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A Simple Example

Oil contamination of water by trading vessels

Typical formulation:
“The accident occurred 10 miles away from the coast.”

Locations of interest: open sea (z3), 12-mile zone (z2), 3-mile zone
(z1), canal (ca), refueling dock (rd), loading dock (ld)

These 6 locations €2 are disjoint and exhaustive

Q=1{z3,z2,z1,ca, rd, Id}



Modeling Degrees of Belief

Statements are often not simply true or false. Decision maker should
be able to quantify their ,,degree of belief". This can be an objective
measurement or subjective valuation. The standard way to model such
situations with uncertainty is to use probability theory:

Sample space O (finite set of distinct possible outcomes of some
random experiment), Events of interest are subsets A € ©

The degrees of belief P :29 — [0, 1] are required to satisfy the
Kolmogorov axiom

There are good arguments for this choice, e.g. the Dutch Book argument



Kolmogorov Axioms

For finite ©, probability function P : 2° — [0, 1] must satisfy

) 0<P(A) <1foralleventsA < O,
1) P(©) =1,
i) ifAnNB = &, thenP(AUB) =P(A) + P(B) for all A,B



Simple Example

Consider the subjective statement: ,The shipisin ca or rd or Id
with degree of certainty 0.6, that’s all | know*

A modelling with probility theory forces the user to specify the
degrees of belief for all elementary events. In this case the
experts does not want to that. Equal probabilities for rd and Id
and equal probabilities for the remaining options are often
used. But this is a very precise option that doesn‘t reflect the
state of the knowledge (namely ignorance) of the expert.

An alternative solution is to assign beliefs directly to subsets
and not to elements, i.e to use mass distributions.



Mass Distribution

Recall example with Q ={z3,z2,z1,ca, rd, Id}

Propositional statement in port equals event{ca, rd, Id}
Event may represent maximum level of differentiation for expert

Expert specifies mass distribution m : 22 — [0, 1]
Here, Q is called frame of discernment

m : 22 — [0, 1] must satisfy
(i) m(0) =0,
(i) 2aacalA) =1

Subsets A < Q with m(A) > 0 are called focal elements of m



Belief and Plausibility

m(A) measures belief committed exactly to A

For total amount of belief (credibility) of A, sum up m(B) whereas
BCA

For maximum amount of belief movable to A, sum up m(B) with
BNA#() (plausibility)

This leads to belief function and plausibility function

Bel,, : 2 —1[0,1], Bel,(A) = Z m(B)

Pl,: 2% —10.1], Ply,(A)
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Belief and Plausibility

It the evidence tells us that the truth is in A, and A C B, we say that the
evidence supporis B.

@ Given a normalized mass function
m, the probability that the

evidence supports B is thus

Bel(B) = Y m(A)

@ The number Bel(B) is called the
degree of belief in B, and the
function B — Bel(B) is called a
belief function.




Belief and Plausibility

If the evidence does not support B, it is consistent with B.

@ The probability that the evidence
i5 consistent with B is thus

PI(B)= »_ m(A)

AnB{
— 1 — Bel(B).

@ The number Pl E) is called the
plausibility of B, and the function

B — PI(B) is called a plausibility
function.




Example

Consider statement: “ship is in port with degree of certainty of 0.6,
further evidence is not available”

Mass distribution
m : 22 — [0, 1], m({in port}) = 0.6, m(Q2) = 0.4, m(A) = 0 otherwise

m(€2) = 0.4 represents inability to attach that amount of mass to any

A C

e.g. m({in port}) = 0.4 would exceed expert’s statement



Properties of a Belief Function

Function Bel : 2 — [0.1] is a completely monotone capacity: it verifies
Bel(il) = 0, Bel(f1) = 1 and

Eer(g,q,-)g ) {—1}”-159;([‘],4,-)_

@11, k) iel

for any k > 2 and for any family A,..... Ay in 2%

Conversely, to any completely monotone capacity Bel corresponds a
unigue mass function m such that:

m(A) = Y (-1)4-EBel(B). vACQ.
#-£BCA



Relations between m, Bel, and PL

Let m be a mass function, Bel and Pl the corresponding belief and
plausibility functions

For all A C 2,
Bel(A) = 1 — PI{A)

m(A)= > (-1)""""Bel(B)
I=BCA
m(A) =3 (1)~ 1B PI(B)
BCA
m, Bel and Pl are thus three equivalent representations of

+ a piece of evidence or, equivalently
a a state of belief induced by this evidence



Belief and Plausibility

In any case Bel(£2) = 1 (“closed world” assumption)

Total ignorance modeled by mg : 22 — [0, 1] with mp(Q) = 1,
mo(A) = 0 for all A #Q

mo leads to Bel(2) = PI(2) = 1 and Bel(A) = 0, PI(A) =1 for all
A # Q)

For ordinary probability, use m; : 2 — [0, 1] with m;({w}) = p., and
m1(A) = 0 for all sets A with |A| > 1

my is called Bayesian belief function

Exact knowledge modeled by ms : 2 — [0,1], my({wo}) = 1 and
m2(A) = 0 for all A # {wo}



Possibility Measures can be seen as special belief functions

When the focal sets of m are nested: A, — A- C ... C A, mis said fo be
consonant

The following relations then hold
PIALUEB)=max(FPI[{A), PI[B)). VA.BC1Q

Pl is this a possibility measure, and Bel is the dual necessity measure
The possibility distribution is the contour function

™ Q — [0, 1], Mw)= A/ {w})

The theory of belief function can thus be considered as more expressive
than possibility theory (but the combination operations are different, see
later).



Possibility and Necessity Measures

T:Q — [0, 1], Ti(w) =Pl({w})

Thus, possibility measure and necessity measure are defined by

PoSSm 22 — [0,1], Mm((B) = max{m(w):wecB}
necm : 22 — [0,1], necm(B) =1—-T(B)



Properties of Possibility Measures

i) M(0) =0
i) N(Q) =1
i) T(AU B) = max{l(A),I1(B)} for all A, B C {2

Possibility of some set is determined by its “most possible” element

nec(2) =1 — (M) = 1 means closed world assumption:
“necessarily wgp € 2" must be true

Total ignorance: M(B) = 1,nec(B) =0 for all B # (), B # {2

Perfect knowledge: IM({w}) = nec({w}) = 0 for all w # wy and
N({wo}) = nec({woy) =1



Simple Example

Consider ship locations again

Given membership function
(@Z3) = 1(z2) =0
T(z1) = 1(ld) = 0.3
T1(ca) = 0.6
TT(rd) = 0.1
N({z3,z2}) = 0 and nec({z1,ca,rd,ld}) = 1

We know it is impossible that ship is located in {z3, z2}

M({ca, rd}) = 1, nec({ca, rd}) = 0.7 means “location of ship is
possibly but not with certainty in {ca, rd}”



Possibility and Fuzzy Sets

Let variable T be temperature in °C (only integers)

Current but unknown value Ty is given by “ T is around 21°C"

1.00 +

0.75 + ™

050 | 19 |20 1 22| 23

0.25 + | |
O+t 1T %+ .93 2/3 1 2/3 1/3

1718 19 20 21 22 23 24 25

Incomplete information induces possibility distribution function 7
7 is numerically identical with membership function

Nested c-cuts play same role as focal elements




Possibility Theory: An Axiomatic Approach

Definition

Let Q2 be a (finite) sample space. A possibility measure [1 on € is a
function I : 29 — [0, 1] satisfying

) T(@)=0 and
i) VEy, E2 € Q :TI(E1 UE2) = max{l(E1),lM(E2)}.

From axioms, it follows M(E1 NE2) < min{l1(E1), M(E2)}
Attributes are introduced as variables (as in probability theory)
[1(A = a) is abbreviation of M({w € Q | A(w) = a})

If event E is possible without restriction, then1(E ) = 1

If event E is impossible, thenT1(E ) = 0



Example: Dice and Shakers

shaker 1 shaker 2

AN

tetrahedron hexahedron octah

1-4 1-6 1-38 1-10 1-12
numbers degree of possibility
1-4 | s4+g+s+s+s = 1
O e I
7-8 belel - 3
9-10 %+% %
11 -12 I =1




Example

Example Domain Relation

color | shape | size

small
medinm

A O small
medinm
. ‘ medium

large
medium
medium

medinm

ppupeEEE B R N B B
>>OOB>P>O000O0

large

e 10 simple geometrical objects, 3 attributes.
e One object is chosen at random and examined.

e I[nferences are drawn about the unobserved attributes.



Example: Reasoning

e Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.

e From the prior knowledge it follows that the given object must be

o either a triangle or a square and

o elther medium or large.
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Example:Possibility Distribution

80190 | 70|70 all numbers in
H B [0 @ parts per 1000
40170101 70 80

201 10] 201 20 /0
30130120 10 90
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407801 10] 70 = s m |
301101701 60 A 207807170
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Numbers state degrees of possibility of corresponding value
combination



Example: Reasoning

(0] 0] 070
EE 0D
0T 07070
0701020
0l 0010
07010770
0010160
0[0[0][10,
ATOTOT0T20 medium
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Olol00]10
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parts per 1000

s m |
AN120170] 70
(1140|6020
O 10]10] 10
H B [ O

0|l 0] 070
0|l 0] 070
0| 0] 0140

From the information, that the object is green, we can derive information obout the
possibilities of shape and size. For high dimensional possilities the complexity can be
handled by using information about (conditional) independences



Conditional Possibility and Independence

Definition

Let Q be a (finite) sample space, 1 a possibility measure on 2, and Ej,
Eo < Q events. Then IN(E1 | E2) = M(E1 NE2) is called the
conditional possibility of E1 given Eo.

Definition

Let Q be a (finite) sample space, 1 a possibility measure on £, and A, B,
and C attributes with respective domains dom(A), dom(B), and dom(C ).
A and B are called conditionally possibilistically independent given C ,
written A L1nB |C, iff

VYaedom(A) : Vb edom(B) : Vc €dom(C) :
NMA=aB =b|C=c)=min{flil(A=a|C =¢),lI(B=b|C =c¢)}



Possibilistic Networks

Example: Decomposition of a 21-dim — -
possibility distribution by using
independences between lower
dimensional possibility distributions .

WILEY SERIES IN COMPUTATIONAL STATISTICS

The (hyper-) graph visualized the
independence structure by separation
properties in the graph, and this
representation allows efficient reasoning
and learning methods in high dimensional
problems.

Christian Borgelt,
Matthias Steinbrecher and Rudolf Kruse
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