1 \left(\mathbf{x}_i^{(lokal)}(t) - \mathbf{x}_i(t) \right) + \beta_2 \left(\mathbf{x}^{(global)}(t) - \mathbf{x}_i(t) \right)$$

 $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{v}_i(t)$

- ▶ Parameter: β_1, β_2 zufällig in jedem Schritt, α mit t abnehmend
- x_i^(lokal) ist lokales Gedächtnis des Individuums (Teilchens): der beste Ort im Suchraum, den Teilchen bisher besucht hat, d.h.

$$\mathbf{x}_{i}^{(\text{lokal})} = \mathbf{x}_{i} \left(\text{arg max}_{u=1}^{t} f(\mathbf{x}_{i}(u)) \right)$$

▶ x^(global) ist globales Gedächtnis des Schwarms: der beste Ort im Suchraum, den Individuum des Schwarms bisher besucht hat (beste bisher gefundene Lösung), d.h.

$$\mathbf{x}^{(\mathrm{global})}(t) = \mathbf{x}_{j}^{(\mathrm{lokal})}(t) \quad \mathrm{mit} \quad j = \mathrm{arg} \, \mathrm{max}_{i=1}^{m} \, f\left(\mathbf{x}_{i}^{(\mathrm{lokal})}\right)$$

Algorithm 2 Teilchenschwarmoptimierung

```
1: for each Teilchen i {
              x_i \leftarrow \text{wähle zufällig im Suchraum } \Omega
  3:
              \mathbf{v}_i \leftarrow 0
  4: }
  5: do {
  6:
              for each Teilchen i {
  7:
                   y \leftarrow f(\mathbf{x}_i)
                  if y \ge f\left(\mathbf{x}_i^{(lokal)}\right) {
  8:
                  x_i^{(lokal)} \leftarrow x_i
}

if y \ge f\left(x_i^{(global)}\right) {
  9:
10:
11:
                         \mathbf{x}^{(\text{global})} \leftarrow \mathbf{x}_i
12:
13:
14:
              for each Teilchen i {
15:
                    \mathbf{v}_i(t+1) \leftarrow \alpha \cdot \mathbf{v}_i(t) + \beta_1 \left(\mathbf{x}_i^{(\mathsf{lokal})}(t) - \mathbf{x}_i(t)\right) + \beta_2 \left(\mathbf{x}^{(\mathsf{global})}(t) - \mathbf{x}_i(t)\right)
16:
                    \mathbf{x}_i(t+1) \leftarrow \mathbf{x}_i(t) + \mathbf{v}_i(t)
17:
18:
           while Terminierungskriterium ist nicht erfüllt
```

Erweiterungen

- ▶ Beschränkter Suchraum: ist Ω echte Teilmenge des \mathbb{R}^n (z.B. Hyperwürfel $[a,b]^n$), so werden Teilchen an Grenzen des Suchraums reflektiert
- ▶ Lokale Umgebung eines Teilchens: statt des globalen Gedächtnisses des Schwarms wird bestes lokales Gedächtnis nur eines Teils des Schwarms verwendet, z.B. Teilchen, die sich in näherer Umgebung des zu aktualisierenden Teilchens befinden
- Automatische Parameteranpassung: z.B. Anpassung der Schwarmgröße (Teilchen, deren lokales Gedächtnis deutlich schlechter ist als das der Teilchen in ihrer Nähe, werden entfernt)
- ➤ Diversitätskontrolle: vorzeitige Kovergenz auf suboptimalen Lösungen soll verhindert werden, dazu kann z.B. bei Aktualisierung der Geschwindigkeit zusätzliche Zufallskomponente eingeführt werden, welche Diversität erhöht

Ameisenkolonieoptimierung

- da gefundenes Futter zur Versorgung der Nachkommen zum Nest transportiert werden muss, bilden Ameisen Transportstraßen
- dazu markieren sie Wege zu Futterplätzen mit Duftstoffen (Pheromonen), sodass andere Ameisen der Kolonie diese Futterplätze auch finden können
- Weglängen zu Futterplätzen werden annähernd minimiert

Ameisenkolonieoptimierung

Ant Colony Optimization [Dorigo and Stützle, 2004]

Motivation: Ameisen einiger Arten finden kürzeste Wege zu Futterquellen durch Legen und Verfolgen von Pheromon ("Duftmarken")

- intuitiv: kürzere Wege erhalten in gleicher Zeit mehr Pheromon
- Wege werden zufällig nach vorhandenen Pheromonmenge gewählt (es ist um so wahrscheinlicher, dass ein Weg gewählt wird, je mehr Pheromon sich auf Weg befindet)
- Menge des ausgebrachten Pheromons kann von Qualität und Menge des gefundenen Futters abhängen

Grundprinzip: Stigmergie (engl. stigmergy)

- ▶ Ameisen kommunizieren indirekt über Pheromonablagerungen
- Stigmergie (indirekte Kommunikation durch Veränderung der Umgebung) ermöglicht global angepasstes Verhalten aufgrund lokaler Informationen

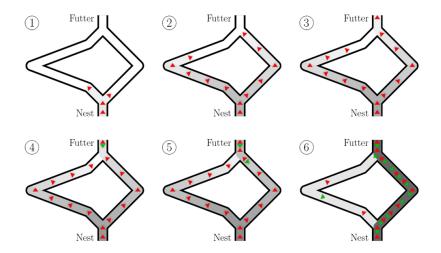
Doppelbrückenexperiment [Goss et al., 1989]

- Ameisennest und Futterquelle werden durch Doppelbrücke verbunden (beiden Zweige der Brücke sind verschieden lang)
- ► Experiment mit argentinischer Ameise *Iridomyrmex Humilis*: diese Ameisenart ist (wie fast alle anderen auch) fast blind (Ameisen können also nicht sehen, welcher Weg kürzer ist)
- schon nach wenigen Minuten: in meisten Versuchen benutzten fast alle Ameisen kürzeren Weg

Erklärung

- Auf kürzerem Weg erreichen Ameisen Futter schneller (Ende des kürzeren Weges erhält daher (am Anfang) mehr Pheromon)
- ► Auf Rückweg wird wegen entstandener Pheromondifferenz mit höherer W'keit kürzerer Weg gewählt (führt zu einer Verstärkung der Pheromondifferenz)

Doppelbrückenexperiment



Doppelbrückenexperiment: Prinzip

- ▶ kürzerer Weg wird systematisch verstärkt (Autokatalyse): mehr Pheromon auf Weg ←→ mehr Ameisen wählen Weg
- beachte: kürzerer Weg wird nur gefunden, weil Ameisen sowohl auf Hin- als auch auf Rückweg Pheromon ablegen
- wird z.B. nur auf Hinweg Pheromon abgelegt:
 - auf Hinweg zur Futterquelle kann keiner der beiden Wege bevorzugt werden, da keine Pheromondifferenz vorliegt oder systematisch entsteht
 - am Vereinigungspunkt der Brücken verringert sich Verhältnis der Pheromonmengen im Laufe der Zeit und verschwindet schließlich nahezu
 - durch zufällige Fluktuationen in Wegewahl konvergiert Wegesuche ggf. dennoch zufällig(!) auf einen der beiden Brückenzweige
- analog (symmetrische Situation), wenn Pheromon nur auf Rückweg abgelegt

Doppelbrückenexperiment

- beachte: kürzerer Weg wird gefunden, weil schon zu Beginn beide Zweige der Brücke zur Verfügung stehen und auf beiden kein Pheromon liegt
- Ende des kürzeren Weges wird früher von mehr Ameisen erreicht
- ⇒ unterschiedliche Mengen an Pheromon auf beiden Wegen
- ⇒ sich selbst verstärkender Prozess
 - Fragen: Was passiert, wenn durch Veränderung der Umgebung neuer Weg möglich wird, der kürzer ist als bisheriger?
 - Wird auf diesen kürzeren Weg gewechselt?

Antwort: Nein! [Goss et al., 1989]

- ▶ ist erst einmal ein Weg etabliert, so wird dieser beibehalten
- Nachweis durch 2. Brückenexperiment: anfangs nur längerer Brückenzweig da, kürzerer später hinzugefügt
- ► Mehrheit der Ameisen benutzen weiter längeren Weg, nur seltenen Wechsel auf kürzeren Weg

Natürliche und künstliche Ameisen

abstrahiere zu Suche nach bestem Weg in gewichtetem Graphen

- ► **Problem:** Kreise, die sich selbst verstärken (durchläuft Ameise Kreis, erzeugt sie durch abgelegtes Pheromon Tendenz, Kreis erneut zu durchlaufen)
- ► Abhilfe: Ablegen von Pheromon erst nach Konstruktion des ganzen Weges (Entfernen von Kreisen, bevor Pheromon abgelegt wird)
- ► **Problem:** ggf. konzentriert sich Suche auf am Anfang konstruierte Lösungskandidaten (vorzeitige Konvergenz)
- ► **Abhilfe:** Pheromonverdunstung (spielt in Natur geringe Rolle)

Nützliche Erweiterungen/Verbesserungen

- ▶ abgelegte Pheromonmenge hängt von Lösungsgüte ab
- ► Einbringen von Heuristiken in Kantenwahl (z.B. Kantengewicht)

Ameisenkolonieoptimierung

- Voraussetzungen: kombinatorisches Optimierungsproblem mit konstruktiver Methode, zur Erzeugung eines Lösungskandidaten
- Vorgehen: Lösungen werden durch Folge von Zufallsentscheidungen konstruiert, wobei jede Entscheidung Teillösung erweitert
- Entscheidungsfolge = Pfad in Entscheidungsgraphen (auch: Konstruktionsgraphen)
- Ameisen sollen Pfade durch Entscheidungsgraphen erkunden und besten (kürzesten, billigsten) Weg finden
- ► Ameisen markieren benutzte Kanten des Graphen mit Pheromon ⇒ andere Ameisen werden zu guten Lösungen geleitet
- Pheromon verdunstet in jeder Iteration, damit einmal ausgebrachtes Pheromon System nicht zu lange beeinflußt ("Vergessen" veralteter Information)

Anwendung auf TSP

- ▶ Darstellung des Problems durch $n \times n$ Matrix $\mathbf{D} = (d_{ij})_{1 \leq i,j \leq n}$
- ▶ n Städte mit Abständen d_{ij} zwischen Städte i und j
- ▶ beachte: **D** kann asymmetrisch sein, aber $\forall i \in \{1, ..., n\} : d_{ii} = 0$
- ▶ Pheromoninformation als $n \times n$ Matrix $\Phi = (\phi_{ij})_{1 \le i,j \le n}$
- ▶ Pheromonwert $\phi_{ij}(i \neq j)$ gibt an, wie wünschenswert es ist, Stadt j direkt nach Stadt i zu besuchen (ϕ_{ii} nicht benötigt)
- ▶ Ф muss nicht notwendig symmetrisch sein/gehalten werden
- ▶ alle ϕ_{ij} werden mit gleichen kleinen Wert initialisiert (anfangs liegt auf allen Kanten gleiche Menge Pheromon)
- Ameisen durchlaufen (durch Pheromon) Hamiltonkreise (sie markieren Kanten des durchlaufenden Hamiltonkreises mit Pheromon, wobei ausgebrachte Pheromonmenge der Lösungsqualität entspricht)

Lösungskonstruktion

- jede Ameise hat "Gedächtnis" C, welche Indizes der noch nicht besuchten Städte enthält
- ▶ jede besuchte Stadt wird aus Menge *C* entfernt
- ► Gedächtnis gibt es im biologischen Vorbild nicht!

- Ameise wird in zufällig bestimmter Stadt gesetzt (Anfang der Rundreise)
- Ameise wählt noch nicht besuchte Stadt und begibt sich in diese: in Stadt i wählt Ameise (unbesuchte) Stadt j mit W'keit

$$p_{ij} = \frac{\phi_{ij}}{\sum_{k \in C} \phi_{ik}}.$$

3. wiederhole Schritt 2 bis alle Städte besucht

Pheromonaktualisierung

1. Verdunstung/Evaporation

alle ϕ_{ij} werden um Bruchteil η (evaporation) verringert:

$$\forall i, j \in \{1, \ldots, n\} : \phi_{ij} = (1 - \eta) \cdot \phi_{ij}$$

2. Verstärkung konstruierter Lösungen

Kanten der konstruierten Lösungen werden mit zusätzlicher Menge an Pheromon belegt, die Lösungsqualität entspricht:

$$\forall \pi \in \Pi_t : \phi_{\pi(i)\pi((i \bmod n)+1)} = \phi_{\pi(i)\pi((i \bmod n)+1)} + Q(\pi)$$

 Π_t ist Menge der im Schritt t konstruierten Rundreisen (Permutationen), Qualitätsfunktion: z.B. inverse Reiselänge

$$Q(\pi) = c \cdot \left(\sum_{i=i}^n d_{\pi(i)\pi((i \bmod n)+1)}\right)^{-1}$$

"Je besser die Lösung, desto mehr Pheromon erhalten deren Kanten."

Problem des Handlungsreisenden

Algorithm 3 Ameisenkolonieoptimierung für das TSP

```
1: initialisiere alle Matrixelemente \phi_{ij}, 1 \le i, j \le n, auf kleinen Wert \epsilon
 2: do {
       for each Ameise {
                                      /* konstruiere Lösungskandidaten */
 3:
          C \leftarrow \{1,\ldots,n\}
                           /* Menge der zu besuchenden Städte */
 4:
 5:
         i \leftarrow wähle zufällig Anfangsstadt aus C
 6:
        C \leftarrow C \setminus \{i\} /* entferne sie aus den unbesuchten Städten */
 7: while C \neq \emptyset { /* solange nicht alle Städte besucht wurden */
            i \leftarrow wähle nächste Stadt der Reise aus C mit W'keit p_{ij}
 8:
            C \leftarrow C \setminus \{j\} /* entferne sie aus den unbesuchten Städten */
 9:
             i \leftarrow i
                                        /* und gehe in die ausgewählte Stadt */
10:
11:
12:
       aktualisiere Pheromon-Matrix Φ nach Lösungsgüte
13:
14: } while Terminierungskriterium ist nicht erfüllt
```

Erweiterungen und Alternativen

► **Bevorzuge nahe Städte:** (analog zur NächstenNachbarHeuristik) gehe von Stadt *i* zu Stadt *j* mit W'keit

$$p_{ij} = \frac{\phi_{ij}^{\alpha} \tau_{ij}^{\beta}}{\sum_{k \in C} \phi_{ik}^{\alpha} \tau_{ik}^{\beta}}$$

wobei C Menge der Indizes der unbesuchten Städte und $au_{ij} = d_{ii}^{-1}$

► **Tendiere zur Wahl der besten Kante:** (greedy) mit W'keit p_{exploit} gehe von Stadt i zur Stadt j_{best} mit

$$j_{\mathsf{best}} = \mathsf{arg}\,\mathsf{max}_{j\in C}\,\phi_{ij}\quad\mathsf{bzw}.\quad j_{\mathsf{best}} = \mathsf{arg}\,\mathsf{max}_{j\in C}\,\phi_{ij}^{\alpha}\tau_{ij}^{\beta}$$
 und benutze p_{ij} mit W'keit $1-p_{\mathsf{exploit}}$

► Verstärke beste bekannte Rundreise: (elitist)
Lege zusätzliches Pheromon auf besten bisher bekannten
Rundreise ab (z.B. Bruchteil Ameisen, die sie zusätzlich
ablaufen)

Erweiterungen und Alternativen

Rangbasierte Aktualisierung

- lege Pheromon nur auf Kanten der besten m Lösungen der letzten Iteration ab (und ev. auf besten bisher gefundenen Lösung)
- Pheromonmenge hängt vom Rang der Lösung ab

Strenge Eliteprinzipien

- ▶ lege Pheromon nur auf besten Lösung der letzten Iteration ab
- ▶ lege Pheromon nur auf besten bisher gefundenen Lösung ab

Erweiterungen und Alternativen

Minimale/maximale Pheromonmenge

- begrenze Pheromonmenge einer Kante nach unten/oben
- ⇒ Mindest-/Maximalw'keit für Wahl einer Kante
- ⇒ bessere Durchforstung des Suchraums, ggf. schlechtere Konvergenz

Eingeschränkte Verdunstung/Evaporation

- Pheromon verdunstet nur von Kanten, die in Iteration benutzt wurden
- ⇒ bessere Durchforstung des Suchraums

Lokale Verbesserungen der Rundreise

- Verknüpfung mit lokaler Lösungsverbesserung ist oft vorteilhaft: Vor Pheromonaktualisierung wird erzeugte Rundreise lokal optimiert (einfache Modifikationen wird auf Verbesserung überprüft)
- ▶ lokale Optimierungen benutzen z.B. folgende Operationen:
 - Rekombination nach Entfernen von zwei Kanten (2-opt) entspricht dem "Umdrehen" einer Teil-Rundreisen
 - ► Rekombination nach Entfernen von drei Kanten (3-opt) entspricht dem "Umdrehen" zweier Teil-Rundreisen
 - ► Eingeschränkte Rekombination (2.5-opt)
 - Austausch benachbarter Städte
 - Permutation benachbarter Triplets
- "teure" lokale Optimierungen: nur auf beste gefundene Lösung oder die in einer Iteration beste Lösung angewanden

Allg. Anwendung auf Optimierungsprobleme

► Grundsätzliches Prinzip

formuliere Problem als Suche in (Entscheidungs-)Graphen, Lösungskandidaten müssen durch Kantenmengen beschreibbar sein, (beachte: es muss sich nicht notwendigerweise um Pfade handeln!)

- Allgemeine Beschreibung: im folgenden werden jeweils angegeben:
 - ► Knoten und Kanten des Entscheidungs-/Konstruktionsgraphen
 - ► Einzuhaltende Nebenbedingungen
 - Bedeutung des Pheromons auf den Kanten (und evtl. Knoten)
 - Nutzbare heuristische Hilfsinformation
 - Konstruktion eines Lösungskandidaten
- algorithmisches Vorgehen ist i.W. analog zu Vorgehen beim TSP

Allg. Anwendung auf Optimierungsprobleme: TSP

- Knoten und Kanten des Entscheidungs-/Konstruktionsgraphen: die zu besuchenden Städte und ihre Verbindungen, die Verbindungen sind gewichtet (Abstand, Zeit, Kosten)
- einzuhaltende Nebenbedingungen: besuche jede Stadt genau 1x
- ▶ Bedeutung des Pheromons auf den Kanten: wie wünschenwert ist es, Stadt j nach Stadt i zu besuchen
- nutzbare heuristische Hilfsinformation: Abstand der Städte, bevorzuge nahe Städte
- ► Konstruktion eines Lösungskandidaten: ausgehend von zufällig gewählter Stadt wird stets zu einer weiteren, noch nicht besuchten Stadt fortgeschritten

Allg. Anwendung auf Optimierungsprobleme

Verallgemeinertes Zuordnungsproblem

Ordne n Aufgaben zu m Arbeiter (Personen, Maschinen): Minimierung der Summe der Zuordnungskosten d_{ij} unter Einhaltung maximaler Kapazitäten ρ_j bei gegebenen Kapazitätskosten $r_{ij},\ 1\leq i\leq n,\ 1\leq j\leq m$

- jede Aufgabe und jeder Arbeiter = Knoten des Konstruktionsgraphen (Kanten tragen die Zuordnungskosten d_{ij})
- ▶ jede Aufgaben muss genau einem Arbeiter zugeordnet werden (Kapazitäten der Arbeiter nicht überschreiten)
- ► Pheromonwerte auf Kanten beschreiben, wie wünschenswert Zuordnung einer Aufgabe an Arbeiter ist
- ightharpoonup inverse absolute oder relative r_{ij} oder inverse d_{ij}
- wähle schrittweise Kanten (müssen keinen Pfad bilden), übergehe Kanten von bereits zugeordneten Aufgaben (bestrafe Lösungen, die Nebenbedingungen verletzen (Kostenerhöhung))

Allg. Anwendung auf Optimierungsprobleme Rucksackproblem

Wähle aus n Objekten mit zugeordnetem Wert w_i , Gewicht g_i , Volumen v_i , etc. $1 \le i \le n$, Teilmenge maximalen Wertes aus, sodass Maximalwerte für Gewicht, Volumen, etc. eingehalten

- ightharpoonup jedes Objekt = Knoten des Konstruktionsgraphen (Knoten tragen Objektwerte w_i , Kanten nicht benötigt)
- Maximalwerte für Gewicht, Volumen, etc. müssen eingehalten werden
- Pheromonwerte: nur Knoten zugeordnet (sie beschreiben, wie wünschenswert Auswahl des zugehörigen Objektes)
- Verhältnis von Objektwert zu relativem Gewicht, Volumen, etc. wobei in den Verhältnissen die Maximalwerte berücksichtigt werden können
- wähle schrittweise Knoten aus, wobei in jedem Schritt sichergestellt, dass Maximalwerte eingehalten

Konvergenz der Suche

betrachte "Standardverfahren" mit folgenden Eigenschaften:

- Verdunstung des Pheromons mit konstantem Faktor von allen Kanten
- nur auf Kanten des besten, bisher gefundenen Lösungskandidaten wird Pheromon abgelegt (strenges Eliteprinzip)
- ▶ \exists Untergrenze ϕ_{\min} für Pheromonwerte der Kanten, welche nicht unterschritten wird
- Standardverfahren konvergiert in W'keit gegen Lösung, d.h. mit $t \to \infty$ geht W'keit, dass Lösung gefunden wird, gegen 1
- ▶ lässt man Untergrenze ϕ_{\min} für Pheromonwerte "genügend langsam" gegen 0 gehen ($\phi_{\min} = \frac{c}{\ln(t+1)}$ mit Schrittzahl t und Konstante c), kann man zeigen, dass für $t \to \infty$ jede Ameise der Kolonie Lösung mit gegen 1 gehender W'keit konstruiert

Zusammenfassung

- Schwarm- und populationsbasierte Algorithmen: Heuristiken zur Lösung von Optimierungsproblemen
- Ziel: Finden guter Näherungslösungen
- man versucht Problem der lokalen Optima zu verringern (durch bessere Durchforstung/Exploration des Suchraums)
- wichtig: Informationsaustausch zwischen Individuen (je nach Prinzip: verschiedene Algorithmentypen)
- Teilchenschwarmoptimierung
 - Optimierung einer Funktion mit reellen Argumenten
 - ► Informationsaustausch durch Orientierung an Nachbarn
- Ameisenkolonieoptimierung
 - Suche nach besten Wegen (abstrakt: in einem Entscheidungsgraphen)
 - Informationsaustausch durch Veränderung der Umgebung (Stigmergie)

Outline

Schwarm- und populationsbasierte Optimierung

Organic Computing

Zusammenfassung

Motivation

In Zukunft werden voneinander unabhängige Systeme

- miteinander kommunizieren können,
- sich automatisch an ihre Umgebung anpassen müssen,
- ▶ in vielen Bereichen der Gesellschaft zum Einsatz kommen.

Beispiele solcher Systeme:

- Verwalten von Peer-to-Peer-Netzen
- Lernfähige Verkehrssteuerung
- Auskundschaften von Gebieten durch Roboter
- Automatisierung von Fabrikabläufen
- Management von regenerativen Energiequellen
- Selbstheilung von Systemfehlern in Automobilen

Organic Computing

- Ziel: eigenständige Organisation, Konfiguration und Reparatur dieser komplizierten Rechnersysteme
- ► Lösung: *Organische Computersysteme* (engl. Organic Computing)
 - ▶ passen sich an veränderte Bedingungen (Umwelteinflüsse) an,
 - sind von Vorbildern der Natur inspiriert

Probleme:

- Steuerung und Kontrolle dieser Systeme wird schwieriger, da sie emergente Verhaltensweisen entwickeln, d.h. vorher nicht vorhandenes Verhalten kann jederzeit auftreten
- ▶ Emergenzen können positiv sein, falls System richtig auf unerwartete Situation reagiert. Sie können aber auch fatal sein. Beispielsweise lernende Verkehrssteuerung: alle Ampeln auf grün geschaltet, weil alle Fahrzeuge dadurch freie Fahrt bekämen und Staus reduziert würden

Organic Computing: Mehr als nur Optimierung

- Ameisen übernehmen im Staat Rollen wie Soldat oder Arbeiter
- ► sinkt z.B. Zahl der Soldaten unter bestimmte Schwelle, werden aus Arbeitern Soldaten
- ⇒ Sensoren könnten neue Aufgaben übernehmen wenn andere ausfallen
 - Systeme könnten Aufgaben, die sie bereits mehrmals gelöst haben, bei jedem Mal effizienter und effektiver lösen
 - seit 2004 existiert ein von DFG geförderter Bereich zum Thema Organic Computing
 - ► Literatur: [Würtz, 2008] auch online unter http://www.springerlink.com/content/978-3-540-77656-7

Outline

Schwarm- und populationsbasierte Optimierung

Organic Computing

Zusammenfassung

Genetischer bzw. Evolutionärer Algorithmus

Repräsentation: (klassisch) $\{0,1\}^L$ mit fester Länge L (auch \mathbb{R}^L und S_n , Dekodierung)

Mutation: Bitflipping, gleichverteilte reellwertige Mutation, spezielle Permutationsoperatoren

Rekombination: *k*-Punkt- und uniformer Crossover, arithmethischer Crossover, Ordnungsrekombination

Selektion: Elternselektion, fitnessproportional oder

Turnierselektion

Population: mittelgroße Populationen

Besonderheiten: theoretische Grundlage durch Schema-Theorem (*wird noch behandelt in der Vorlesung*)

Lokale Suche

Repräsentation: beliebig

Mutation: beliebig

Rekombination: keine

Selektion: Verbesserungen immer, Verschlechterungen mit

gewisser W'keit

Population: ein Individuum

Besonderheiten: zu frühe Konvergenz ist zentrales Problem

Tabu-Suche

Repräsentation: phänotypnah

Mutation: unumkehrbare durch Tabu-Listen

Rekombination: keine

Selektion: bestes Individuum

Population: ein Elter, mehrere Kinder

Besonderheiten: bestes gefundenes Individuum wird zusätzlich

gespeichert

Memetischer Algorithmus

Repräsentation: beliebig

Mutation: wird mit lokaler Suche verknüpft

Rekombination: beliebig

Selektion: beliebig

Population: beliebig

Besonderheiten: beliebig

Differentialevolution

Repräsentation: \mathbb{R}^L

Mutation: Mischoperator

Rekombination: Mischoperator

Selektion: Kind ersetzt Elter bei Verbesserung

Population: klein/mittelgroß

Besonderheiten: Mutation nutzt Populationsinformation

Scatter Search

Repräsentation: \mathbb{R}^L und andere

Mutation: keine

Rekombination: Teilmengenoperator und Kombination

Selektion: Selektion der Besten

Population: mittelgroß

Besonderheiten: viele Varianten, deterministisches Verfahren

Kultureller Algorithmus

Repräsentation: \mathbb{R}^L und andere

Mutation: nutzt Information des Überzeugungsraums

Rekombination: keine

Selektion: Umweltselektion

Population: mittelgroß

Besonderheiten: Überzeugungsraum speichert normatives und

situationsbezogenes Wissen

Populationsbasiertes inkrementelles Lernen

Repräsentation: $\{0,1\}^L$

Mutation: Änderung in der Populationsstatistik

Rekombination: implizit

Selektion: bestes Kindindividuum geht in Statistik ein

Population: wird durch Populationsstatistik ersetzt

Besonderheiten: benötigte Individuum werden aus der Statistik

zufällig erzeugt

Ameisenkolonieoptimierung

Repräsentation: verschiedene

Mutation: jede Ameise konstruiert einen Lösungskandidaten

Rekombination: keine

Selektion: Güte bestimmt Einfluss auf globale Pheromonmenge

Population: Anzahl der Ameisen pro Iterationsschritt

Besonderheiten: globale Pheromonmengen repräsentieren

Lösungskandidaten ähnlich zur Statistik in PBIL

Teilchenschwarmoptimierung

Repräsentation: \mathbb{R}^L

Mutation: basiert auf Trägheit und Orientierung an Nachbarn

Rekombination: keine

Selektion: Orientierung am Besten (Population/eigene Historie)

Population: klein/mittelgroß

Besonderheiten: eher synchrones Durchkämmen des Suchraums

Literatur zur Lehrveranstaltung

- Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA, USA.
- Goss, S., Aron, S., Deneubourg, J., and Pasteels, J. M. (1989).
 Self-organized shortcuts in the argentine ant.
 - Naturwissenschaften, 76:579–581.

Kennedy, J. and Eberhart, R. (1995).

- Particle swarm optimization.
 In Proceedings of the IEEE International Conference on Neural Networks, page 1942–1948, Perth, Australia. IEEE Press.
- Würtz, R. P., editor (2008).

 Organic Computing.

 Understanding Complex Systems. Springer Berlin / Heidelberg.