
Tobias Peter

Using Deep Learning as a
surrogate model in Multi-objective
Evolutionary Algorithms





Institute for Intelligent Cooperative Systems

Master Thesis

Using Deep Learning as a surrogate model in
Multi-objective Evolutionary Algorithms

Author: Tobias Peter

Supervisor: Sanaz Mostaghim

Advisor: Heiner Zille



Tobias Peter: Using Deep Learning as a surrogate model in Multi-
objective Evolutionary Algorithms
Otto-von-Guericke-Universität
Magdeburg, 2018.



Abstract

Multi-objective Evolutionary Algorithms (MOEAs) are popular tools to solve
optimization problems in the field of engineering, because of their solid perfor-
mance on problems with large design spaces and difficult fitness landscapes.
However, MOEAs still need many evaluations of the objective function to solve
a typical real-world problem. This is further complicated by the fact that many
such problems require multiple minutes or half an hour for even a single eval-
uation. Combined, this can make the use of MOEAs unfeasible. One way to
alleviate this is the integration of surrogate functions which learn to approxi-
mate the fitness landscape from a training set of example evaluations. While
other methods also exist, in this thesis we will focus on approaches using Ar-
tificial Neural Networks for the approximation task. We want to understand
if the performance of such an approach can be improved by using deeper net-
works. Deep ANNs are the focus of the renewed interest in ANNs commonly
named deep learning (DL). Deep learning concerns itself with the ability of
ANNs with more than one hidden layer to decompose a problem into underly-
ing factors which should give them the potential to approximate more compli-
cated problems. We propose an extension of a previously published approach
to surrogate-assisted MOEAs that allows us to compare ANNs with different
numbers of hidden layers in a number of experiments. The different architec-
tures are compared on problems of varying difficulty, from simple unimodal
problems to problems with difficult multimodal or flat fitness landscapes. The
results show that the proposed method outperforms a method with only one
hidden layer, especially on higher-dimensional problems, on some common test
problems, but the potential of deep learning is not fully unlocked on highly
multimodal test problems.

I





Contents

Contents III

List of Figures V

List of Tables VII

List of Algorithms IX

List of Acronyms XII

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . 7
2.2 Fitness Landscapes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . 12

2.3.1 The General Evolutionary Algorithm . . . . . . . . . . . 14
2.3.2 Selected Operators . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Surrogate-assisted MOEAs . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Types of Surrogate Models . . . . . . . . . . . . . . . . . 25
2.4.2 Integration of the Surrogate Model . . . . . . . . . . . . 28

2.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Neural Networks in Computer Science . . . . . . . . . . 33
2.5.2 Learning in Neural Networks . . . . . . . . . . . . . . . . 34

III



CONTENTS

2.6 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Related Work 41

4 Concept 49
4.1 Basic Coarse to Fine Approximation . . . . . . . . . . . . . . . 49
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Evaluation 57
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Multi-objective Test Problems . . . . . . . . . . . . . . . 62
5.2.2 Structure of the Results . . . . . . . . . . . . . . . . . . 63

5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Influence of the Neural Network Architecture . . . . . . . 65
5.3.2 Influence of Training and Exploitation of the Surrogate

on a Deep Network . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Influence of Training and Exploitation of the Surrogate

on a Shallow Network . . . . . . . . . . . . . . . . . . . 81

6 Conclusion and Future Research 87

Bibliography 91

IV



List of Figures

2.1 Example of a Pareto-optimal front . . . . . . . . . . . . . . . . . 8
2.2 Examples of unimodal and multimodal fitness landscapes. . . . . 10
2.3 Examples of flat and biased fitness landscapes. . . . . . . . . . . 12
2.4 Examples for the quality of surrogate functions . . . . . . . . . 24
2.5 Model of an artificial neuron . . . . . . . . . . . . . . . . . . . . 31
2.6 Example of a neural network . . . . . . . . . . . . . . . . . . . . 32

4.1 The concept of successive approximation . . . . . . . . . . . . . 50
4.2 Diagram of the successive approximation procedure . . . . . . . 51
4.3 Flowchart of the proposed procedure . . . . . . . . . . . . . . . 53

5.1 Adapting the network architecture (DTLZ1, DTLZ2) . . . . . . 66
5.2 Adapting the network architecture (WFG1, WFG2) . . . . . . . 67
5.3 Adapting the network architecture (ZDT1, ZDT4) . . . . . . . . 68
5.4 Adapting p and q for the deep network (DTLZ1, DTLZ2) . . . . 75
5.5 Adapting p and q for the deep network (WFG1, WFG2) . . . . 76
5.6 Adapting p and q for the deep network (ZDT1, ZDT4) . . . . . 77
5.7 Adapting p and q for the shallow network (DTLZ1, DTLZ2) . . 82
5.8 Adapting p and q for the shallow network (WFG1, WFG2) . . . 83
5.9 Adapting p and q for the shallow network (ZDT1, ZDT4) . . . . 84

V





List of Tables

2.1 Common Features exhibited by problems suitable for surrogate-
assisted multi-objective evolutionary algorithms (MOEAs) . . . 25

2.2 Trade-offs of different integration methods . . . . . . . . . . . . 30

5.1 Constant parameters for the experiments in Section 5.3 . . . . . 61
5.2 Chosen multi-objective test problems . . . . . . . . . . . . . . . 63
5.3 Adapting the network architecture (DTLZ1, DTLZ2) . . . . . . 69
5.4 Adapting the network architecture (WFG1, WFG2) . . . . . . . 70
5.5 Adapting the network architecture (ZDT1, ZDT4) . . . . . . . . 71
5.6 Adapting p and q for the deep network (DTLZ1, DTLZ2) . . . . 78
5.7 Adapting p and q for the deep network (WFG1, WFG2) . . . . 79
5.8 Adapting p and q for the deep network (ZDT1, ZDT4) . . . . . 80
5.9 Adapting p and q for shallow networks (DTLZ1, DTLZ2) . . . . 81
5.10 Adapting p and q for shallow networks (WFG1, WFG2) . . . . . 85
5.11 Adapting p and q for shallow networks (ZDT1, ZDT4) . . . . . 86

VII





List of Algorithms

2.1 General Evolutionary Algorithm . . . . . . . . . . . . . . . . . . 14
2.2 Tournament Selection . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Fast Nondominated Sorting . . . . . . . . . . . . . . . . . . . . . 19
2.4 Crowding Distance Assignment . . . . . . . . . . . . . . . . . . . 21
2.5 The NSGA-II Algorithm . . . . . . . . . . . . . . . . . . . . . . . 22

IX





List of Acronyms

CFD computational fluid dynamics

FEM finite element method

EA evolutionary algorithm

ML machine learning

ANN artificial neural network

DL deep learning

MOEA multi-objective evolutionary algorithm

SBX simulated binary crossover

ReLU rectified linear unit

DL4J Deep Learning for Java

SGD Stochastic Gradient Descent

MSE mean squared error

RMSE root mean squared error

MAE mean absolute error

tanh hyperbolic tangent

MOP multi-objective optimization problem

LSM least squares method

XI



LIST OF ALGORITHMS

RSM response surface methodology

RBF radial basis function

NEC No Evolution Control

FEC Fixed Evolution Control

AEC Adaptive Evolution Control

XII



1 Introduction

This chapter will start with an example to motivate why surrogate functions
are used today and why we propose to use deep networks as a surrogate model.
Then we will present the research questions this thesis will answer.

1.1 Motivation

For a minute, let us imagine we have just inherited a car factory and want
to build a new car. There are two things we especially like about cars: They
should be fast, therefore aerodynamically shaped, but still be as affordable
as possible. Naturally, we cannot build a car that is exceptionally fast and
inexpensive at the same time.

A very aerodynamic car would be a Formula One racing car. It is shaped like
an arrow for minimum air resistance and made out of exotic materials, like
carbon fiber reinforced polymers, to reduce the weight. All that to achieve a
maximum speed of roughly 350 km/h, though, at a price tag of more than $6
million, it is anything but affordable. On the other end of the spectrum, the
Tata Nano can be found. This Indian city car can reach speeds of 105km/h
with its 38 horsepower engine, and a new one sells for only $2500. Those
are two extreme examples, but the same observations are also valid for more
reasonable examples. To make a car faster, we have to include a better (more
expensive) engine and use lighter materials (also more expensive). We simply
can not make a car that is both fast and affordable. We always have to decide
between some alternatives that represent different trade-offs or compromises
between high speed and low price.

Nonetheless, some cars that we could build in our factory are both faster and
cheaper than some others. A small set of cars, however, belong to a set of car
designs that can not be improved upon price without decreasing the speed of

1



1 Introduction

the vehicle or the other way around. These designs are called Pareto-optimal
designs and belong to the Pareto-optimal set. As a car maker, we are interested
in such designs because if we release a car with a sub-optimal design, i.e., not
a Pareto-optimal design, another car maker could release a car that is both
faster and cheaper, and a potential customer would have no reason to buy
one of our automobiles. Therefore, we have to invest in some facilities that
can be used to test potential car designs and guide us towards Pareto-optimal
designs. Traditionally, we would use a wind tunnel to test the aerodynamics
of our car, but today it would be more economical to use 3d models and
computer simulations, like the finite element method (FEM) or computational
fluid dynamics (CFD). What these computer programs have to provide are
projected values for the material costs of the vehicle and the speed it can
reach. Although, we do not want to do this search by hand and compare all
these values manually. We are already using a computer, so we can just use a
software product that was created for this kind of task. This type of software
is called an optimizer. There exist many optimizers, but for our task, an
evolutionary algorithm (EA) is a good choice. The circumstances that make an
optimizer like an EA necessary are the fact that the only pieces of information
we have about our car optimization problem are the functions that compute
the maximum speed and the cost of the car. For example, we do not have a
gradient, and some optimizers work only if gradient information is available.
We could sample many designs and derive gradient information from that, but
the number of possible car designs is too large for this approach. EAs can find
the Pareto-optimal solutions with only the given pieces of information and
without sampling an unreasonable number of car designs. They are inspired
by biological evolution, primarily by the idea of "survival of the fittest." A
typical EA can operate on an abstract description of our car and change parts
of that description to find better and better vehicle designs, and ultimately
the Pareto-optimal set.

If we apply an EA to our optimization problem, we will make two important
observations. One is that an EA, because of its nature and the difficult cir-
cumstances, needs to test a lot of car designs. The other is that the evaluation
of the speed objective takes a lot of time. The high-fidelity FEM or CFD sim-
ulations can take minutes or half an hour to process a single car design. If we
add these factors up, the optimization can take an unfeasible amount of time
to find the Pareto-optimal designs. Therefore, we search for a way to reduce
the total amount of time that is needed to optimize the car shape. What we

2



1.1 Motivation

will most likely find are so-called surrogate functions. Surrogate functions can
replace a computationally expensive objective function with a function that
can be evaluated quickly. To use a surrogate function, machine learning (ML)
algorithms and statistical methods are used to learn the relations between in-
puts and outputs of the real objective function. If the training is successful,
the output of the surrogate function can replace the real objective function
while being much cheaper to evaluate.

Different ML algorithms can be used to learn the objective function, for exam-
ple, artificial neural networks (ANNs) which are trying to imitate mammalian
brains. ANNs date back to the 1940’s and fell out of favor until recently when
they gained popularity again because of the success of deep learning (DL)
methods. Traditionally, ANNs use only one hidden layer, but deep learning is
concerned with the effectiveness of multiple hidden layers. This allows these
deep ANNs to learn a problem as a hierarchy of representations, where higher
levels in the hierarchy build on the representations given in the lower levels.
The topic of this thesis will be about how the new DL methods can improve
the performance of a surrogate method that used ANNs with only one hidden
layer before. We will test its performance on multiple test problems, some
easy and some more difficult. We are interested to see if deep networks can
approximate difficult problems, which would be difficult to learn with only one
hidden layer.

3



1 Introduction

1.2 Research Goals

The main goal of this thesis is to investigate if deep neural networks can be
used to improve an ANN-based surrogate method that has only used shallow
networks before. ANNs have been used as surrogate models before, but as
far as the author is aware, there is no published research where the effects of
using multiple hidden layers on an ANNs-based surrogate methods have been
studied. Deep networks have some properties that can potentially improve the
efficiency of surrogate functions, but using deep networks as a surrogate model
also introduces new hyperparameters that need to be tuned. To find good
hyperparameters, our deep model is tested on common benchmark problems,
as well as more difficult test problems. The goal is to determine if the increased
expression power of deeper networks makes them better at handling more
complex optimization problems. Deep networks also show promise for high-
dimensional problems, for this reason, we will also look at how the performance
of deep network surrogates scales with problems with different dimensions.
Additionally, we want to relate the performance of our proposed method to
network structures that have been used in previous research.

Summary of the research goals:

• Apply deep neural networks to surrogate-assisted multi-objective evolu-
tionary algorithms.

• Up to now, most papers used the ZDT test suite to benchmark their
surrogate models. Therefore, we want to see how our surrogate model
performs on newer test suites with more complex problems.

• How our proposed method scales up when used on higher dimensional
problems.

• Put the performance of the proposed method in relation to surrogate
models using shallow networks.

1.3 Structure of the Thesis

In Chapter 2 we will review the background knowledge required to understand
the terms and methods used in this thesis. The topics covered include multi-
objective optimization problems (MOPs), which can be solved using MOEAs,

4



1.3 Structure of the Thesis

how surrogate models can be integrated into said MOEAs and finally ANNs,
which will be used as the surrogate model in the proposed surrogate method.
Chapter 3 will introduce related research in the field of surrogate-assisted
MOEAs. Chapter 4 will explain our proposed method in detail, and Chapter
5 contains various experiments to establish the quality of our surrogate model.
Finally, Chapter 6 will draw a conclusion and suggest how further research can
build on this thesis.

5





2 Background

This chapter reviews the necessary concepts. First, we look at the formal
definition of multi-objective optimization problems (MOPs) and some of their
properties. Then, we will introduce how multi-objective evolutionary algo-
rithms (MOEAs) can be used to solve MOPs and take a detailed look at
NSGA-II, a widely used MOEA. The next section will familiarize the reader
with surrogate functions, which statistical models are used to build them and
how they can be integrated into EAs. The last section explains artificial neural
networks (ANNs), which is the surrogate model used in this thesis.

2.1 Multi-objective Optimization

Optimization is the process of finding the best solution from a set of feasible
solutions or a feasible region. The quality of a solution is given by an objec-
tive function. In this thesis, we only look at minimization problems, i.e., the
best solution is defined as the solution that receives the lowest possible value
from the objective function. Furthermore, we are concerned with optimiza-
tion problems where multiple objective functions have to be satisfied. These
so-called multi-objective optimization problems can be formally stated as

min
~x

~f(~x) where: ~f(~x) = [f1(~x), ..., fm(~x)] (2.1)

where ~f is a vector function, containing m objective functions, and ~x is one of
the solutions.

A solution vector ~x consists of n real-valued variables ~x = [x1, ..., xn] and is part
of the feasible solutions Ω ⊆ Rn. The feasible region Ω contains all solutions
that satisfy some given constraints, for example

x lower
i ≤ xi ≤ x upper

i i = 1, ..., n (2.2)

7



2 Background

f1

f
2

a

b

c
d

Figure 2.1: Example of an Pareto-front in the objective space O. The circles
represent the objective vectors ~f(~x) of some example solutions.
The filled circles are the objective vectors of the Pareto-optimal
solutions in P . The dashed line is an approximation of the Pareto-
optimal front. There exist no solutions with objective vectors be-
yond (closer to the origin) the Pareto-optimal front. All solutions
in P lie somewhere on this front. The remaining unfilled circles
show the objective values of sub-optimal solutions in Ω, i.e. solu-
tions not in P .
The shaded box shows the region of the objective space that is
dominated by the Pareto-optimal solution a. Every point in the
shaded region is dominated by a, for example b. The solution c is
also dominated by a because it has the same objective value in f1
but higher (worse) value in f2. The solution d is not dominated by
a because it has a better value in f1.

8



2.1 Multi-objective Optimization

which defines the minimum and maximum values any xi can take.

The vector function ~f maps any solution ~x ∈ Ω into the objective space (or
fitness space) O = Rm. How the feasible region is mapped into the fitness space
shapes the fitness landscape of the optimization problem. The fitness landscape
determines which difficulties are encountered during optimization. The next
section details some commonly encountered types of fitness landscapes.

In other words, the task posed by Equation 2.1 is to determine one solution
~xutopian from among the set of all feasible solutions ~x ∈ Ω, that yields the
smallest values for all m objective functions. However, the objective functions
in MOPs are usually conflicting, which means that there is no single solution
~xutopian ∈ Ω that minimizes all objective functions simultaneously. An objec-
tive function fi conflicts with another objective function fj if the solution ~x
that generates the best possible value of fi does not generate the optimal value
of fj, and vice versa. To optimize one objective function, one has to accept
sub-optimal performance in the other objectives. Therefore, the solution to a
MOP is not a single point ~xutopian but a set of solutions. They are called the
Pareto-optimal solutions and are contained in the Pareto-optimal set P . All
Pareto-optimal solutions are better than all solutions not in P , but changing
them to improve them in one objective will deteriorate their value in another
objective function. Formally, the Pareto-optimal set is defined as

P := {~x ∈ Ω|@~x′ ∈ Ω : ~f(~x′) � ~f(~x)} (2.3)

The symbol � is used to signify Pareto-dominance i.e. ~x � ~x′ means ~x dom-
inates ~x′. A solution ~x is said to dominate another solution ~x′ if and only if

∀i(fi(~x) ≤ fi(~x
′)) i = 1, ...,m (2.4)

and there is at least one i such that

fi(~x) < fi(~x
′) (2.5)

In other words, a solution ~x is dominates another solution ~x′ if and only if ~x
is better or equal in all objectives and strictly better in at least one objective.
Figure 2.1 shows some examples of Pareto-dominance. The solution a domi-
nates any other solution that is inside the shaded area, like b. It also dominates
c which has the same objective value in f1 but a worse objective value in f2.

9



2 Background

0

1

2

3

4

5

6

−4 −2 0 2 4

f 1

x

(a) unimodal

−5

0

5

10

15

20

25

30

−4 −2 0 2 4

f 1

x

(b) multimodal

Figure 2.2: Examples of unimodal and multimodal fitness landscapes.

It does not dominate d, because d has a better value in f1, or any of the other
Pareto-optimal solution (represented as filled circles).

When each solution in the Pareto-optimal set is mapped into the objective
space O using the objective functions ~f(~x) they will create the Pareto-front
PF .

PF := {[f1(~x), ..., fm(~x)]|~x ∈ P} (2.6)

A visual example of a Pareto-front is shown in Figure 2.1. The filled circles
represent the objective vectors ~f(~x) of the Pareto-optimal solutions in P . The
Pareto-front shows the possible trade-offs between the two objectives. The
solution in the top-left is a solution where much of the performance in objective
f2 is sacrificed to gain the best performance in f1. Conversely, the bottom-
right solution trades good performance in f1 for the best possible performance
in f2. The solutions in between these two extremes represent different degrees
of trade-off between f1 and f2.

In the context of this thesis we are interested in MOPs where the call to the
function ~f(~x), also called an evaluation, to calculate the objective values for a
single solution is computationally expensive. More on that in Section 2.4.

2.2 Fitness Landscapes

As mentioned earlier, the mapping from the search space to the fitness space
defines the fitness landscape. Of interest here is the nature of the fitness

10



2.2 Fitness Landscapes

landscape, which determines the difficulties that the optimization algorithm
will encounter during optimization. Our examples will mostly show the fit-
ness landscapes of one-dimensional objective functions, but they translate to
multi-objective function because the fitness landscape of each objective can be
analyzed in isolation.

The unimodal landscape is the most straightforward landscape an optimizer
could encounter. This landscape is defined by having a single optimum which
is also the global optimum, i. e. the best objective value that can be achieved.
What makes it so straightforward, is the fact that any randomly generated
solution can find the global optimum by just following the gradient of the
objective function. This case is visualized in figure 2.2a. If an optimizer is at
any position x < 0 he has only to increase x to find the global optimum or
decrease x if he finds himself at any point x > 0.

A multimodal fitness landscape is more complicated, like the example shown in
figure 2.2b. In the vast majority of cases, if the optimizer begins at a random
position and just follows the gradient, like in the unimodal case, he will get
stuck in a local optimum. Being stuck means that the optimizer thinks he has
found the global optimum. For example, imagine we are at the point x = 4

after we followed the gradient. Irrespective of the direction we choose (−x or
+x in this case) our objective value will get worse. Our gradient following
optimizer will now stop and return x = 4 as the globally optimal solution.
Unfortunately, there is no way of telling the optimizer that this is not the
globally optimal solution because it is the task of the optimizer to find the
optimal solution in the first place. To succeed with simple gradient following
the initial random solution has to land in a very narrow region around x = 0.
To succeed without luck, the optimizer has to employ a search strategy that
negotiates the local optima and finds the small region containing the global
optimum.

Another factor is whether or not unique values in the search space map to
unique values in the objective space. The most fortunate case is a one-to-one
mapping where each parameter vector ~x evaluates to a unique objective vector.
A many-to-one fitness landscape is one where multiple parameter vectors eval-
uate to one objective vector. Why this is difficult is demonstrated in 2.3a. The
figure shows an extreme case of many-to-one mapping, where entire regions of
the parameter space Ω map to the same objective vector. If the optimizer
finds itself in such a region, a so-called flat region, he cannot find information

11



2 Background

0

2

4

6

8

10

12

−4 −2 0 2 4

f 1

x

(a) flat

0

0.5

1

1.5

2

0 0.5 1 1.5 2

f 2

f1

(b) biased

Figure 2.3: Examples of flat and biased fitness landscapes.

that guides him towards the global optimum because perturbations of the pa-
rameter vectors will most likely not generate a change in the objective vectors.
Optimization problems containing flat regions are usually very hard to solve.

The bias of a fitness landscape relates to the distributions of the solutions in
the search space and the distribution of their respective objective vectors in the
objective space. A fitness landscape is biased if an equally distributed random
sample of vectors in the search space maps to objective vectors that are more
likely to be in a small region in the objective space. An example of bias can
be seen in figure 2.3b where a sample of 3000 equally distributed vectors is
shown after they were mapped into the objective space. We can see that the
corresponding objective vectors are more likely to be close to the line through
(0, 1) and (1, 0). Since this line would be the Pareto-optimal front PF , this
bias would actually make the search easier. If, on the other hand, the fitness
landscape is biased towards regions which are far from the Pareto-optimal front
the search would become more difficult.

2.3 Multi-objective Evolutionary Algorithms

Multi-objective evolutionary algorithms (MOEAs) belong the class of meta-
heuristic optimization techniques. These techniques are abstract computa-
tional techniques for solving numerical and combinatorial problems. Meta-
heuristics are usually applied to problems for which only the objective function
is known and that have too many feasible solutions to be sampled thoroughly.
In most cases where more information than the objective function is known

12



2.3 Multi-objective Evolutionary Algorithms

there also exists a more performant method to solve it. If the feasible region,
from here on also called search space, is small, the complete set can be eval-
uated to reveal the optimal solutions. Metaheuristics are applied when most
other methods fail.

They use an abstract sequence of operations on abstract objects, and to im-
plement a metaheuristic algorithm to solve a specific problem the abstract
operations and objects have to be adapted to the problem. The abstract op-
erators and objects used in an EA are inspired by the processes of biological
evolution, i.e., survival of the fittest. They keep a population P of k individu-
als (the EA term for solution), and the fittest (best) individuals are allowed to
reproduce (create new similar solutions) which improves the whole population
over time. At the beginning of the search, the individuals of the population are
dispersed over the whole search space. This is called exploration and is used
to find regions in the search space that could contain the global optimum. If
promising regions are found, the exploitation begins. Exploitation is the pro-
cess of thoroughly searching only the promising regions of the search space,
in the case of EAs by concentrating more individuals in that region. When a
region is found to no longer be promising, the individuals move to other more
promising regions in the search space. At the end of the search, the whole pop-
ulation is usually gathered around the global optimum, searching that region
exhaustively.

In the multi-objective case, MOEAs also benefit from the population-based
approach[13]. At the end of a successful search, the objective vectors of all
individuals in the population are equally spread over the whole Pareto-front
PF . Other approaches that produce only one of the Pareto-optimal solution
need to be applied multiple times. MOEAs have the potential to find an
approximation of P in a single search.

The first EAs that could efficiently solve MOPs were introduced in the early
’90s. Fonseca and Fleming’s MOGA[22], Srinivas and Deb’s NSGA[54] and
Hoern et al.’s NPGA[29] are some examples. They all showed the necessary
changes for conversion of a single-objective evolutionary algorithm to a multi-
objective evolutionary algorithm. Common features were nondominated sort-
ing and a strategy to preserve the diversity of the population, the equal spread
along the PF .

13



2 Background

2.3.1 The General Evolutionary Algorithm

Algorithm 2.1: General Evolutionary Algorithm
1 t← 0

2 initialize P0 randomly
3 evaluate P0

4 while termination criterion not reached do
5 t← t+ 1

6 select Pt from Pt−1
7 apply genetic operators to Pt
8 evaluate Pt
9 return Pt

Before we can apply an EA to a problem we have to define what individual
or a population is and how the fitness will be calculated. In our case, we can
simply define that an individual is a feasible solution ~x = [x1, ..., xn] and the
population is a list of solutions P = {~x(1), ..., ~x(k)} with k being the population
size. The objective function ~f = [f1(~x), .., fm(~x)] is used as the fitness function.

Algorithm 2.1 shows how an EA would optimize a problem. We start in Line 2
where the random initial population P0 is created, and the fitness of each indi-
vidual in the initial population is determined using the objective function(Line
3).

In Line 4, we enter the main loop of the EA, every iteration of this loop is
called a generation. The termination criterion can be a predefined number of
generations (or evaluations) or one that measures the progress and stops the
EA if said progress becomes too slow. The selection step is shown in Line 6,
here a mating pool is created which contains the individuals who are allowed
to reproduce and create new child individuals. The selection process should
be designed in a way that fitter individuals are more likely to be selected
for reproduction. This way information contained in the fitter individuals is
disseminated to the other individuals in the population and will increase the
average fitness of the population. In Line 7, we apply the genetic operators, this
usually involves a crossover operator and a mutation operator. The crossover
operator takes some individuals as input and outputs the same amount of
individuals, but the new individuals represent a mix of the original individuals.

14



2.3 Multi-objective Evolutionary Algorithms

This way information is transferred among individuals and since the better
individuals are more likely to be selected it should improve the overall fitness
of the population. The mutation operator applies small random changes to
an individual in the hope that these changes will increase the fitness of the
individual. The mutation can be considered as a random search around the
position around that individual in the search space. After all operators are
applied, the new child generation is assessed (Line 8) and we reach the next
iteration of the main loop, the next generation.

If the termination criterion is satisfied, the EA stops and returns the current
population.

2.3.2 Selected Operators

This section presents selected evolutionary operators that will be used through-
out this thesis. As the selection operator we will be using binary tournament
selection, for the crossover operator we use simulated binary crossover and
polynomial mutation as the mutation operator.

Binary Tournament Selection

Algorithm 2.2: Tournament Selection
Data: The population P = {~x(1), ..., ~x(k)}.

The tournament size s ∈ {1, 2, ..., k}.
Result: The population after selection P ′ with |P ′| = |P |.

1 P ′ ← ∅
2 for i← to k do
3 G← s randomly chosen individuals from P .
4 g ← individual from G with the best fitness.
5 P ′ ← P ′ ∪ {g}
6 return P ′

The selection process is used to control which individuals are allowed to repro-
duce. By selecting fit individuals, the information held by these individuals is
allowed to scatter around in the population by means of reproduction and raise
the average fitness of the population. Since EAs are a stochastic process, we

15



2 Background

do not want to give only the best individuals a shot at reproduction. We also
want some of the lower quality individuals to reproduce, expecting that their
information will ultimately lead to even better regions in the search space.
This way selection can be used to balance exploitation and exploration. If the
chance that low-quality individuals are allowed to reproduce is high, the pop-
ulation will spread around the whole search space and explore it. If only good
individuals are allowed to reproduce newly generated individuals will mostly
be generated around a smaller region near the better individuals and search
for the optimum.

Tournament selection is a popular strategy for selection[4, 26]. The broad idea
is to create a mating population from the EA’s current population. This mat-
ing pool has the same size as the original population, but better individuals are
in that population more than once. This is done by randomly choosing s indi-
viduals from the original population and adding the best of those individuals
to the mating population. This process is called a "tournament," and s is the
tournament size. The participant individuals are "competing" against each
other, by comparing their fitness values, and the winner is allowed into the
mating population. This method is shown in Algorithm 2.2. The participant
individuals are selected randomly with replacement. The winner of a tourna-
ment is always selected deterministically using the domination criterion (see
Equations 2.4 and 2.5). A higher s will decrease the chance of selecting unfit
individuals. More candidates in tournament group mean a higher chance that
a good individual is also present, which will dominate the inferior individuals.

Binary tournament selection is a special case of tournament selection where
s = 2, so only two individuals compete for a place in the mating pool. Binary
tournament selection is used in NSGA-II which we introduce in Section 2.3.3.

Simulated Binary Crossover

Simulated binary crossover (SBX) is a crossover algorithm usually used in cases
where the individual is defined as a vector of real numbers, as is the case in this
thesis. It was created with the goal to recreate useful properties of single-point
binary crossover, which is used when the individuals are encoded in binary
form[14, 15, 6]. After the introduction of EAs, real values were customarily
encoded as binary code, and the single-point crossover method was used on
the binary code. This type of crossover had some useful properties, which

16



2.3 Multi-objective Evolutionary Algorithms

Agrawal et al.[14] wanted to keep when real variables were used directly, i.e.,
without binary encoding. They looked at the distribution of decoded real
variables after binary single-point crossover and sought to create an operator
that could simulate the same distribution after the crossover, hence the name
simulated binary crossover. The authors also introduced a parameter named
distribution index ηc, that controls the spread of child solutions around the
parent solutions.

Let us assume we have randomly selected, from our mating pool, two parent
solutions ~x(1) and ~x(2) of the form

~x(1) = {x(1)1 , x
(1)
2 , ..., x(1)n } ~x(2) = {x(2)1 , x

(2)
2 , ..., x(2)n }

where n is the dimension of our search space and each x
(i)
j ∈ R. Now each

pair {(x(1)j , x
(2)
j )|j = 1, ..., n} have a chance to be crossed over according to

the crossover probability pc. If such a pair is selected for crossover SBX is
applied to (x

(1)
j , x

(2)
j ) to create two new elements (z

(1)
j , z

(2)
j ) which replace their

respective parent elements in ~x(1) and ~x(2).

The two offspring elements (z
(1)
j , z

(2)
j ) are created by first generating a random

value u between 0 and 1 and then applying Equation 2.7

z
(1)
j = 0.5[(x

(1)
j + x

(2)
j )− β̄|x(2)j − x(1)j |]

z
(2)
j = 0.5[(x

(1)
j + x

(2)
j ) + β̄|x(2)j − x(1)j |] (2.7)

β̄ =

(αu)
1

ηc+1 , ifu ≤ 1
α(

1
2−(αu)

) 1
ηc+1

, otherwise

u ∈ [0, 1]

α = 2− β−(ηc+1)

β = 1 +
2

x
(2)
j − x(1)j

min
{

(x
(1)
j − xlower

j ), (xupper
j − x(2)j )

}
where we assume that x(1)j < x

(2)
j . xlower

j and xupper
j are j-th elements from

lower and upper bounds of the search variables, see equation 2.2. β̄ is the

17



2 Background

spread factor and depends on the distribution parameter ηc. Low values of ηc
will produce offspring far away from their parents and high values offspring
near to their parents.

Polynomial Mutation

Like SBX polynomial mutation[15] was created for real-coded parameter vec-
tors and uses some of the same principles as SBX. It creates a new solution in
the vicinity of a parent solution using a probability distribution.

Assume we have a solution of the form

~x = {x1, x2, ..., xn}
where n is the number of design variables. Each xi, i = 1, ..., n has a chance
to be mutated according to the mutation probability pm. If a xi is chosen
for mutation, an u ∈ [0, 1] is chosen from an uniform distribution and the
mutation result zi is generated according to equation 2.8 and replaces xi.

zi = xi + δ̄ ·∆max i = 1, ..., n (2.8)

δ̄ =

{
[2u+ (1− 2u)(1− δ)ηm+1]

1
ηm+1 , ifu ≤ 0.5

1− [2(1− u) + 2(u− 0.5)(1− δ)ηm+1]
1

ηm+1 , otherwise

δ =
min[(xi − xlower

i ), (xupper
i − xi)]

xupper
i − xlower

i

Where ∆max is maximum allowed perturbance of the parent. xlower
j and xhigher

j

are j-th elements from lower and upper bounds of the search variables, see
equation 2.2. ηm is the distribution parameter for mutation and takes any
nonnegative value like SBX a higher distribution index creates solutions closer
to the parent.

2.3.3 NSGA-II

In this section, we will detail NSGA-II[16], a widely used multi-objective evo-
lutionary algorithm (MOEA). The authors, Deb et al., improved upon ear-
lier MOEAs which were held back because of their computational complexity

18



2.3 Multi-objective Evolutionary Algorithms

Algorithm 2.3: Fast Nondominated Sorting
Data: The population P .
Result: The population sorted into multiple nondominated fronts. The

nondominated front F1 contains all solutions that are not
dominated by any solution in P . The front F2 contains all solutions
not dominated by any solution in P \ F1 and so on.

1 foreach ~x(p) ∈ P do
2 Sp = ∅
3 np = 0

4 foreach ~x(q) ∈ P do
5 if ~x(p) ≺ ~x(q) then
6 Sp = Sp ∪ {~x(q)}
7 else if ~x(q) ≺ ~x(p) then
8 np = np + 1

9 if np = 0 then
10 ~x

(p)
rank = 1

11 F1 = F1 ∪ {~x(p)}

12 i = 1

13 while Fi 6= ∅ do
14 Q = ∅
15 foreach ~x(p) ∈ Fi do
16 foreach ~x(q) ∈ Sp do
17 nq = nq − 1

18 if nq = 0 then
19 ~x

(q)
rank = i+ 1

20 Q = Q ∪ {~x(q)}

21 i = i+ 1

22 Fi = Q

23 return {F1, ...,Fi}

19



2 Background

O(mk3) (m is the number of objectives and k is the population size), their
non-elitist approach and the necessity of having to tune a sharing parameter.

The naive nondominated sorting compares each solution to all other solutions
to see if any of the other solutions dominate the solution. That approach to
sorting takes O(mk2) comparisons. All nondominated solutions are removed
from the population and moved into the first nondominated front F1. To deter-
mine the second nondominated front F2 the comparisons have to be repeated
which again takes O(mk2) comparisons even though the k is now smaller. The
worst case, in which there are k fronts with one solution each, takes O(mk3)

comparisons. To increase the performance, Deb et al.[16] introduced fast non-
dominated sorting (see Algorithm 2.3).

Fast non-dominated computes a domination count np and a set of solutions
Sp for each solution ~x(p). The domination count np is the number of solutions
which dominate the solution ~x(p). The set of solutions Sp contains the solu-
tions that the solution ~x(p) dominates. Calculating np and Sp requires O(mk2)

comparisons. After completing these computations, some solutions will have
a domination count of np = 0, meaning no other solutions dominate them.
These solutions are in the first nondominated front F1. Then for each member
in F1, we iterate through its set of solutions Sp and reduce the domination
count for each solution in the set by one. Some solutions that were only dom-
inated by the solutions in F1 will now have a domination count np = 0. These
solutions are also removed and added to the second nondominated front F2.
This procedure is now repeated until all solutions belong to a nondominated
front Fi. As we can see, only one round of comparisons is needed, after that,
the remaining solutions can be efficiently sorted using information that was al-
ready computed. For reference, the pseudocode for fast nondominated sorting
is shown in Algorithm 2.3.

The second improvement NSGA-II introduced is related to diversity preser-
vation. This new crowding distance does away with the cumbersome sharing
parameter used before, and is also computationally less complex.

The crowding distance is a rough indicator telling us how crowded the area (in
the objective space) around the objective vector of the solution is. The crowd-
edness is approximated by sorting the objective vectors ~f(~x) in the current
nondominated front F according to its objective value in the first objective
f1(~x), and then computing the normalized distance to its neighboring solu-
tions. Since the current nondominated front F is now sorted, the neighbors

20



2.3 Multi-objective Evolutionary Algorithms

Algorithm 2.4: Crowding Distance Assignment
Data: F = {~f(~x(1)), ..., ~f(~x(l))} the objective vectors for all l individuals in a

nondominated front F .
~fmin and ~fmax the maximum and minimum objective values for each
objective.

Result: Crowding Distance Measure
1 l← |F |
2 D ← ∅
3 for 1 to l do
4 D ← D ∪ {0}
5 foreach objective m do
6 F = sort(F,m)

7 D[1] = D[l]←∞
8 for i = 2 to (l − 1) do
9 D[i]← D[i] + F [i+ 1]m − F [i− 1]m)/(~fmax

m − ~fmin
m )

10 return D

are merely the predecessor and successor in F . The distance is normalized
according to the maximum and minimum objective values in the current pop-
ulation. The distance is stored in D = [d1, ..., dl] that keeps the distance values
for each of the l solutions in F . This is repeated for the objectives f2 through
fm, and the computed distance values are added to D. The crowding distance
algorithm is shown in Algorithm 2.4. F [i]m refers to the m-th objective func-
tion value of the i-th individual in the current nondominated front F and the
parameters fmax

m and fmin
m are the maximum and minimum values of the m-th

objective function.

A higher crowding distance value means there is more space between the objec-
tive vectors of the solutions in the same nondominated front F . The proposed
measure is used as a secondary criterion to guide the selection process, as
shown in the crowded comparison operator ≺n, see Definition 2.1. Initially, it
prefers a solution with a better rank, unless they have the same rank then the
solution in a lesser crowded area (bigger distance measure) is preferred.

The final improvement proposed by Deb et al.[15] is elitism, which according to
the authors prevents the loss of good solution and speeds up EAs significantly.

21



2 Background

Algorithm 2.5: The NSGA-II Algorithm
1 t← 0

2 initialize P0 randomly
3 evaluate P0

4 while termination criterion not reached do
5 t← t+ 1

6 select Qt from Pt−1 using binary tournament selection (see Page 15)
7 perform crossover on Qt using SBX (see Page 6)
8 mutate the resulting solutions in Qt using polynomial mutation (see Page

18)
9 evaluate Qt

10 Rt ← Qt ∪ Pt−1 (Rt has the size 2k)
11 {F1, ...} ← sort Rt according to nondomination (see Algorithm 2.3)
12 Pt ← ∅ and i← 1

13 while |Pt|+ |Fi| ≤ k do
14 crowding distance to Fi
15 Pt ← Pt ∪ Fi
16 i = i+ 1

17 Sort Fi using �n
18 Select enough of the best elements of Fi to fill up Pt
19 return Pt

22



2.4 Surrogate-assisted MOEAs

Definition 2.1 (Crowded Comparison Operator).
Assume that every individual ~x(i) ∈ P has two attributes:
1. nondomination rank: ~x(i)rank
2. crowding distance: ~x(i)distance

Then the Crowded Comparison Operator ≺n is defined as:

~x(i) ≺n ~x(j) if (~x
(i)
rank < ~x

(j)
rank)

or ((~x
(i)
rank = ~x

(j)
rank) and (~x

(i)
distance > ~x

(j)
distance))

Algorithm 2.5 shows the complete procedure and how NSGA-II implements
elitism. NSGA-II starts, like the general EA (see Algorithm 2.1), by creating
a random population which is then evaluated (Lines 2 and 3). However, the
main loop differs from the general EA. The result of selection, crossover, and
mutation is stored as the offspring population Qt. The offspring population
is evaluated and merged into Rt together with the population of the previous
generation, which always contains the best individuals found so far. The new
population Rt thus contains the best-known individuals and new individuals,
some of which could be better than the best individuals found so far. However,
Rt is of the size 2k, to reduce it while keeping the best individuals from Rt it
is sorted into nondominated fronts {F1, ...}. The best fronts are now added to
Pt until adding another front would make Pt too big (lines 12 trough 16). The
last front that could not be added, is now sorted using the crowding distance
operator �n (Line 17), and the individuals in the least crowded areas are added
until Pt is filled up (Line 18).

2.4 Surrogate-assisted MOEAs

EAs are a direct search methods that do not need any information about
optimization problem, besides the objective function. However, because of this
a typical EA usually needs large populations and many generations requiring
a large number of evaluations. This means that the overall computation time
of the EA run scales with the time a single evaluation needs. To demonstrate
this, let us assume a single evaluation needs 1 minute to complete and to solve
the problem we need 30.000 evaluations. The overall time needed would be
roughly 20 days and 20 hours. A lot of real-world problems that need complex

23



2 Background

a)

x

f (x)

b)

x

c)

x

Figure 2.4: Examples for the quality of surrogate functions. The solid lines
are the real objective function and the dashed line represent their
approximations. Figures a) and b) show suitable approximations
of their respective fitness landscapes. Figure c) shows an approxi-
mation that would mislead the optimizer.

FEM simulations to evaluate the solutions can need that much time and more.
They are the so-called expensive MOPs. Expensive MOPs are a subclass of
MOPs that are defined by the long time a single evaluation needs. In today’s
world, waiting that long for an EA to finish can be impracticable. Methods that
can reduce the number of evaluations needed by an EA are needed. Surrogate
functions are a class of methods that meet this need.

A surrogate function is a function that can be used instead of the real fitness
functions. Such a function takes a solution ~x ∈ Ω as input and returns an
objective vector that approximates the real objective vector. For a surrogate
function to be effective, the surrogate function should have the same global
optimum and should not introduce false optima. For an example of a mislead-
ing approximation see 2.4c. If an optimizer would optimize the problem based
on the surrogate (dashed line) he would find the global optimum in a place
where the real problem has only a sub-optimal local optimum.

We said earlier that we use EAs because they work on problems for which no
more information other than the objective function is provided. Therefore,
we use statistical methods and ML to learn the fitness landscape based on
a limited sample of N data points (~x, f(~x)) from the real fitness function.
In our case, it is not possible to model the internal behavior of the problem,

24



2.4 Surrogate-assisted MOEAs

The time taken to perform one evaluation is of the order of minutes or hours
Only one evaluation can be performed at one time (no parallelism is possible)
The total number of evaluations to be performed is limited by financial considerations
No realistic simulator or other method of approximating the full evaluation is readily available
Noise is low (repeated evaluations yield very similar results
The overall gains in quality (or reductions in cost) that can be achieved are high
The search landscape is multimodal but not highly rugged
The dimensionality of the search space is low-to-medium
The problem has multiple, possibly incompatible, objectives

Table 2.1: Common Features exhibited by problems suitable for surrogate-
assisted MOEAs, according to Knowles and Hughes[36].

modeling only the relations between inputs and outputs has to suffice. Knowles
and Hughes[36] recommended of surrogate-assisted MOEAs for problems that
exhibit the features shown in Table 2.1.

We denoted the original fitness function as f(~x) and will denote the surrogate
function as f ′(~x). We omit the vector notation here, because some surro-
gate models only deal with single-objective functions. In those cases, multi-
objective functions can be approximated by applying the surrogate construc-
tion for each objective separately.

A surrogate function is defined as

f ′(~x) = f(~x) + e(~x) (2.9)

with e(~x) being the approximation error. A high approximation error does not
necessarily make a surrogate deficient, for example, see Figure 2.4a where the
surrogate function (dashed line) has a high error. However, the error is almost
constant over the whole objective space therefore not changing the location of
the global optimum. Figure 2.4b shows an example where the error changes
over the fitness landscape. Nonetheless, the global and local optimums do not
change their location. Unlike the example that is shown in Figure 2.4c were
both optima switch their positions. The overall error, however, is similar to
Figure 2.4b and lower than Figure 2.4a, but any optimizer using the surrogate
function shown in Figure 2.4c will not find the globally optimal solution.

2.4.1 Types of Surrogate Models

There are different kinds of surrogate models available.

25



2 Background

Response Surface Methodology

Also known as polynomial models, response surface methodologys (RSMs) use
methods from the field of statistics to approximate the objective function[5, 47].
Usually a second-order model of the following form is used:

f ′(~x) = β(0) +
∑

1≤i≤N
β(i)~x(i) +

∑
1≤i≤j≤N

β(N−1+i+j)~x(i)~x(j) (2.10)

where N is the number of data points (~x, f(~x)). β(0) and β(i) are coefficients
which can be estimated using the least squares method (LSM) or the gradient
method. Either method requires the number of samples N to be equal or
higher than the number of coefficients Nt = (N + 1)(N + 2)/2.

To compute the coefficients the following problem has to be solved using
LSM[58]

f(~x) = Zβ + e(~x) (2.11)

where

f(x) =


f (1)(x)

f (2)(x)
...

f (N)(x)

 , Z =


x
(1)
1 x

(1)
2 · · · x

(2)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

...
x
(N)
1 x

(N)
2 · · · x

(N)
n

 , β =


β(1)

β(2)

...
β(N)

 , e(x) =


e(1)(x)

e(2)(x)
...

e(N)(x)


and where f(x) are the examples of the real objective vector. f(x) has the
dimensions n × 1, Z has the dimensions N × n, β has the dimensions n × 1,
and e has the dimensions N × 1.

Using polynomial expressions is equivalent to using a Taylor’s series expan-
sion of the true objective function f(~x). As such, a higher polynomial of
higher degree can approximate ~~x better but also have more coefficients β(i)

that need to be estimated. The second order polynomial in Equation 2.10
can approximate any kind of quadric surface and are found to be suitable to
solve low-dimensional optimization problems [40, 25, 41, 33]. Arias-Montaño et
al.[2] noted that the training cost is proportional to the size of the training set
and that low order polynomials have only a limited capability to approximate
highly multimodal fitness landscapes.

26



2.4 Surrogate-assisted MOEAs

Kriging

The Kriging method was developed by a mining engineer named Krige who
initially used it to predict the concentration of ores in South African mines[37,
38, 9]. The Kriging method has two components, a global model (usually a
RSM) and a Gaussian random function that models the deviations from the
global model.

Mathematically, it is described as

f ′(~x) = g(~x) + Z(~x) (2.12)

where g(~x) is the global model of the original fitness function and Z(~x) de-
scribes the localized deviations from g(~x). The global model g(~x) is usually
a polynomial (see above) and Z(~x) is realized as a Gaussian random function
with zero mean and non-zero covariance.

The covariance of Z(~x) is expressed as

Cov[Z(~x(j)), Z(~x(k)] = σ2R[R(~x(j), ~x(k))], (2.13)

j, k = 1, ..., N

where R is the correlation function between any two of the N samples. The
unknown correlation parameters are contained in R, a symmetric correlation
matrix of dimension N × N . The maximum likelihood method is used to
estimate the unknown correlation parameters. Choi et al.[8] note the ability
of the Kriging method to approximate fitness landscapes with multiple local
optima. Arias-Montaño et al.[2] count Kriging into the group of the most
powerful interpolating methods. However, the construction of the model is
very time intensive [35, 2, 19]

Radial Basis Function Networks

Radial basis function (RBF) networks are neural networks that use an radial
basis function as the activation function and not more traditional choices like
the sigmoid or hyperbolic tangent activation functions. As such, the output of

27



2 Background

the network is a linear combination of the inputs. The RBFN can be mathe-
matically described as

f ′(~x) =
N∑
j=1

wjφ(‖~x− ~x(j)‖) (2.14)

where φ(·) is the radial basis activation function, ‖ · ‖ is the Euclidean norm,
the training samples ~x(j), j = 1, ..., N are used as the centers of the radial-
basis activation functions and wj are the unknown coefficients. This model is
expensive to implement if the number of samples is large, but it can represent
multimodal fitness landscapes well[2].

Artificial Neural Networks

Neural Networks can learn a smooth map that approximates the fitness land-
scape of a MOP and are therefore a suitable choice for a surrogate function.
Feedforward Artificial Neural Networks are powerful learning machines that
are discussed in more detail in section 2.5 on Page 30.

2.4.2 Integration of the Surrogate Model

There are different methods for the integration of surrogate models into a
MOEA. Díaz-Manríquez et al.[18] distinguishes between methods with direct
fitness replacement and indirect fitness replacement. Direct fitness re-
placement methods are further divided into three different Evolution control
methods no evolution control, fixed evolution control and adaptive
evolution control. The table 2.2 contains a short summary.

Direct Fitness Replacement

Direct fitness replacement is defined by the fact that the approximated fitness
function takes over from the original fitness function. Only a small part of the
population is evaluated using the original fitness function for control purposes.
The evolution control methods are needed to check if the estimated fitness

28



2.4 Surrogate-assisted MOEAs

values are still on track or if the surrogate function needs to be updated. If
the fitness function is off, the EA could move the population into false optima.
Even with evolution control, there is no guaranteed that global optima are
found.

• No Evolution Control
No Evolution Control (NEC) is the case where the original fitness func-
tion is never used. NEC is used when it is known that the surrogate
function is excellent and has no false optima or the original fitness func-
tion cannot be used.

• Fixed Evolution Control
Fixed Evolution Control (FEC) means some generations or individuals
are evaluated using the real function while the fitness of the rest is esti-
mated. FEC allows for the surrogate function to be updated periodically
with new data from real evaluations.

• Adaptive Evolution Control
Adaptive Evolution Control (AEC) is similar in concept to FEC but the
change between real or surrogate function is done automatically based
on a heuristic.

Indirect Fitness Replacement

Indirect Fitness Replacement uses the original fitness function for the evalua-
tion of the population. The estimated fitness values are used in other parts of
the algorithm. Usually, this takes the form of some kind of preselection. If an
operator, f.e., crossover, is used, more individuals than necessary are generated
and then these individuals are compared with the help of the approximation
function. The best individuals are then returned as the result of the operator.
These operators are called informed operators.

• Informed Mutation
Instead of just generating one random individual by mutation, multi-
ple individuals are generated. Their fitness is estimated, and the best
individual is returned.

• Informed Crossover
Again instead of just generating one child by crossover, multiple children

29



2 Background

Class Advantages Disadvantages
Direct Fitness Replacement

No Evolution Control
(i),Computationally efficient
(ii) Good behavior in low-dimensional problems

(i) requires an accurate surrogate model
(ii) It can converge to a false optimum

Fixed Evolution Control

(i) It is capable of solving high-dimensional
problems
(ii) The surrogate model adapts during the
optimization process

(i) It is necessary to define the parameter to alternate
betweeen the surrogate modell and the real objective
function

Adaptive Evolution Control
(i) Does not require defining the parameter to
alternate between the surrogate model and the
real objective function

(i) the automatic alternation is not easy to define

Indirect Fitness Replacement

(i) Usually uses a local search phase to optimize
the surrogate model
(ii) The metamodel is used for exploitation
purposes
(iii) avoid convergence to a false optimum

(i) it is the most computationally expensive

Table 2.2: Trade-offs of different integration methods according to [18].

are generated with different crossover methods and parameters. The
children are then compared and the, according to its estimated fitness,
is returned.

2.5 Artificial Neural Networks

Artificial neural networks (ANNs)[46, 39] are information processing systems
commonly used as universal function approximators[11, 30, 10]. The way
they process information is inspired by the operating principles of mammalian
brains.

In mammalian brains, there exists a type of cell called a neuron that collects
and transmits electrical signals. A typical neuron consists of a cell body with
a nucleus and is connected to other neurons by dendrites and axons. Specif-
ically, the axons are the outputs of the neurons that lead to the dendrites
(inputs) of other neurons. At the end of an axon, there are terminal buttons
that are positioned very close to a dendrite of another neuron. Such a connec-
tion point, where the terminal button meets the dendrite, is called a synapse.
Using chemicals called neurotransmitters, a terminal button can decrease or
increase the potential difference of the target dendrite, these signals are called
excitatory or inhibitory signals, respectively. As a metaphor, excitatory effects
can be counted as positive and inhibitory effects as negative, and all incoming
signals can be accumulated. If a neuron accumulates enough positive signals,
a sudden reaction occurs and the neuron transmits an electric signal along its

30



2.5 Artificial Neural Networks

w1a1

w2a2

...
...

wpap

Σ φ y

b

Synaptic
weights

Input
signals

Sum
Activation
function Output

Bias

Figure 2.5: Model of an artificial neuron.

axons to the next neuron. For more in-depth information on this topic, the
reader is referred to Anderson[1].

For use in computer science, these biological structures were mapped onto
simplified mathematical models with similar functions. This way an ANN can
simulate some of the workings of the brain. The first steps to recreate biologi-
cal brains were taken in the 1940’s where basic models like the McCulloch-Pitts
Neuron[45] and fundamental theory[28] were researched. In 1958, the percep-
tron [51] was created, which was the first model (a physical machine actually)
which was based on neurological models and was able to adapt its weights.
They fell out of favor soon after, and interest renewed only after the backprop-
agation algorithm became popular in the 1980’s[59, 52]. The backpropagation
algorithm could efficiently train networks with more than one hidden layer.
This caused a second wave of interest in ANNs until other ML algorithms
overtook them in popularity. The third wave, which is still ongoing, started
in the mid-2000’s and with it, the term "deep learning" was introduced. This
term emphasizes the focus of the related research on the benefits of using
multiple hidden layers, see Section 2.6.

31



2 Background

u11x1

u21x2

u31x3

u41x4

u12

u22

u32

u42

u52

u13 f ′
1(~x)

u23 f ′
2(~x)

Hidden
layer
Uhidden

Input
layer
Uin

Output
layer
Uout

Figure 2.6: Example of a neural network. This network could learn to approx-
imate any optimization problems which has n = 4 input variables
and m = 2 objectives.

32



2.5 Artificial Neural Networks

Definition 2.2 (Graph).
A directed graph is a pair G = (V,E) consisting of a finite set V of vertices
and a finite set E ⊆ V × V of edges. An edge e = (u, v) ∈ E is called
directed if the connection only goes from vertex u to the vertex v but not
from vertex v to vertex u.

2.5.1 Neural Networks in Computer Science

Like in their biological counterparts, the smallest building block of an ANN is
the so-called artificial neuron. A neuron processes received signals, producing
an output, and then sends the output to other neurons connected to it. Figure
2.5 shows a schematic of the function of an artificial neuron u. The input sig-
nals a(u)i are signals coming from other artificial neurons. Each of the incoming
connections has a weight w(u)

i associated with them. The weight is multiplied
with the incoming signal, i.e., a(u)i · w(u)

i , for all i = 1, .., p(u). The products
a
(u)
i ·w(u)

i are then summed up and and a bias b(u) is added. The result is then
subjected to an non-linear mapping by the activation function φ(u)(·), which
results in the output y(u). Mathematically, the function of a neuron can be
described as

y(u) = φ(u)(~a(u) · ~w(u) + b(u)) (2.15)

A single neuron, however, is not very useful. Multiple neurons have to be
connected to approximate our objective functions. Graphs are used to formally
describe a collection of connected artificial neurons, see Definition 2.2. That
makes the neurons vertices and the connections edges in a directed acyclic
graph. An example for a neural network graph is shown in Figure 2.6. This
ANN could be used to approximate an objective function with n = 4 search
variables and m = 2 objective functions. What we can also see is that all
neurons uij are grouped into three layers. The input layer Uin contains all
ui1 neurons that receive the elements of the solution vector ~x as inputs. The
hidden layer Uhidden contains all neurons ui2 which do some computations on
the signals received from the input layers. These computations are defined
during the learning process (see next section). The existence of at least one
hidden layer allows the network to do non-linear transformations on the input
values, as opposed to a network with no hidden layers which can do only linear
transformations. The neurons ui3 in the output layer Uout also do learning-
defined calculations and produce the final output values that approximate the

33



2 Background

objective vectors. Further, all neurons in Uhidden and Uout are connected, by
the incoming edges, to all neurons in the previous layers, Uin and Uhidden

respectively.

An approximated objective vector ~f ′(~x) for our optimization problem can be
computed as follows:
Each artificial neuron ui1 ∈ Uin in the input layer receives the corresponding
element of the solution vector xi and simply sets it as its output. Then all
neurons in the hidden layer ui2 ∈ Uhidden collect the outputs of the input
neurons as input signals ~a(ui2) and compute their output y(ui2) as shown in
Equation 2.15. This process is repeated for the output neurons, all ~a(ui3) are
collected from the outputs of the hidden neurons, and the outputs y(ui3) are
computed. These final outputs can now be used as objective vector ~f ′(~x) =

[f ′1(~x), ..., f ′m(~x)] = [y(u13), ..., y(um3)]. Mathematically, this can be described as:

f ′o(~x) = φ(uo3)

|Uhidden|∑
h=1

w(uh2,ui3)φ(uh2)

|Uin|∑
i=1

w(ui1,uh2)xi + b(uh2)

+ b(uo3)


o = 1, ...,m (2.16)

For the neural network to compute our objective function correctly, the weights
and biases have to be set correctly. The process of computing the correct
weights and biases is commonly known as learning.

2.5.2 Learning in Neural Networks

Learning the weights and biases might sound complicated at first, but is ac-
tually just an optimization problem similar to those described in Section 2.1.
One property of those problems was that only the objective function is known
and it was too expensive to compute the gradient. This was the reason why
EAs are used to optimize these problems. The optimization problem posed by
ANNs, however, allows us to compute a gradient. Therefore, in ANN learning
gradient descent is the most commonly applied optimization algorithm.

The objective we are trying to minimize is now called the cost function C(~w),
and the solution vector is now called the weight vector ~w. For simplicity,

34



2.5 Artificial Neural Networks

and because biases can be modeled as weights, the weight vector contains the
weights and biases. This leads us to the following optimization problem

min
~w
C(~w) where: C(~w) =

1

2N

N∑
i=1

(~f ′(~x(i))− ~f(~x(i)))2 (2.17)

where N is the number of samples in a training set. The training set contains
pairs (~x, ~f(~x)) of solutions and their respective objective vectors, which were
evaluated with the real objective function. The cost function, in this example
we use the mean squared error (MSE), computes the average of the distances
(the errors) between the real objective vectors and the approximated. This
average will be high if the weights are set poorly and the approximated objec-
tive vectors a far from the real ones. If the average is close to zero, the weights
are set correctly. To use gradient descent, we have to compute the gradient of
the cost function ∇C(~w). In the case of neural networks, this is done using
the backpropagation algorithm.

Backpropagation

The Backpropagation algorithm is a method for computing the partial deriva-
tives of the cost function C(·) with respect to any of the adaptable parameters
(weights and biases) of an ANN. First, the gradients for each example in the
training set are computed and then averaged to recover gradient for the whole
training set. To compute the gradient for a single example, the training ex-
ample is presented to the neural network as input, which then computes an
approximated output ~f ′(~x) (see Equation 2.16). For the purpose of backprop-
agation, we are interested in the difference between the approximated and real
objective vectors eo = f ′o(~x)− fo(~x). This error tells us how we have to change
the output value of the output neuron u(o) to achieve the desired output value.
We also calculate how the outputs of the neurons in the hidden layer have to
change to achieve the required change in u(o). This is called error backpropa-
gation. The backpropagated error scales with influence the hidden neuron u(h)

has on the output value of u(o). If the influence of u(h) is high, its contribution
to the error eo of the output neuron u(o) is also high. Therefore it needs to
change more than a hidden neuron that has little influence on u(o). If there

35



2 Background

are more hidden layers, the error backpropagation step has to be repeated.
After the backpropagation is completed, every neuron has an associated error
value depending on the influence it has on the output value of u(o). From these
errors, the required changes to the biases and weights can be derived. If there
are multiple output neurons, this process has to be repeated for each output
neuron, and the changes must be averaged. Now, we have the gradient for a
single example, and we have to repeat this for all examples and each of their
output neurons and average all changes to recover the gradient ∇C(~w). This
gradient is then used by an optimizer like Stochastic Gradient Descent (SGD)
to optimize the weight values and decrease the cost function C(~w).

Stochastic Gradient Descent

Gradient descent is an optimizer that can quickly find (local) optima by using
gradient information. To minimize the function C(~w), we compute the gradient
∇C(~w) of C(~w). The gradient ∇C(~w) shows us how we have to change ~w to
get the largest increase in C(~w). If we compute a new ~wupdated = ~w+∇C(~w),
the cost function will most likely be increased C(~wupdated) ≥ C(~w). Since we
want to minimize the cost function C(~w), we have to follow the negative of
the gradient −∇C(~w)

~wupdated = ~w − η∇C(~w) (2.18)

where η is the learning rate. Intuitively, the learning rate scale the size of the
steps we the take into the direction of −∇C(~w). The learning rate should be
small, i.e., we take only small steps because −∇C(~w) shows us the correct
direction only in a very limited neighborhood of ~w. If we repeatedly update
~w, we will theoretically reach a point with a zero gradient, a minimum. The
point which has the lowest possible value for C(~w) is the global minimum, but
gradient descent does not guarantee that the global minimum is found, just
that a minimum is found.

One important variant of gradient descent is Stochastic Gradient Descent
(SGD). It is motivated by the observation that for a model with good gen-
eralization a large training set is needed but that has the drawback of large
computational cost. To circumvent this drawback, SGD estimates the true
gradient with fewer examples. Fewer examples can be used because the gra-
dient of the cost function is an average over the gradients of all N training

36



2.6 Deep Learning

examples. An average, or in statistical terminology: an expectation, can be
approximated by a smaller sample. Therefore the whole set of examples can
be divided into so-called minibatches

B = {(~x, ~f(~x))(1), ..., (~x, ~f(~x))(N
′)} ,where N ′ � N

drawn uniformly from the training set. The size of these mini batches usually
ranges from one to a few hundred.

2.6 Deep Learning

Why deep learning (DL) has incited so much research interest in the last years,
is related to the representation of data. For a computer, the best possible
representation is to describe the world as logical symbols and all actions it can
perform as formal rules operating on those symbols. Chess can be described
this way, the chess pieces and their positions are symbols, and the moves are
formally defined rules. If a computer is provided with the positions of the
pieces, the movement rules, and enough computing power it can beat a human
by searching all possible moves and selecting the best ones. A second example
is the recommendation of a cesarean. The doctor can give a computer a set
of features the patient exhibits and the computer can accurately predict the
need for a cesarean. The limitation of this symbolic approach is its reliance
on the fact that a human preprocesses the data and extracts the symbols that
the computer can efficiently operate on. If we show a computer an image of a
chessboard or an ultrasound image, the computer will not be able to compute
its next move or if a cesarean is a good recommendation. A matrix of values
between zero and one is an inadequate representation to base an algorithm on,
that computes the next move in a chess game.

An algorithm that could compute the next move in a chess game from an
arbitrary image would have to do the following steps. First, find all basic
edges in the image. Second, use related edges to detect corners and contours.
Then combine the corners and contours to detect basic object parts of the
chess pieces. That means crowns, bishop hats, horse heads, battlements and
so on. Then combine the basic object parts to detect what these shapes rep-
resent, i.e., kings, bishops, knights, rooks and so on. They also have to be
detected robustly, meaning they have to be detected from different viewing

37



2 Background

angles, while being partially obstructed by other chess pieces, or under dif-
fering lighting conditions. Then compute the positions of the pieces relative
to the chessboard, which has to be detected by the algorithm too. Only now
do we have a representation that we can give to the symbolic algorithm to
solve for the next chess move. What this algorithm does is to move through
a hierarchy of representations. The algorithm starts at a representation with
low symbolic meaning, the matrix of brightness values. Then based on the
previous representation it computes one with more symbolic meaning. First
edges, then contours, then object parts, then objects with labels that tell us
which chess piece they are, and finally the position of each piece.

The basic idea of deep learning is to learn such a hierarchical algorithm with the
help of deep networks. A deep network is an ANN with more than one hidden
layer. Theoretically, an ANN with one hidden layer can learn any reasonable
function if the hidden layer has enough neurons [11, 30, 10]. A deep ANN,
however, can discover the hierarchy of representations during its training. This
discovery causes the deep ANN to learn and generalize better than shallow
networks. Eldan and Shamir[20] showed that more depth adds exponentially
more expressive power than width to a neural network. Montufar et al.[48]
showed that functions representable with a deep network using the rectified
linear unit (ReLU) activation function could require an exponential number of
hidden units with a shallow (one hidden layer) network. This expressive power
makes deep ANN interesting for the approximation of difficult optimization
problems.

The discovery of the representation of data and the mapping from the repre-
sentation to the outputs is called representation learning. Computer-learned
representations are usually created faster and are of higher quality. That
is because the machine learning process is better at sifting through the vast
amounts of available data to properly identify underlying factors that influence
the observed data, even if those underlying factors are not observed themselves.
Going back to the chess example, an unobserved factor that influences observ-
able quantities is the light source (a lamp or the sun). The imaging device
does not directly record the position of the light source and its light color but,
they change the image by casting different shadows or changing the ambient
light. In real-world problems many underlying factors influence the observed
quantities, for example, most colors appear black at night, and the shape of
most objects changes drastically with the angle it is viewed at. This makes it
difficult to disentangle the different factors and concentrate on the most impor-

38



2.6 Deep Learning

tant ones. DL solves this by using the hierarchy approach. Each hidden layer
is a representation in the hierarchy and uses previous layers (representations)
to express a higher-level concept. The input layer is the image-level represen-
tation, and the next layers would compute the edges. The layers after that
would use the output of the edge-representing layers to compute the corners
and contours, and so on.

One related feature of deep learning which applies to surrogate functions is its
performance on high-dimensional problems. The curse of dimensionality states
that if the number of relevant dimensions increases the number of regions of
interest grows exponentially. For each region of interest, a training example
must be provided. At high dimensions, this curse leads to the existence of
many more interesting regions than training examples. However, if the deep
network can extract the correct underlying factors, it can better generalize to
the unseen regions even without training examples. For example, if the fitness
landscape of the optimization problem is periodic and the deep ANN learns
this periodicity, it can correctly predict the objective vectors at each period
without having seen a training example at most of the periods.

39





3 Related Work

This chapter presents other research in the field of surrogate-assisted MOEAs.
It describes the which surrogate methods were used, how the surrogate models
were integrated, and the results.

Choi et al.[8] used a procedure that only used a surrogate function (No Evolu-
tion Control (NEC)) based on Kriging approximations and used NSGA-II as
an optimizer. The goal was to design a supersonic business jet. The conflicting
objectives were the aerodynamic performance and the sonic boom loudness.
Both of these objectives are computationally expensive to evaluate there the
NEC approach was used.

Lian and Liou[40] wanted to redesign the NASA rotor67 compressor blade.
They decided to maximize the stage pressure ratio p02/p01 and minimize the
blade weight W subject to an aerodynamic constraint related to the mass flow
rate. They used 32 design variables that described some perturbation of the
original compressor blade design. To optimize a response surface model was
constructed and a genetic algorithm applied to it. The RS was not updated
(NEC). After the convergence of GA slowed down a local search was used for
final optimization. The representative solution where then verified against the
CFD code (original fitness function).

Goel et al.[25] uses the response surface approximations for each objective
separately and uses one surrogate for whole optimization (NEC) since the ap-
proximations turned out to be very accurate. He applied a modified NSGA-II
to a liquid-rocket single element injector optimization. The conflicting ob-
jectives consisted of one performance related and two temperature(lifetime)
related objectives. The problem was relatively low-dimensional with four de-
sign variables.

Liao et al.[41] presented an optimization procedure for vehicle design. The
three objectives considered were the weight, acceleration characteristics and

41



3 Related Work

toe-board intrusion. Five design variables were used. The surrogate function
used was the response surface method. The optimizer used was NSGA-II.

Husain and Kim[33] optimized a microchannel heat sink (MCHS). The authors
considered three design variables and two objective functions (thermal resis-
tance and pumping power). Polynomial regression, Kriging and Radial Basis
Functions were compared as surrogate models and Kriging was found to be
the most accurate (NEC). Global optimization was done with NSGA-II. The
solutions found NSGA-II were improved with a local search.

Nain and Deb[49] used the technique of successive refinement of approxima-
tions. It uses Fixed Evolution Control (FEC) where the real function is used
for a number of generation and then the surrogate function is used which was
created from the examples of the previous real evaluations. The first itera-
tion creates a coarse approximation to find the general location of optimum
since the training data is dispersed over the whole problem domain. In the
following iterations it always uses the newest training data and because the
EA converges the to global optimum smaller and smaller regions are covered
by the population. Therefore approximations also cover smaller and smaller
areas and become more accurate. ANNs are used as the surrogate model.

D’Angelo and Minisci[12] optimized subsonic airfoils for minimizing drag and
maximizing the lift. Five design variables were used that parametrized the
bezier curves that described the shape of the airfoil. The optimizer used was
MOPED that uses the Parzen method to build a probabilistic model of promis-
ing search space portions instead of crossover and mutation. The Kriging
method was employed as the surrogate model. The authors used a controlled
individuals approach (FEC) wherein every generation after ranking nv random
solutions from the best half of the population are chosen. If the distance a cho-
sen solution to any solution already in the database is bigger than distmin the
solution is added, and the surrogate model is updated.

Isaacs et al.[34] presented in their paper an evolutionary algorithm with spa-
tially distributed surrogates (EASDS). This approach uses multiple spatially
dispersed surrogates that rebuild periodically. The build surrogates are not
used blindly but are assessed by a validation set. If a new point needs to be
evaluated the surrogate which has the best accuracy in the neighborhood of
the new point is used (FEC). Radial Basis Function Networks were used as
the surrogate model. EASDS is based on NSGA-II. The authors report that

42



EASDS performs better than non-surrogate NSGA-II or single global surrogate
models indicating a benefit from using multiple local surrogates.

Todoroki and Sekishiro[56] looked at the optimization of Hat-Stiffened Com-
posite Panel with a Buckling Constraint. The two objective function where
the weight reduction, which is easy to compute and therefore not approxi-
mated, and the uncertainty of satisfaction of the buckling constraint and had
seven design variables. The second objective Kriging approximation was used
to reduce the computational cost. A basic multi-objective genetic algorithm
(MOGA) was used as the optimizer (FEC). With only 301 evaluations of the
real function, this method achieved a result that had an error 3% from the
true optimal structure.

Liu et al.[42] use a trust region approach. The trust region is defined in the de-
sign space which is moved according to rules explained in the paper. Every time
the trust region is updated the surrogate function is relearned with examples
sampled by LHS. Then a micro multi-objective genetic algorithm (µMOGA) is
applied, which uses tiny populations, to find Pareto-optimal solutions (FEC).
These solutions are compared to solutions in an external archive after which
a new trust region is computed. According to the authors, this approach is
less sensitive to the accuracy of the surrogate model. The authors reported
savings of up to 90% of real function evaluations however the tested problems
had only 2 or 3 design variables.

Fonseca et al.[23] use the nearest neighbors method as a lazy learner surrogate
model. All real evaluations are saved in a database and if a surrogate evalua-
tion is requested the method computes the nearest neighbors and determines
the value of the solution as similarity-based interpolation between the nearest
neighbors. They use the surrogate function for pre-selection after which the
best solutions are evaluated with the real function, according to the param-
eter psm which represents the percentage of real function evaluations. The
database is updated by adding all real evaluated solutions. If the maximum
size of the database is reached the oldest solutions are discarded. Regarding
Multi-objective problems, the authors noted that with fine-tuning of the pa-
rameter psm their approach had better results than a standard MOGA. Smaller
values psm allow for the final solutions to be closer to the real Pareto-front,
and the varying of the number of neighbors used in the surrogate evaluations
does not significantly impact the performance. The used test problems had up
to 30 design variables.

43



3 Related Work

Martínez and Coello [43] used cooperating RBF networks as surrogate function.
They use three RBF networks trained with different kernel types. To estimate
one solution the three estimates from each RBF network are combined using
weights that are computed based on how good the respective RBF network
is. In every iteration, the three RBF networks are learned. Then the whole
population is evaluated using the surrogate model (FEC), and MOEA/D is
applied to that population to find an approximation of the Pareto-front. After
that, some solutions are selected to be evaluated with the real function and
are used to update the external archive and the training set. The authors
showed that their approach compares favorably to the original MOEA/D on
bi-objective ZDT test problems using 10 or 30 variables. The one exception
was the multi-modal ZDT4 problem. On an airfoil optimization problem,
MOEA/D-RBF only needed 25% of the evaluations of regular MOEA/D.

Stander [55] adapts the Sequential Response Surface Method to multiple objec-
tive problems(SRSM). In the single objective case, the SRSM method reduces
a region of interest in the design space repeatedly towards the optimum. The
direction towards the optimum is found by sampling the current ROI and
building a surrogate model with the sampled and all known previous points.
Then NSGA-II is applied on the surrogate model to find an approximate op-
timum (FEC). In the next iteration, the ROI is adapted (centered on the
predicted optimum and shrunk), and the process is repeated. Since in the
multi-objective case there is no single optimum to converge to, the author
proposes to use multiple smaller ROIs that are equally distributed along the
approximated optimal front. This results in the sampled points to be dis-
tributed along the approximated Pareto-optimal set, and the surrogate model
is updated in the region of the Pareto-optimal front. For a 7-variable problem,
the author reported that only 4% of the evaluations are needed, and for a
30-variable problem only 15% of the evaluations are needed.

Sreekanth and Datta[53] optimized pumping strategies for coastal aquifers.
They consider two objectives the overall extracted fresh water and the re-
duction of pumping from so-called barrier wells which are used to reduce the
salinity intrusion. The surrogate model is not used to approximate the ob-
jective functions directly instead it is used to predict the salinity levels in the
specified monitoring locations, as a result of the groundwater extraction from
the aquifer. The prediction of the salinity levels is an important part of the
objective functions and still depends on the design variables which are seven
pumping input values. Their optimization approach is to apply an NSGA-II

44



on the current surrogate model which creates an approximation of the optimal
solutions (FEC). Then the accuracy of the salinity prediction in this search
region is validated using simulations. Logically if the salinity prediction is off
the found optimal pumping strategies are also off. Therefore if the accuracy
of the prediction is too low new solutions are sampled from the near optimal
region and the surrogate model is retrained otherwise the optimization stops.
The new training samples are generated from a hypercube around the approx-
imate Pareto-optimal solutions and depend on the relative importance of the
search variables in salinity prediction.

Rosalez-Pérez et al.[50] proposed an approach based on an ensemble of Sup-
port Vector Machines. Some features of their approach are the model selection
process for finding suitable hyperparameters, incremental construction of the
ensemble, that incorporates new knowledge gained during the optimization and
preserves old knowledge, and a criterion for the fidelity of the surrogate. The
general algorithm uses the surrogate function during all generations and only
evaluates the non-dominated solutions with the real fitness function (FEC).
These solutions are then used to update the surrogate model, and an external
archive for the best solutions found so far. The ensemble of SVMs contains
only one model, in the beginning, the one trained with initial data, whenever
the suggestions of the surrogate model are worse than a random suggestion a
new SVM model is trained and added to the ensemble. If the ensemble is full,
the oldest model is removed. The training of a new model contains a model se-
lection step where for each SVM Kernel type a grid search is performed to find
the model with the least expected generalization error, which is determined by
k-fold cross-validation, is chosen as the newest model. The proposed approach
generated better results on the ZDT test suite than a standard NSGA-II. On
ZDT1, ZDT2, ZDT3, and ZDT6 it approached the global Pareto-front with
fewer than 300 real evaluations while standard NSGA-II did not reach the
global Pareto-front with 3000 evaluations. However, it did not do well on the
ZDT4 problem.

Chafekar et al.[7] based their approach on the genetic algorithm for design opti-
mization (GADO) which was created for the engineering domain by using new
operators and search strategies. The new method coined objective exchange
genetic algorithm for design optimization (OEGADO) runs a single objective
GA for each objective with independent populations. Every single objective
GA builds a surrogate model of its own objective, but the models are being ex-
changed during the optimization, so the acpga get biased towards the optimal

45



3 Related Work

regions of the other objectives in addition to its own. The surrogate models
are not used directly but as part of informed operators with the best result of
the informed operator being evaluated with the real objective function. The
authors compared OEGADO to NSGA-II ε-MOEA. For simple problems the
results were comparable, but for complicated problems, OEGADO was better
most of the time.

Emmerich et al.[21] proposed a search method based on evolutionary algo-
rithms (EA) assisted by local Gaussian random field metamodels (GRFM).
The authors based their approach on an evolutionary strategy that uses a
pre-screening procedure. New solutions are first evaluated in the meta-model.
A promising subset of these solutions is chosen to be evaluated in the real
function. From the subset and the parent solutions, the next generation of
parents is selection via ranking. For the pre-screening procedure, the authors
used measures derived from the kriging model, like the expected improvement
and the probability of improvement. This approach outperformed NSGA-II
on bi-objective and three-objective test problems with ten variables.

Knowles[35] presented the ParEGO algorithm which extends the EGO algo-
rithm of Jones et al. for the multiobjective case. It is based on Kriging DACE.
The EGO algorithm generates its initial samples with the latin hypercube ap-
proach to build the maximum-likelihood DACE model. Then it searches this
model for the point with the best function value and regions where the function
value is uncertain. If a point in an uncertain region is found that could po-
tentially improve the already found best function value this point is evaluated
with the real function and added the Kriging DACE model. To extend EGO to
the multiobjective case the author used parameterized scalarizing weight vec-
tor to convert the all the objective values into one scalar. Since using only one
weight vector would only find one point on the Pareto-optimal front the weight
vector is chosen randomly at each iteration, ensuring that multiple points on
the Pareto-optimal front are found. ParEGO outperformed NSGA-II on nine
low-dimensional but difficult test functions.

To our knowledge, there exists no research that investigates how deep networks
affect the performance of surrogate-assisted multi-objective evolutionary algo-
rithms. If neural networks were used, the approaches usually adopted only
one hidden layer. Additionally, we can also see that there exists a multitude
of ways a surrogate model can be integrated into an evolutionary algorithm.
After looking at different methods, we decided that the proposed algorithm of

46



Nain and Deb[49] is the best-suited approach to answer the research questions,
since it is easy to implement and extend.

47





4 Concept

There are multiple algorithms which use shallow neural networks. We use the
approach of [49] and extend it to use deep networks. Therefore this approach
is described in in more detail.

4.1 Basic Coarse to Fine Approximation

The idea for the approach stemmed from the observation that in the first
generations of the EA run a fine-grained approximation of the search space
is not needed. The EA only needs to find the search direction towards the
optimum, the exact position of the optimum or details of the search space do
not need to be modeled. Only later in the optimization do the models need to
be more accurate.

To exploit that Nain and Deb[49] use some inherent properties of the EA. The
EA is initialized with solutions that are randomly distributed over the whole
search space. So if the initial solutions and those of the following generations
are used as the training set for a surrogate model, a rough model of the fitness
landscape will be created. However, if we wait for the EA to reach the neigh-
borhood of the global optimum the population will not be dispersed across the
whole search space but highly concentrated around the optimum and if used as
training data will produce a surrogate model that captures most details around
the optimum. This is visualized in Figure 4.1 where we can see an example
of a fitness function and two examples of how a surrogate model could have
learned the fitness landscape with different training sets. Model 1 is created
after the first few generations and is good enough to guide the EA towards the
global optimum. Model N, however, captures the details around the global
optimum because the sample points are focused around that region.

The same logic applies to intermediary generations. The approximations be-
come better but cover an increasingly smaller area around the optimum. If

49



4 Concept

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Exact function

Model 1

Model N

Figure 4.1: The concept of successive approximation. The first model uses
the sample points to create Model 1, which approximates the
rough shape of the fitness landscape. The last model uses the
sample points to create Model N, which accurately approximates
the global optimum. According to [49].

50



4.1 Basic Coarse to Fine Approximation

0 p+ q 2(p+ q) (T − 1)(p+ q) T (p+ q)

p

Initial
Coarse
Model
learned

p

Model
refined
and
relearnt

p

Final
model
learnt

q

GA run
using
initial
model

q

GA run
using
refined
model

q

GA run
using
final
model

Final
population
exact
function
evaluation

Generation’s of EA

Figure 4.2: Diagram of the successive approximation procedure proposed by
Nain and Deb. T is the maximum number of generations. p and q
are the number of generations the exact and approximate evalua-
tions are used, respectively. According to [49].

the surrogate model is regularly renewed over the duration of the optimization
with solutions of the last few generations as training data, the approximations
will be accurate and appropriate for the next few generations.

The formalized procedure begins like any other EA. The initial population is
randomly created and improved in successive generations. But in contrast to
the normal EA all evaluated solutions are stored in a training database, and the
EA is stopped after p generations. The database with the evaluations contains
now N ′ = pk exact solutions, where k is the population size. Using the N ′

data points as the training set, the first coarse surrogate model is created, it is
subsequently used to for q generations for all evaluations. After q generations
the exact objective function is used again for p generations to refill the training
database with new samples. The surrogate model is then retrained, and this
cycle repeats until the termination criterion is met (see Figure 4.2). In the
best case, only a fraction p

p+q
of the generations need to be evaluated using the

51



4 Concept

real objective function to achieve the same performance. If that theoretical
gain can be attained depends on the quality of the surrogate models.

Nain and Deb proposed to use ANNs as the surrogate model, pointing out
its proven capabilities as a function approximation tool[27] and its adaptabil-
ity. ANNs can produce a rough or detailed approximation depending on how
training samples are distributed. The number of design variables and objective
values can are modeled as the number of input neurons and output neurons,
respectively.

4.2 Proposed Method

The complete proposed procedure is visualized as a flowchart in Figure 4.3. We
will now demonstrate, in an exemplary manner, how this flowchart is traversed.
As in any MOEA, we begin by generating a random initial population and
evaluate it using the exact objective function. Since we use the numbers of
exact evaluations as the stopping criterion, we have to increase the number of
evaluations accordingly. Next, we initialize our surrogate model. We initialize
two variables, the GenerationCounter, which tells us when we have to switch
between the real and the surrogate function, and a flag named UseSurrogate,
that tells which of the two we are currently using. After that, we generate an
empty training database which is then immediately filled with the individuals
we just evaluated.

Then we check the stopping condition which is not fulfilled the first time we
visit this node. So we go on to generate the offspring population. We create
the mating population using the binary tournament selection algorithm. This
algorithm draws two random solutions from the current population and adds
the dominant individual to the mating pool. If no solutions dominate the other
one of the two is chosen randomly. This is repeated until the mating pool is
full. Then an offspring population is created using SBX[14], and polynomial
mutation is applied to the children.

The next step in an EA(see Algorithm 2.1) would be to evaluate the popula-
tion. We can use the real function or the surrogate function to do that. In
this example, we are currently still in the phase where we collect more train-
ing data, so we use the real function for evaluation and increase the number
of evaluations accordingly. These individuals are also added to the training

52



4.2 Proposed Method

current population ← create initial Population
Evaluate initial population by real function

NumEvaluations ← population size

GenerationCounter ← 1
UseSurrogate ← false
MaxGenerations ← p

Generate empty training database
Add evaluated solutions to training database

NumEvaluations ≥ max evaluations Stop

Offspring population ← perform selection, crossover and mutation on parent population

UseSurrogate

Evaluate offspring Population
via real function

NumEvaluations += population size

Evaluate offspring Population
via neural network surrogate

Add evaluated solutions to training database

current population ← best of current and offspring populations

Increment GenerationCounter

GenerationCounter < MaxGenerations

UseSurrogate

GenerationCounter ← 0
MaxGenerations ← q
UseSurrogate ← true

saved population ← current population
get trainingSet from database

train neural network with training set

GenerationCounter ← 0
MaxGenerations ← p
UseSurrogate ← false

Reevaluate current population
current population ←best current and saved populations

NumEvaluations += population size

No

No

Yes

No

Yes

Yes

No Yes

Figure 4.3: Flowchart of the procedure. Dashed boxes are added logic to facil-
itate the use of the surrogate model. The other boxes contain logic
from the regular NSGA-II process.

53



4 Concept

database. Now, the best individuals from both the current population and new
offspring population are selected using the non-dominated sorting algorithm
from Algorithm 2.3 using the comparison operator from Definition 2.1. This is
the new current population, and normally NSGA-II would now go on to repeat
the process from the point where the stopping condition is checked.

In our algorithm, we first have to check if we need to switch between the real
and the surrogate function. To do that the generation counter is incremented
and compared to the maximum number of generations for the current section.
If we are in a section where the surrogate function is not used, MaxGenerations
equals p. If we are currently using the surrogate function, it equals q. If the
current generation counter is smaller than MaxGenerations, we will continue
without changing the mode. Since we are still at the beginning of the run, in
this example, this will most likely be the case, and we would continue until
the generation counter reaches p. Then we have accumulated enough training
examples and can change from the real to the approximated function. The
last p · k individuals from the training database are selected.

Using this training data, a neural network is trained using the hyperparameters
described in Section 5.1. Some of the most critical hyperparameters concerning
the ANN are the number of hidden layers, number of neurons in each hidden
layer, the learning rate and the number of training epochs. The number of
input and output neurons is set to match the number of problem variables and
objectives, respectively. Furthermore, some of the flow variables are updated:
the GenerationCounter is reset to 0, MaxGenerations is set to the number of
surrogate generations q and UseSurrogate is now true. Furthermore, a copy of
the current population is stored.

When entering the main loop the next time we enter the branch where we
evaluate the newly created offspring generation with our surrogate model in-
stead of the real function. Since evaluations with surrogate function should
take a negligible amount of time compared to an evaluation of an expensive
real function, we do not increase the number of real function evaluations.

We continue this way until the generation counter reaches q and we have to
switch back to real function because the current approximation is no longer
exact enough. The current population should now contain a mix of individu-
als that were evaluated with the real function and the surrogate function or
only the latter. A problem that was identified in the early tests that were
conducted was that it could happen, that errors in the approximated fitness

54



4.2 Proposed Method

landscape can evaluate some individuals to have unfeasible objective values.
This can manifest by objective values that are better than the global Pareto-
optimal front, collapsed into zero (either in both or only one objective) or
are negative. While some optimization problems can have negative objective
values, which they should not since the test problems in this thesis do not
have negative objective values. The resulting problem is that these unfeasible
objective values are never corrected the exact objective function will never
find a better individual than the wrong ones. The erroneous individuals are
then staying in the population until the optimization is completed. Since these
these individuals are not correct but can not be dominated by correctly eval-
uated individuals they waste their slots in the population P . They effectively
decrease the poulation size, and therefore, slow the EA down or if all individ-
uals fall into this trap completely stall the EA. The severity of this problem
depends on the fitness landscape of the test function. An optimization prob-
lem with a simple landscape is less likely to produce approximations with this
flaw. For example, in ZDT1 this can sometimes be ignored, while in DTLZ1
the whole population quickly degenerates. To prevent this degeneration, the
current (eventually flawed) population is reevaluated using the exact function
and then the best individuals from the reevaluated population and the saved
population from earlier are selected to make up the new current population.
The saved population is a copy of the last population that was evaluated with
the real function, as described above. This way degenerated individuals are
kept out but evaluations of our evaluation budget are needed, so the number
of evaluations is increased.

Now we are using the real function again and collect new training data. This
cycle is repeated until the maximum number of evaluations is reached, after
which the algorithm stops. There is no last step to reevaluate the final popula-
tion with the real function because the process makes sure that the algorithm
only stops if all individuals have been just evaluated with the real function.

55





5 Evaluation

This chapter presents how the proposed method was implemented, as well as
the experiments that compare our approach on test problems with varying
difficulty and with different number of search variables and a discussion of the
results.

5.1 Implementation

The proposed method was implemented in Java based on the jMetal1 Frame-
work. jMetal is a Java-based framework with the goal to support researchers
in the field of metaheuristics, with a focus on multi-objective optimization.
As such, it contains classes for performing experiments, as well as, imple-
mentations of many standard algorithms. To facilitate deep learning, jMetal
was integrated with Deep Learning for Java (DL4J)2. The implementation
of NSGA-II contained in jMetal was extended to record all solutions, a neural
network surrogate model, and the switching logic. DL4J is a Java-based toolkit
that contains implementations for many deep neural network architectures, we
used their implementation of the deep feedforward neural network which can
be configured in various ways. Initial tests were conducted, and the rest of
this section will describe the hyperparameters we found relevant.

These hyperparameters come from three sources. The first source is the stan-
dard NSGA-II itself, the second the integration of the surrogate model into
the NSGA-II and finally the hyperparameters concerning the ANN

The hyperparameters of the NSGA-II are the following:

The population size, abbreviated with k, sets the number of individuals
in the population used by the EA and therefore also determines how many

1jmetal.github.io/jMetal/
2deeplearning4j.org

57

jmetal.github.io/jMetal/
deeplearning4j.org


5 Evaluation

evaluations have to be done each generation. Values such as 100 or 200 are
usually used for this hyperparameter.

The maximum number of evaluations controls after how many real eval-
uations the EA stops. More difficult problems need more evaluations. We
use 3.000, 5.000, 20.000 or 30.000 evaluations according to the difficulty of the
problem.

The selection hyperparameter sets the procedure which generates the mating
pool from the current population. NSGA-II usually uses binary tournament
selection, but other algorithms can be used to for example fitness proportional
selection.

The crossover hyperparameter sets the procedure that creates child individ-
uals from parent individuals, selected from the mating pool. NSGA-II usually
uses simulated binary crossover (SBX)[14].

Themutation hyperparameter sets the procedure which introduces small ran-
dom changes to the child individuals after crossover. NSGA-II usually uses
polynomial mutation[14].

These hyperparameters are related to the integration of the surrogate model:

The surrogate generations, we abbreviate it with q, hyperparameter sets
the number of generations for which the surrogate is used after it was (re-
)learned. In papers that use a similar algorithm[49, 24] this number moves
between 3 and 20.

The learning generations hyperparameter p, on the other hand, determines
for how many generations the real fitness functions are used and how long the
training data is collected. In the related papers, this number is usually set
between 3 and 10.

The remaining hyperparameters and the most numerous belong to the artificial
neural network:

The number of hidden layers, we will abbreviate it with d, hyperparameter
tells us how many hidden layers the neural net uses. Research indicates that
more hidden layers give network more expressive power i.e. it can approxi-
mate more difficult problems. Most of the related research uses shallow neural
networks, but in the experiments, we will vary the number of hidden layers to
see if deeper networks improve the quality of the surrogate function.

58



5.1 Implementation

The network width, we will abbreviate it with w, hyperparameters sets how
many neurons are in each hidden layer.

The activation function is needed to apply non-linear transformations to the
weighted sum computed by a neuron from its inputs and wights, which is a
linear operation. The non-linear transformations are needed so the network can
learn complicated functions, which is not possible when the network only does
linear transforms. This hyperparameter allows to sets the activation functions
used by the hidden layers of the network. Theoretically, any activation function
supported by DL4J can be used here, but the most common options are ReLU,
random ReLU, leaky ReLU, sigmoid or hyperbolic tangent (tanh).

The minibatch size allows the user to set the size of the minibatches for SGD
as described in Section 2.5.2. According to Bengio[3], the minibatch should be
set between 1 and a few hundred, with 32 being a reasonable default.

The learning rate of the neural network controls how fast the weights change
with every minibatch. For every minibatch, the derivative of the cost function
with respect to the weights and biases is computed and subtracted from the
weights. The learning rate scales the impact of the derivative. A small learning
rate will make the learning converge very slowly, while a large learning rate
will cause gradient descent overshoot the optimum again and again. Usually,
a learning rate between 0.001 and 0.0001 is recommended.

The loss function is used by the neural network to compute the error be-
tween the training set and the output of the network. The choices are: mean
squared error (MSE), root mean squared error (RMSE) and mean absolute
error (MAE).

normalization is recommended for neural network learning. This means lin-
early scaling the input and output values of training dataset between 0 and
1. If this is on, we also need to scale the inputs during evaluations and denor-
malize the results.

The number of epochs hyperparameter tells how often the whole training
set is presented to the neural network during training. A small learning rate
or a difficult learning problem will need a higher number of epochs.

The l2 hyperparameter determines which value is used for the l2 regularization.
This type of regularization penalizes large network weights. Large weights
are discouraged because they are associated with overfitting, i.e., the network

59



5 Evaluation

only memorizes the data and does not generalize. Usually, a value of 0.001 is
recommended.

The early stopping hyperparameter turns the use of early stopping on or off.
This kind of regularization tries to find the optimal stopping point between
under- and overfitting. To find the optimal stopping point, an additional test
set is created from the original training set. The test set is used to measure
the generalization error. At every epoch, the training and generalization errors
are measured, and at the beginning, both will decrease. At some point, the
test error will still decrease, but the generalization error will start to increase
at this point the network begins to overfit the data, and the learning process
is stopped.

The target score sets an error value which if reached during the learning
procedure will abort the learning. Can be seen as a way achieve the effects of
early stopping manually. Nain and Deb[49] also used this approach.

The optimization algorithm hyperparameter determines which algorithm
is used during the learning process. We will use Stochastic Gradient Descent
(SGD) but DL4J also provides other optimization algorithms.

The updater hyperparameter sets the algorithm that dynamically updates
the learning rate during the learning process. We will usually use RMSprop
but other updaters provided by DL4J can be used.

The weight initialization hyperparameter sets which procedure is used to
initialize the weights of a new neural network. We usually use the Xavier
method but other initializers provided by DL4J can be used.

5.2 Experiment Settings

As we can see, our implementation of the proposed method has many hyper-
parameters. Investigating the influence of all these hyperparameters is not
feasible because the number of possible combinations is too high. We have to
select some of the hyperparameters for our experiments. To answer our re-
search questions, we decided to investigate the following parameters in detail:

• width w and depth d
In Section 2.6, we talked about how, according to some researchers

60



5.2 Experiment Settings

[20, 48], adding more layers to a network makes the network more pow-
erful than adding more hidden neurons in the existing layers. In the
first experiment, we will investigate ANN surrogates that have a differ-
ing number of network hidden layers and widths. We expect to see that
deeper networks with more layers are performing better than networks
with fewer layers.

• learning generations p and surrogate generations q
In our initial tests, these two parameters, which are part of the integra-
tion of the surrogate into the MOEA, were parameters with the most
influence on how far the surrogate-assisted MOEA progressed towards
the Pareto-optimal solutions. We will in a second experiment compare
the best surrogate using a deep network to a surrogate with an archi-
tecture (width and depth) similar to Nain and Deb[49]. They used a
shallow network with one hidden layer and 40 neurons.

The remaining hyperparameters were searched for a suitable combination
based on recommendations in the literature and initial results of our test runs.
These parameters, which are constant for all experiments in this chapter, can
be seen in table 5.1.

Parameter Value
crossover SBX(pc = 0.9, ηc = 10)
population size k = 200

loss function MSE
target score 0.008
training epochs 150
learning rate η = 0.0009

mutation polynomial mutation (pm = 1
#variables

, ηm = 50)
network optimizer SGD
activation function ReLU
weight init XAVIER
l2 regularization 0.001
updater RMS PROP
normalization yes, between [0,1]
early stopping no

Table 5.1: Constant parameters for the experiments in Section 5.3

61



5 Evaluation

The other research questions are related to the test problems, specifically the
performance of deep networks on high dimensional problems and also on diffi-
cult problems. Therefore, we will present a selection of test problems different
test problems in the following section. Each of those test problems can be
configured to use different numbers of search variables and presents different
fitness landscapes to the surrogate-assisted MOEA.

5.2.1 Multi-objective Test Problems

It is the goal of this thesis to test the performance of the proposed surrogate-
assisted MOEA. The testing entails many optimization runs since multiple hy-
perparameter combinations need to be tested and to achieve statistical sound-
ness the runs have to be repeated. If we would use real-world expensive MOPs,
it would quickly exceed the reasonable time frame for this thesis. To avoid this,
we use well-established test suites for multi-objective problems and measure
the effects and performance of the proposed approach. Using test suites has
the other advantage of making our results comparable to other papers. There-
fore, three common test suites found in other EA literature are presented in
this section. Each test suite will be described briefly as are the chosen test
problems. The ZDT test suite is the oldest and contains the easiest problems
but is also often used as a benchmark in the related research. Therefore test-
ing our approach on some ZDT problems will make sure we can compare it to
other papers. The DTLZ and WFG test suites are often used in other research
and contain more difficult problems. Using these suites allows us to test if
deep learning can be used to approximate more difficult problems.

The ZDT test suite was introduced in 2000 by Zitzler et al. [60] and contained
six bi-objective test problems. We chose the ZDT1 and ZDT4 problems. ZDT1
is a relatively simple problem with a convex Pareto-optimal front. The reason
for including ZDT1 is that many papers in the field have used it to benchmark
their surrogate models[57, 44, 55, 50, 43], and as a simple entrance test. ZDT4
is a more complicated problem that tests if the EA can deal with a multimodal
fitness landscape. It has 219 local Pareto-optimal fronts where an EA can get
stuck. The ZDT4 was chosen because it was the most difficult of the ZDT test
suite, and some proposed surrogate models that have done well on the other
ZDT test functions struggled with ZDT4[44, 50, 43].

62



5.2 Experiment Settings

Name Objective Modality Landscape Geometry
ZDT1 f1 unimodal - convex

f2 unimodal
ZDT4 f1 unimodal - convex

f2 multimodal
DTLZ1 f1,2 multimodal Pareto-many-to-One linear
DTLZ2 f1,2 unimodal Pareto-many-to-One concave
WFG1 f1,2 unimodal polynomial, flat convex, mixed
WFG2 f1 unimodal - convex, disconnected

f2 multimodal

Table 5.2: Chosen multi-objective test problems. Properties according to
Huband et al.[32]

The DTLZ suite was introduced in 2002[17], mainly to remedy the low num-
ber of test problems with a configurable number of objectives. DTLZ1 is a
multimodal problem with (11k − 1) local Pareto-optimal fronts. The authors
reported that NSGA-II needed 30.000 evaluations to reach the Pareto-optimal
front[17]. DTLZ2 has a spherical Pareto-optimal front, it is still a rather easy
problem but will present an optimizer with more challenges than ZDT1.

The WFG test suite was created by Huband et al.[32, 31]. Their goal was to
create a toolkit where features can be added to test problems in a modular
fashion. The selected problems from the WFG test suite are the WFG1 and
WFG2 problem. We divide the parameters into equal parts position-related
and distance-related parameters and use two objectives. WFG1 has a linear
Pareto-front. Both objectives are unimodal, it still difficult because it has flat
regions and a biased fitness landscape. The Pareto-optimal front consists of
convex and concave segments. WFG2 has one multimodal and one multi-modal
objective, and a convex and disconnected Pareto-optimal front.

5.2.2 Structure of the Results

For every experiment, there will be a table showing the performance of dif-
ferent surrogate models on different test problems. The columns show the
performance of each surrogate model on one problem. For example, the left-
most column in Table 5.3 shows the performance of each surrogate model on

63



5 Evaluation

the test problem DTLZ1 with 30 variables. The number of variables will be
abbreviated with a v. We test each problem with 30, 50 and 70 variables.

The rows contain the performance of each algorithm on each test problem. The
standard NSGA-II algorithm, shown in the row "NSGAII", is present in every
experiment, for comparison purposes. The remaining rows show our proposed
algorithms with different parameter settings. These parameters can be distin-
guished by abbreviations, to not overload the tables. For every experiment,
we will explain what these abbreviations mean.

The values in each cell are the hypervolumes of the median performance over 31
test runs. The subscripted values show the respective interquartile range. The
reference point used to compute the hypervolume is the same for all algorithms
in a column and across tables. The hypervolumes in "DTLZ1 v30" column in
Table 5.3 can be compared to the "DTLZ1 v30" column in Table 5.6. The
reference point is the worst objective value of any algorithm on that particular
problem.

The most performant algorithm in each column (on each problem) is high-
lighted in bold font. All other algorithms that are not significantly worse than
the best algorithm are highlighted with colored cells. To achieve this, the
Mann-Whitney U test was used to compute if an algorithm has the same dis-
tribution as the best algorithm in its column. The two-tailed test was used
(sample size for each algorithm is 31) and the null hypothesis was rejected if
p < 0.05. In this context, a rejected hypothesis means that the algorithm is
significantly worse than the best algorithm in its column.

Furthermore, for each problem, there is a plot showing the median performance
of NSGA-II and the best performing surrogate algorithm, so the reader can
better visualize what the numbers in the table mean. For example, see Figures
5.3, 5.4 or 5.8. Each plot also shows the true Pareto-optimal front, it is labeled
as "Global". The true Pareto-optimal front of DTLZ1 can not be seen in the
plots of DTLZ1 because the optimal objective values are so small compared to
optimal values found by the MOEAs

64



5.3 Results and Analysis

5.3 Results and Analysis

This section goes over the results in detail. Multiple experiments were con-
ducted to evaluate the proposed algorithm testing different combinations of
hyperparameters.

5.3.1 Influence of the Neural Network Architecture

The goal of the first experiment was to find out if the depth or width of the
neural network surrogate model influences the quality of the approximations.
Therefore, the parameters for neurons per layer and the number of hidden
layers were varied. The tested parameters for the width were 10, 20, 50 and
100, the number hidden layers 1, 3, 6 and 9. In the tables w was used to
abbreviate the width of the network and d to abbreviate the number of hidden
layers, for example, the algorithm described by "w20 d3" has three hidden
layers each with 20 neurons. Both the number of learning generations p and
the number of surrogate generations q were set to five. The results of the first
experiment can be seen in the Tables 5.3 and 5.4 and 5.5.

First, let us go over what can be seen in each table. Table 5.3 shows us the
performance of each algorithm on the chosen test problems of the DTLZ test
suite. The DTLZ1 problem is one of the more difficult test problems.

The standard NSGA-II has the best performance on the low-dimensional vari-
ant (30 variables) of DTLZ1. The surrogate algorithms with the best per-
formance are "w20 d3" and "w20 d9". This goes against our expectations
that deeper networks should perform better than shallower networks. The
surrogate-assisted MOEA "w20 d9" is better than "w20 d1" and "w20 d6,"
but we would also expect that "w20 d6" is better than "w20 d3" but an algo-
rithm with only half the number of hidden layers outperforms this algorithm
with six hidden layers. Figure 5.1a also shows the slight advantage standard
NSGA-II has over "w20 d3".

Both of the higher dimensional variants of DTLZ1 are cases where many
surrogate-algorithms performed similarly to NSGA-II. We can also see that
more surrogate algorithms in the lower parts of both columns have that simi-
lar performance. This indicates that the width of the ANN is more important
than the depth in these two higher-dimensional variants of DTLZ1. The best

65



5 Evaluation

0 20 40 60

0
2
0

4
0

6
0

f1

f
2

Global

NSGA-II

w20d3

(a) DTLZ1 v30

0 50 100 150

0
1
0
0

2
0
0

f1

f
2

Global

NSGA-II

w100d6

(b) DTLZ1 v50

0 100 200 300

0
1
0
0

2
0
0

3
0
0

4
0
0

f1

f
2

Global

NSGA-II

w100d3

(c) DTLZ2 v70

0 0.2 0.4 0.6 0.8 1 1.2

0
0
.5

1

f1

f
2

Global

NSGA-II

w100d6

(d) DTLZ2 v30

0 0.5 1 1.5

0
0
.5

1
1
.5

f1

f
2

Global

NSGA-II

w100d6

(e) DTLZ2 v50

0 0.5 1 1.5 2 2.5

0
1

2

f1

f
2

Global

NSGA-II

w100d6

(f) DTLZ2 v70

Figure 5.1: Adapting the network architecture. Plots for the DTLZ1 and
DTLZ2 problems.

66



5.3 Results and Analysis

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

w10d3

(a) WFG1 v30

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

w20d9

(b) WFG1 v50

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

w100d6

(c) WFG1 v70

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

w100d9

(d) WFG2 v30

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

w50d1

(e) WFG2 v50

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

w100d6

(f) WFG2 v70

Figure 5.2: Adapting the network architecture. Plots for the WFG1 and
WFG2 problems.

67



5 Evaluation

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

w100d3

(a) ZDT1 v30

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

w100d3

(b) ZDT1 v50

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

w100d1

(c) ZDT1 v70

0 0.2 0.4 0.6 0.8 1

0
5

1
0

1
5

f1

f
2

Global

NSGA-II

w100d1

(d) ZDT4 v30

0 0.2 0.4 0.6 0.8 1

0
2
0

4
0

f1

f
2

Global

NSGA-II

w10d9

(e) ZDT4 v50

0 0.2 0.4 0.6 0.8 1

0
5
0

1
0
0

f1

f
2

Global

NSGA-II

w100d1

(f) ZDT4 v70

Figure 5.3: Adapting the network architecture. Plots for the ZDT1 and ZDT4
problems.

68



5.3 Results and Analysis

DTLZ1 v30 DTLZ1 v50 DTLZ1 v70 DTLZ2 v30 DTLZ2 v50 DTLZ2 v70
NSGAII 0.99711.73E−03 0.98189.68E−03 0.95572.15E−02 0.94478.32E−03 0.90651.48E−02 0.86331.49E−02
w10 d1 0.99552.47E−03 0.97875.42E−03 0.95041.68E−02 0.92781.93E−02 0.87561.28E−02 0.81722.40E−02
w10 d3 0.99572.89E−03 0.98201.18E−02 0.94692.85E−02 0.92621.21E−02 0.87922.14E−02 0.82792.47E−02
w10 d6 0.99591.66E−03 0.97501.39E−02 0.95821.27E−02 0.92512.12E−02 0.88621.47E−02 0.83892.21E−02
w10 d9 0.99611.40E−03 0.97641.21E−02 0.95602.14E−02 0.92511.97E−02 0.89472.15E−02 0.82382.70E−02
w20 d1 0.99631.88E−03 0.98139.22E−03 0.94923.57E−02 0.92661.34E−02 0.87792.10E−02 0.83492.74E−02
w20 d3 0.99672.04E−03 0.97949.62E−03 0.95491.11E−02 0.92891.46E−02 0.87712.44E−02 0.83772.28E−02
w20 d6 0.99641.98E−03 0.98055.50E−03 0.95182.40E−02 0.92781.51E−02 0.88442.38E−02 0.86052.22E−02
w20 d9 0.99661.34E−03 0.98096.46E−03 0.95202.03E−02 0.93051.57E−02 0.86601.77E−02 0.84202.00E−02
w50 d1 0.99563.12E−03 0.97679.64E−03 0.94952.48E−02 0.93572.07E−02 0.88312.96E−02 0.83742.31E−02
w50 d3 0.99592.35E−03 0.98304.81E−03 0.96158.16E−03 0.94031.31E−02 0.90201.30E−02 0.86111.29E−02
w50 d6 0.99651.91E−03 0.98305.61E−03 0.95581.64E−02 0.94141.27E−02 0.88921.68E−02 0.83431.94E−02
w50 d9 0.99621.89E−03 0.98276.80E−03 0.95342.62E−02 0.94211.32E−02 0.88511.15E−02 0.83562.89E−02
w100 d1 0.99612.11E−03 0.98353.59E−03 0.96091.24E−02 0.95158.21E−03 0.91401.63E−02 0.87282.61E−02
w100 d3 0.99651.99E−03 0.98281.00E−02 0.96191.57E−02 0.95221.25E−02 0.89322.63E−02 0.87681.07E−02
w100 d6 0.99532.56E−03 0.98365.38E−03 0.94722.69E−02 0.96571.19E−02 0.92941.69E−02 0.87822.42E−02
w100 d9 0.99551.76E−03 0.98236.13E−03 0.95811.92E−02 0.94091.85E−02 0.90081.40E−02 0.86572.13E−02

Table 5.3: Adapting the network architecture. Median for DTLZ1 and DTLZ2.
30.000 and 5.000 evaluations were used, respectively.

algorithm for "DTLZ1 v50" is "w100d6" and for "DTLZ1 v70" it is "w100d3".
Both of them have multiple hidden layers, their slight advantage over standard
NSGA-II is shown in Figure 5.1b and Figure5.1c.

The Figures related to the DTLZ1 problem also show the degrading perfor-
mance when the number of search variables are increased. This is revealed by
looking at the objective values on the axis, and what values are achieved for
both objectives. The degradation is similar for both standard NSGA-II and
the top-performing surrogate algorithms, this indicates that these algorithms
can deal with higher-dimensional problems.

The best surrogate algorithm for "DTLZ1v50", i.e., "w100d6", is also the algo-
rithm that clearly outperforms standard NSGA-II on the DTLZ2 irrespective
of the chosen number of variables. When looking at the figures 5.1d, 5.1e and
5.1f we also see how "w100d6" covers more hypervolume than standard NSGA-
II in all three cases. DTLZ2 is one of easier problems we use here. It has a
unimodal landscape that is easier to approximate than the highly multimodal
landscape of DTLZ1.

All variants of the WFG1 problem are dominated by the standard NSGA-II.
In the highest-dimensional case "WFG1 v70", the standard NSGA-II is signif-
icantly better than any of our surrogate algorithms. The surrogate algorithm
"w10 d3" has a similar performance to standard NSGA-II. The "w100 d6" al-

69



5 Evaluation

WFG1 v30 WFG1 v50 WFG1 v70 WFG2 v30 WFG2 v50 WFG2 v70
NSGAII 0.35763.88E−02 0.17142.50E−02 0.13322.05E−02 0.69885.09E−03 0.68308.56E−03 0.67216.61E−03
w10 d1 0.33345.84E−02 0.14642.88E−02 0.10781.68E−02 0.69857.73E−03 0.68075.88E−03 0.67218.62E−03
w10 d3 0.33925.12E−02 0.16463.30E−02 0.10781.09E−02 0.69891.27E−02 0.68131.02E−02 0.66908.57E−03
w10 d6 0.28903.70E−02 0.14731.96E−02 0.09551.13E−02 0.69535.54E−03 0.67937.91E−03 0.66716.88E−03
w10 d9 0.30004.41E−02 0.16392.73E−02 0.10672.80E−02 0.69527.15E−03 0.68088.56E−03 0.66521.33E−02
w20 d1 0.31704.44E−02 0.13901.59E−02 0.10341.80E−02 0.69827.44E−03 0.68071.02E−02 0.66991.12E−02
w20 d3 0.29982.73E−02 0.15141.64E−02 0.10712.55E−02 0.69844.55E−03 0.67711.11E−02 0.67001.01E−02
w20 d6 0.30584.98E−02 0.13862.54E−02 0.10851.41E−02 0.69638.81E−03 0.68187.52E−03 0.66658.70E−03
w20 d9 0.29454.73E−02 0.16832.21E−02 0.10101.51E−02 0.69866.11E−03 0.67686.99E−03 0.66561.45E−02
w50 d1 0.28643.68E−02 0.14972.09E−02 0.11532.14E−02 0.69891.10E−02 0.68401.08E−02 0.67007.58E−03
w50 d3 0.28195.53E−02 0.15511.48E−02 0.10171.80E−02 0.69936.22E−03 0.68121.05E−02 0.67155.91E−03
w50 d6 0.28474.55E−02 0.14662.69E−02 0.11971.92E−02 0.70028.31E−03 0.68258.17E−03 0.67089.06E−03
w50 d9 0.31544.79E−02 0.13781.79E−02 0.10841.49E−02 0.69669.39E−03 0.67911.08E−02 0.67131.35E−02
w100 d1 0.30692.39E−02 0.15101.31E−02 0.10972.03E−02 0.69856.48E−03 0.68348.34E−03 0.66898.71E−03
w100 d3 0.28963.70E−02 0.15472.87E−02 0.11231.33E−02 0.70125.90E−03 0.68291.17E−02 0.66658.70E−03
w100 d6 0.33895.09E−02 0.15373.09E−02 0.12018.97E−03 0.69788.94E−03 0.68118.57E−03 0.67307.49E−03
w100 d9 0.31034.41E−02 0.16211.95E−02 0.10572.03E−02 0.70161.49E−01 0.68351.09E−02 0.66671.47E−02

Table 5.4: Adapting the network architecture. Median for WFG1 and WFG2.
With WFG1 30.000 and 20.000 evaluations were used, respectively.

gorithm also has a similar performance to NSGA-II on "WFG1 v30", as does
"w20 d9" on "WFG1 v50". There is no pattern visible in the performance
of the surrogate algorithms on WFG1, neither the width nor the number of
hidden layers hints at better performing surrogate variants. If we look at Fig-
ures 5.2a through 5.2c, we can see the related search results. We see that in
all three cases the search algorithm moves only towards the lower part of the
Pareto-optimal front, the biased fitness landscape of WFG1 may cause this.

The WFG2 problem has many surrogate algorithms that perform similarly to
the standard NSGA-II, like the higher-dimensional cases of DTLZ1. There
seems to also be a very slight bias towards surrogate algorithms with wider
ANNs. In all three cases, surrogate algorithms are the top performers:
"w100d9" for "WFG2 v30", "w50 d1" with a shallow ANN for "WFG2 v50",
and "w100 d6" for "WFG2 v70". This surrogate variant with six hidden
layers is also among the top-performing surrogate algorithms for both lower-
dimensional WFG2 cases. When we look at the figures 5.2d, 5.2e and 5.2f we
can see which parts of the disconnected Pareto-front of WFG2 are found by the
MOEAs. In the WFG2 problem with 30 variables the first three disconnected
parts are found, but also "100d9" finds more of the first part. This observation
is also true for the higher-dimensional cases.

70



5.3 Results and Analysis

ZDT1 v30 ZDT1 v50 ZDT1 v70 ZDT4 v30 ZDT4 v50 ZDT4 v70
NSGAII 0.83452.44E−02 0.73652.67E−02 0.70202.58E−02 0.73527.91E−02 0.60087.24E−02 0.52066.62E−02
w10 d1 0.86181.76E−02 0.73942.09E−02 0.72392.87E−02 0.62981.26E−01 0.55179.71E−02 0.42589.38E−02
w10 d3 0.82291.80E−02 0.76033.01E−02 0.73261.89E−02 0.65568.11E−02 0.53378.23E−02 0.47258.16E−02
w10 d6 0.83832.10E−02 0.74923.08E−02 0.70192.53E−02 0.68731.21E−01 0.57908.57E−02 0.47535.87E−02
w10 d9 0.86232.76E−02 0.73104.71E−02 0.70414.39E−02 0.64901.13E−01 0.60781.14E−01 0.47635.73E−02
w20 d1 0.87321.47E−02 0.77592.34E−02 0.72804.78E−02 0.65307.90E−02 0.57541.28E−01 0.43407.11E−02
w20 d3 0.86263.17E−02 0.72093.01E−02 0.74561.95E−02 0.68368.05E−02 0.48591.56E−01 0.41267.29E−02
w20 d6 0.85051.72E−02 0.77133.36E−02 0.74312.60E−02 0.68691.19E−01 0.56738.46E−02 0.47931.00E−01
w20 d9 0.85392.47E−02 0.76282.34E−02 0.74791.98E−02 0.61501.01E−01 0.52191.19E−01 0.46499.72E−02
w50 d1 0.87622.07E−02 0.79213.40E−02 0.75091.58E−02 0.68655.56E−02 0.57901.19E−01 0.43041.07E−01
w50 d3 0.90221.89E−02 0.80822.80E−02 0.70748.80E−02 0.70569.04E−02 0.56561.20E−01 0.43759.32E−02
w50 d6 0.88381.22E−02 0.81051.52E−02 0.71755.85E−02 0.67981.04E−01 0.57701.16E−01 0.44621.01E−01
w50 d9 0.89201.86E−02 0.80012.05E−02 0.70015.67E−02 0.70408.13E−02 0.53301.04E−01 0.45871.08E−01
w100 d1 0.89942.06E−02 0.81714.00E−02 0.78811.45E−02 0.70981.02E−01 0.51181.07E−01 0.52181.08E−01
w100 d3 0.90641.67E−02 0.83291.35E−02 0.75376.40E−02 0.68791.17E−01 0.53451.06E−01 0.42631.52E−01
w100 d6 0.89611.53E−02 0.83162.10E−02 0.77842.32E−02 0.67748.96E−02 0.56837.39E−02 0.44419.67E−02
w100 d9 0.83091.81E−02 0.81422.60E−02 0.78491.83E−02 0.69021.13E−01 0.58291.01E−01 0.41007.62E−02

Table 5.5: Adapting the network architecture. Median for ZDT1 and ZDT4.
3.000 and 30.000 evaluations were used, respectively.

ZDT1 is a very easy problem with a simple unimodal fitness landscape that
should be easy to approximate and search. These expectations are met if
we look at Table 5.5. The surrogate algorithms clearly outperform standard
NSGA-II, again, with wider network architectures being more indicative of
good performance than the depth of the network alone. The related figures
5.3a through 5.3c visualize this advantage.

In ZDT4 the first objective is unimodal and the second is multimodal. This is
the reason for why sometimes the plots for the algorithms (figures 5.3e through
5.3f) can be hard to see. The MOEAs quickly find the optimal values for f1 but
take longer for the second objective. Therefore, the plotted fronts are squashed
into the upper left corner of the plots. A look at Table 5.5 tells us that for
"ZDT4 v30" standard NSGA-II is the best performing MOEA followed only
by "w100 d1" and "w100 d9" and no other surrogate algorithm. They both
use wider networks, but "w100 d3" and "w100 d6" also have 100 neurons in
their hidden layers and more depth, still they are significantly worse than the
standard NSGA-II. Both higher-dimensional cases of ZDT4 have a surrogate
algorithm as the top performer. These are "w10 d9" for ZDT4 v50" and "w100
d1" for "ZDT v70". But NSGA-II is not significantly outperformed by them.
There are also many more surrogate algorithms that perform similarly good
on these problems. A clear pattern, however, does not present itself. Neither

71



5 Evaluation

width nor depth seems to predict better performing surrogates, in these two
cases.

One question that arises here is: Why are any of the surrogate variants worse
than the basic NSGA-II if the mergeback (see Section 4.2) procedure makes
sure that the found Pareto-optimal solutions never deteriorate?
To understand this phenomenon one has to look at the current setup con-
cerning rotation between real and surrogate evaluations. Currently p · k real
evaluations are needed, in this experiment that are exactly 5 · 200 = 1000

real evaluations, to build a new surrogate model. Then the surrogate model
is exploited for q generations. After the surrogate phase, we use the merge-
back procedure. The mergeback procedure needs another k evaluations to
reevaluate all k individuals in the population. The point here is that those k
evaluations are not contributing towards finding the Pareto-optimal front, they
only reevaluate solutions we already have. The mergeback procedure verifies
that the solutions are correct, but "wastes" 200 extra real evaluations to do
so.
Therefore every algorithm using our surrogate model "loses" up to 20% of its
evaluation budget in the hope that the exploitation of the surrogate makes up
for this "loss" and even improve the result on top of that. With the current
hyperparameter settings, especially the current number of learning and sur-
rogate generations, most variants are not or just barely achieving that goal,
except for the simpler problems.

As such, we can class the results into three groups: group A where the standard
NSGA-II is (most often) the best algorithm, and there are only some surrogate
algorithms that perform similarly (DTLZ1 v30, all WFG1, and ZDT4 v30).
Group A is the group where only some surrogate algorithms have made up
for the "lost" evaluations. Group B, where some of the surrogate algorithms
outperform standard NSGA-II (all DTLZ2 and ZDT1), the group where the
exploitation of the surrogate made up for the "wasted" evaluations and more.
Finally, a group C where most algorithms performed similarly to the best
algorithms (DTLZ1 v50, DTLZ1 v70, all WFG2, ZDT4 v50 and ZDT4 v70).

In Group A, there is not a clear pattern emerging where one group of similar
hyperparameter settings is consistently better than other configurations. If we
assume that there are optimal hyperparameter settings for each problem we
see examples like "w20 d9" on DTLZ1 which is among the best algorithms

72



5.3 Results and Analysis

for each number of variables but "w20 d3" is only among the best for only
"DTLZ1 v30" but not the higher-dimensional cases of "DTLZ1 v30".

WFG1 is a bit of an outlier since the WFG1s with all dimensions are domi-
nated by the standard NSGA-II, unlike DTLZ1 and ZDT4 where NSGA-II is
only clearly better in the low-dimensional variants. Among these problems,
WFG1 is the most difficult, because it contains flat regions. In this type of fit-
ness landscape, a surrogate model cannot help an EA to find a non-flat region.
If the training set contains only samples from the flat regions, the resulting
surrogate will most likely also be completely flat. Even in regions where there
is an optimum, simply because the training algorithm has not seen examples
that tells him that there is one. If this surrogate is then subsequently used,
there is no chance to find the optimum even if by chance one solution lies in an
optimal region. If a solution which is from a non-flat region is evaluated with
a surrogate that was not trained with examples from its region the surrogate
would give it an objective value from the flat region. This way, the surrogate
would mislead the EA to think there is no optimum. That would mean there
is a lower chance for the surrogate algorithms to recover the lost 20% of evalu-
ations. The underlying NSGA-II has to first find a non-flat region by himself,
only then can the surrogate model be expected to be helpful.

Group B, where surrogate algorithm clearly outperforms the standard NSGA-
II, is made up of all DTLZ2 and ZDT1 problems, the easiest of the chosen
problems. They are both unimodal, and other difficulties like deceptiveness
or flat regions are not present. This indicates that the current hyperparame-
ter settings are not suitable for the multimodal problems. The problem here
seems to be similar to that of problems with flat fitness landscapes but less
pronounced. With the samples the EA has at any one time the EA can only
approximate the best optimum currently visible in the training data and help
the optimizer to get closer to that local optimum. But unless the neural net-
work training data does contain samples of better regions beyond this local
optimum the exploitation of the surrogate model cannot help to guide the op-
timizer into better regions. That means that the standard NSGA-II has to
find the better regions itself.

Group C contains the DTLZ1, WFG2 and ZDT4 problems. In most of these
cases, one surrogate algorithm is the best but is not significantly better than
the standard NSGA-II. So the lost 20% were recovered, but the surrogate could
not be exploited to improve the result and outperform standard NSGA-II. To

73



5 Evaluation

achieve that goal the hyperparameters have to be tuned further. According
to our initial test runs, the number of learning and surrogate generations (p
and q) are the most likely hyperparameters to do that. Increasing the learning
generations will give the ANN more training examples to learn from and im-
prove the quality of the surrogates. Increasing the surrogate generations will
allow for more prolonged exploitation of the surrogate. Therefore, in the next
experiment, we vary the learning and surrogate generation parameters. For
the number of hidden layers, we chose six, and each hidden layer has 100 neu-
rons. This configuration was among the top-performing architectures across
all problems in this experiment.

5.3.2 Influence of Training and Exploitation of the
Surrogate on a Deep Network

This experiment is designed to determine if the performance of most promising
network structure of the previous experiment can be improved by varying the
parameters for the learning generations p and surrogate generations q. As a
reminder, the number of learning generations sets for how many generations
the training data is collected. Each learning generation increases the number of
training examples by the individuals in the population k. In our case k = 200,
so going from five learning generations to ten increases the training set from
1000 to 2000 examples. More training examples lead to better approximations.
However, generating too many training examples with real function evaluations
can negatively impact the overall evaluation budget. The surrogate generations
determine for how many generations the surrogate function is used. Increasing
the surrogate generations could enhance the performance, but could also lead
the MOEA into regions that are not adequately approximated. Searching in
those regions will produce objective vectors with too many errors and could
ultimately decrease performance. Both parameters were tested for the values
of 5, 10, 15 and 20. In the Tables, p is used to abbreviate the learn generations
and q to abbreviate the number of surrogate generations. For example "p5
q20" stands for a variant that collects training data for five generations and
then uses the surrogate function for 20 generations. Since we used p = 5 and
q = 5 in the previous experiment, the algorithm with the abbreviation "p5 q5"
is the same as "w100 d6" in the previous experiment. The number of hidden
layers was set to six layers, and each layer has 100 neurons. The results of this

74



5.3 Results and Analysis

0 20 40 60

0
2
0

4
0

6
0

f1

f
2

Global

NSGA-II

p20q5

(a) DTLZ1 v30

0 50 100 150 200

0
5
0

1
0
0

1
5
0

f1

f
2

Global

NSGA-II

p10q10

(b) DTLZ1 v50

0 100 200 300

0
1
0
0

2
0
0

3
0
0

f1

f
2

Global

NSGA-II

p5q5

(c) DTLZ2 v70

0 0.5 1

0
0
.5

1

f1

f
2

Global

NSGA-II

p10q20

(d) DTLZ2 v30

0 0.5 1 1.5

0
0
.5

1
1
.5

f1

f
2

Global

NSGA-II

p10q10

(e) DTLZ2 v50

0 0.5 1 1.5 2 2.5

0
1

2

f1

f
2

Global

NSGA-II

p5q10

(f) DTLZ2 v70

Figure 5.4: Adapting p and q for deep networks. Plots for the DTLZ1 and
DTLZ2 problems.

75



5 Evaluation

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p20q5

(a) WFG1 v30

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

p15q5

(b) WFG1 v50

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

p20q5

(c) WFG1 v70

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p5q15

(d) WFG2 v30

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p5q15

(e) WFG2 v50

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p10q20

(f) WFG2 v70

Figure 5.5: Adapting p and q for deep networks. Plots for the WFG1 and
WFG2 problems.

76



5.3 Results and Analysis

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

p5q15

(a) ZDT1 v30

0 0.2 0.4 0.6 0.8 1

0
1

2
3

4

f1

f
2

Global

NSGA-II

p5q20

(b) ZDT1 v50

0 0.2 0.4 0.6 0.8 1

0
1

2
3

4

f1

f
2

Global

NSGA-II

p5q20

(c) ZDT1 v70

0 0.2 0.4 0.6 0.8 1

0
5

1
0

1
5

f1

f
2

Global

NSGA-II

p20q20

(d) ZDT4 v30

0 0.2 0.4 0.6 0.8 1

0
2
0

4
0

f1

f
2

Global

NSGA-II

p10q10

(e) ZDT4 v50

0 0.2 0.4 0.6 0.8 1

0
5
0

1
0
0

f1

f
2

Global

NSGA-II

p10q5

(f) ZDT4 v70

Figure 5.6: Adapting p and q for deep networks. Plots for the ZDT1 and ZDT4
problems.

77



5 Evaluation

DTLZ1 v30 DTLZ1 v50 DTLZ1 v70 DTLZ2 v30 DTLZ2 v50 DTLZ2 v70
NSGAII 0.99711.64E−03 0.98546.08E−03 0.96561.74E−02 0.94638.33E−03 0.90292.09E−02 0.86141.28E−02
p5 q5 0.99661.83E−03 0.98256.86E−03 0.96695.96E−03 0.95161.23E−02 0.90101.78E−02 0.88661.93E−02
p5 q10 0.99622.26E−03 0.98069.25E−03 0.95531.73E−02 0.96491.06E−02 0.88181.95E−02 0.89692.71E−02
p5 q15 0.99631.89E−03 0.97881.01E−02 0.96301.03E−02 0.95881.96E−02 0.90182.24E−02 0.83972.15E−02
p5 q20 0.99572.93E−03 0.98336.25E−03 0.95382.01E−02 0.94221.84E−02 0.88442.01E−02 0.83742.03E−02
p10 q5 0.99691.38E−03 0.98281.15E−02 0.96301.27E−02 0.96317.78E−03 0.92291.91E−02 0.85942.99E−02
p10 q10 0.99671.30E−03 0.98535.96E−03 0.96565.55E−03 0.95592.12E−02 0.93521.36E−02 0.87901.97E−02
p10 q15 0.99692.56E−03 0.98306.85E−03 0.96451.16E−02 0.95001.75E−02 0.89849.54E−03 0.89463.22E−02
p10 q20 0.99652.10E−03 0.98308.85E−03 0.96191.23E−02 0.97031.08E−02 0.90071.94E−02 0.86253.06E−02
p15 q5 0.99692.59E−03 0.98361.09E−02 0.95571.66E−02 0.95666.52E−03 0.90891.81E−02 0.87361.96E−02
p15 q10 0.99691.89E−03 0.98226.50E−03 0.96061.47E−02 0.93701.44E−02 0.92531.60E−02 0.88121.76E−02
p15 q15 0.99642.29E−03 0.98251.03E−02 0.96261.51E−02 0.96082.25E−02 0.92671.36E−02 0.88542.24E−02
p15 q20 0.99681.65E−03 0.98379.53E−03 0.96111.23E−02 0.94307.83E−03 0.90101.18E−02 0.85911.85E−02
p20 q5 0.99721.67E−03 0.98385.97E−03 0.95761.44E−02 0.95536.80E−03 0.91631.43E−02 0.87612.06E−02
p20 q10 0.99691.80E−03 0.98257.25E−03 0.95362.43E−02 0.95846.72E−03 0.91951.49E−02 0.85311.45E−02
p20 q15 0.99691.26E−03 0.98241.05E−02 0.96161.88E−02 0.95471.21E−02 0.92031.12E−02 0.86542.25E−02
p20 q20 0.99691.74E−03 0.98313.40E−03 0.96271.75E−02 0.95548.89E−03 0.92801.61E−02 0.85732.46E−02

Table 5.6: Adapting p and q for deep networks. Median for DTLZ1 and
DTLZ2. 30.000 and 5.000 evaluations were used, respectively.

experiment can be seen int tables 5.6 and 5.7 and 5.8 and figures 5.4, 5.5 and
5.6.

Let us start again with DTLZ1 in Table 5.6. Many surrogate algorithms can
adequately approximate "DTLZ1 v30" and "DTLZ1 v50". None of the sur-
rogate algorithms did outperform the standard NSGA-II. In "DTLZ v30" it
seems that using more than ten learning generations improves the quality so
much that these surrogate variants are consistently achieving performance sim-
ilar to NSGA-II. The same trend seems to also show in "DTLZ1 v50", with
some exceptions ("p15 q10" and "p20 q20"). The plot for "DTLZ1 v30" in
Figure 5.4a shows the slight advantage of the surrogate over standard NSGA-
II. Figure 5.4b shows that the performance of the best shows the slight edge
of the standard NSGA-II.

In "DTLZ1 v70" (Table 5.6) we can see that adjusting p and q seems to not
improve the performance on higher-dimensional problems. The surrogate algo-
rithm "p5 q5" ("w100 d6" in the previous experiment) is the best-performing
MOEA, even though "100 d6" was not among the best-performing algorithms
in the first experiment (see Table 5.3) for "DTLZ1 v70".

DTLZ2 was dominated by "w100 d6" in the first experiment (see Table 5.3)
which meant it was already easy to approximate, and adapting the learning and
surrogate generations increased the performance of this network configuration

78



5.3 Results and Analysis

WFG1 v30 WFG1 v50 WFG1 v70 WFG2 v30 WFG2 v50 WFG2 v70
NSGAII 0.35543.61E−02 0.17072.47E−02 0.12121.66E−02 0.69489.21E−03 0.68391.12E−02 0.67121.14E−02
p5 q5 0.30144.80E−02 0.14142.08E−02 0.11451.65E−02 0.69911.05E−02 0.68425.83E−03 0.67128.65E−03
p5 q10 0.26032.72E−02 0.12881.93E−02 0.09002.10E−02 0.70067.45E−03 0.68411.04E−02 0.67061.01E−02
p5 q15 0.25702.80E−02 0.12262.29E−02 0.08301.48E−02 0.85625.22E−03 0.82791.54E−01 0.67247.01E−03
p5 q20 0.25322.40E−02 0.12041.64E−02 0.09691.77E−02 0.69904.13E−03 0.68396.38E−03 0.66951.71E−02
p10 q5 0.32704.73E−02 0.16012.88E−02 0.12081.26E−02 0.69581.07E−02 0.68369.31E−03 0.67295.91E−03
p10 q10 0.29122.37E−02 0.16402.74E−02 0.09921.43E−02 0.69925.61E−03 0.68277.37E−03 0.67031.10E−02
p10 q15 0.29502.22E−02 0.15863.04E−02 0.11271.57E−02 0.69995.86E−03 0.68211.03E−02 0.67467.64E−03
p10 q20 0.29563.34E−02 0.14621.42E−02 0.10262.12E−02 0.69988.07E−03 0.68396.53E−03 0.80811.36E−01
p15 q5 0.33864.75E−02 0.17162.21E−02 0.12391.00E−02 0.69951.05E−02 0.68556.75E−03 0.67001.07E−02
p15 q10 0.32143.77E−02 0.16732.08E−02 0.11491.40E−02 0.70045.35E−03 0.68471.30E−02 0.67196.75E−03
p15 q15 0.33153.81E−02 0.15932.36E−02 0.11001.22E−02 0.70168.37E−03 0.68276.92E−03 0.67179.62E−03
p15 q20 0.30884.79E−02 0.15372.49E−02 0.11751.63E−02 0.69929.31E−03 0.68397.39E−03 0.67165.49E−03
p20 q5 0.34243.30E−02 0.16252.71E−02 0.12481.49E−02 0.69995.80E−03 0.67988.55E−03 0.66959.00E−03
p20 q10 0.31263.80E−02 0.16961.25E−02 0.11911.38E−02 0.69739.25E−03 0.68327.54E−03 0.67251.03E−02
p20 q15 0.32724.66E−02 0.16691.99E−02 0.11631.78E−02 0.69976.53E−03 0.68396.06E−03 0.79941.44E−01
p20 q20 0.33474.15E−02 0.16261.92E−02 0.11521.69E−02 0.70057.35E−03 0.68146.19E−03 0.67168.99E−03

Table 5.7: Adapting p and q for deep networks. Median for WFG1 and WFG2.
With WFG1 30.000 and 20.000 evaluations were used, respectively.

further. The figures 5.4e through 5.4f also show how more hypervolume is
covered if compared to figures 5.1e through 5.1a.

Overall, adapting the learning and surrogate generations seems to improve
their performance on WFG1 (see Table 5.7). Still, the standard NSGA-II is
not clearly outperformed, irrespective of the chosen number of search variables.

An interesting observation can be made in the WFG2 problem, see Table 5.7.
The hypervolume of the best surrogate variant is increased by 13% com-
pared to the standard NSGA-II. The reason for this increase can be found
by comparing the plots of WFG2 fronts (for example figure 5.5d and figure
5.2d). The best surrogate variant is better at approximating the disconnected
Pareto-front of the WFG2 function. There are five disconnected sections of the
Pareto-front, both NSGA-II and our method find the second and third section
and small parts of the first section, depending on the number of search vari-
ables. Some surrogate-assisted algorithms which exploit the surrogate function
for more generations (either for 15 generations or 20 generations) appear to be
better at finding the fourth section of the Pareto-front. For "WFG2 v30" and
"WFG2 v50" it seems that using five learning generations is enough and using
more (see "p10 q15") actually degrades the performance. The same appears
to be the case for the surrogate generations, the algorithm "p5 q20" appar-

79



5 Evaluation

ZDT1 v30 ZDT1 v50 ZDT1 v70 ZDT4 v30 ZDT4 v50 ZDT4 v70
NSGAII 0.83682.20E−02 0.74402.70E−02 0.70222.11E−02 0.72791.12E−01 0.64508.31E−02 0.53541.13E−01
p5 q5 0.90381.43E−02 0.82842.11E−02 0.68342.30E−02 0.69617.47E−02 0.58901.39E−01 0.42401.07E−01
p5 q10 0.82103.06E−02 0.86652.71E−02 0.79482.26E−02 0.68511.35E−01 0.49661.00E−01 0.46061.36E−01
p5 q15 0.91052.61E−02 0.87972.59E−02 0.86871.91E−02 0.66261.27E−01 0.47791.26E−01 0.48108.71E−02
p5 q20 0.81541.52E−02 0.88441.40E−02 0.89683.46E−02 0.62261.93E−01 0.59537.80E−02 0.45811.08E−01
p10 q5 0.86482.25E−02 0.79161.89E−02 0.75701.83E−02 0.73339.56E−02 0.56741.03E−01 0.53438.87E−02
p10 q10 0.83453.15E−02 0.72443.02E−02 0.69732.74E−02 0.68826.32E−02 0.60921.05E−01 0.49929.39E−02
p10 q15 0.89371.07E−02 0.85282.89E−02 0.81782.56E−02 0.69291.29E−01 0.57071.27E−01 0.48541.27E−01
p10 q20 0.89291.61E−02 0.84671.61E−02 0.85762.13E−02 0.70806.20E−02 0.57821.03E−01 0.49441.45E−01
p15 q5 0.83511.68E−02 0.73401.68E−02 0.70402.09E−02 0.72727.97E−02 0.59141.08E−01 0.50937.82E−02
p15 q10 0.82971.67E−02 0.73722.97E−02 0.71052.59E−02 0.69887.80E−02 0.60098.00E−02 0.49108.80E−02
p15 q15 0.82912.34E−02 0.73302.48E−02 0.70561.85E−02 0.71709.31E−02 0.57188.19E−02 0.49987.39E−02
p15 q20 0.83422.16E−02 0.73932.63E−02 0.70202.25E−02 0.72096.37E−02 0.56801.02E−01 0.51761.05E−01
p20 q5 0.83251.55E−02 0.73942.36E−02 0.71202.32E−02 0.72006.44E−02 0.58869.74E−02 0.52976.58E−02
p20 q10 0.82602.00E−02 0.73882.17E−02 0.70382.37E−02 0.74167.90E−02 0.60609.41E−02 0.49378.92E−02
p20 q15 0.83992.02E−02 0.73332.13E−02 0.70602.04E−02 0.69841.04E−01 0.59525.69E−02 0.49601.20E−01
p20 q20 0.83862.00E−02 0.72352.92E−02 0.70061.90E−02 0.74511.02E−01 0.60297.20E−02 0.53371.21E−01

Table 5.8: Adapting p and q for deep networks. Median for ZDT1 and ZDT4.
3.000 and 30.000 evaluations were used, respectively.

ently moves into regions were the approximation is poor. WFG2 seems to be
a problem where there is a high sensitivity to the p and q hyperparameters.

The performance on ZDT1 could be improved upon as seen in Table 5.8. It
seems that five learning generations are enough for a good approximation of
ZDT1 and increasing the surrogate generations is the primary predictor for
top-performing surrogates.

Like in DTLZ1 adjusting p and q seems to increase the performance of the
"w100 d6" network architecture in the ZDT4 problem (see Table 5.8), but is
also not enough to clearly outperform the standard NSGA-II.

Overall it seems the learning generations and surrogate generations can be used
to improve the performance, as expected. The most eye-catching examples are
WFG2, where using the adjusted surrogate allowed the MOEA to find more
parts of the disconnected Pareto-front. In the ZDT1 problem, which was easy
to approximate, the fine-tuning of p and q increases performance predictably.
However, we still do not see significant advantage of the surrogate-assisted
variants on the highly multimodal problems like DTLZ4 or DTLZ1.

80



5.3 Results and Analysis

DTLZ1 v30 DTLZ1 v50 DTLZ1 v70 DTLZ2 v30 DTLZ2 v50 DTLZ2 v70
NSGAII 0.99681.99E−03 0.98336.88E−03 0.96011.90E−02 0.94181.42E−02 0.90031.73E−02 0.86582.42E−02
p5 q5 0.99613.20E−03 0.97741.07E−02 0.95222.18E−02 0.93491.10E−02 0.87731.37E−02 0.84962.15E−02
p5 q10 0.99521.97E−03 0.97811.79E−02 0.94342.18E−02 0.92411.88E−02 0.87242.11E−02 0.82472.03E−02
p5 q15 0.99602.62E−03 0.97601.06E−02 0.93972.38E−02 0.93161.19E−02 0.86091.43E−02 0.80361.79E−02
p5 q20 0.99572.87E−03 0.97801.37E−02 0.94402.30E−02 0.91541.34E−02 0.87601.96E−02 0.80343.22E−02
p10 q5 0.99652.13E−03 0.98231.07E−02 0.95252.71E−02 0.93881.39E−02 0.89391.82E−02 0.84991.84E−02
p10 q10 0.99562.39E−03 0.98108.77E−03 0.95282.15E−02 0.93871.43E−02 0.88841.19E−02 0.85522.43E−02
p10 q15 0.99651.53E−03 0.97988.76E−03 0.95582.00E−02 0.93851.25E−02 0.88622.53E−02 0.84712.53E−02
p10 q20 0.99661.91E−03 0.98045.85E−03 0.95172.42E−02 0.93781.30E−02 0.88272.31E−02 0.84502.25E−02
p15 q5 0.99692.05E−03 0.98187.50E−03 0.95592.24E−02 0.94419.90E−03 0.90011.25E−02 0.85661.72E−02
p15 q10 0.99731.96E−03 0.98061.03E−02 0.95581.71E−02 0.94081.12E−02 0.90192.34E−02 0.85781.93E−02
p15 q15 0.99691.65E−03 0.98225.24E−03 0.95571.64E−02 0.93881.14E−02 0.89791.47E−02 0.85262.01E−02
p15 q20 0.99701.56E−03 0.98198.47E−03 0.95642.36E−02 0.93948.17E−03 0.89611.60E−02 0.85351.44E−02
p20 q5 0.99731.80E−03 0.98437.01E−03 0.96041.30E−02 0.94071.10E−02 0.89839.44E−03 0.86381.59E−02
p20 q10 0.99691.86E−03 0.98166.98E−03 0.95851.82E−02 0.94011.06E−02 0.90021.35E−02 0.85702.57E−02
p20 q15 0.99651.80E−03 0.98148.48E−03 0.96032.61E−02 0.94271.28E−02 0.89861.65E−02 0.85281.91E−02
p20 q20 0.99681.75E−03 0.98229.65E−03 0.94902.27E−02 0.93721.20E−02 0.89891.21E−02 0.85811.99E−02

Table 5.9: Adapting p and q for shallow networks. Median for DTLZ1 and
DTLZ2. 30.000 and 5.000 evaluations were used, respectively.

5.3.3 Influence of Training and Exploitation of the
Surrogate on a Shallow Network

Here we also want to adjust the learning and surrogate generations for a net-
work with only one hidden layer. The reason is to see if the adjustment of
these parameters allows a shallow network to perform similarly to a deep net-
work. The architecture of the network uses one hidden layer with 50 neurons,
see "w50 d1" in the first experiment. This architecture is similar to the one
described in Nain and Deb[49], who used one hidden layer with 40 neurons.

We take a look at the columns for DTLZ1 in Table 5.9. All three cases can
be well enough approximated to keep up with the standard NSGA-II. Like
the deep network, we see that the shallow network needs at least ten learning
generations to achieve a good quality surrogate. However, using the improved
approximation for more than five generations does not raise its performance.
For example, "p10 q5", which uses ten learning generations and five surrogate
generations, is equal or better than "p10 q10" and "p10 q15". Only "p10 q20"
is better, but not significantly so. This pattern repeats for all DTLZ1 cases. If
we compare the median performance of the best surrogate algorithms between
Table 5.6 and Table 5.9, it appears that in higher dimensions deep networks
achieve better performance, we will see if that first impression is also true for
the other problems.

81



5 Evaluation

0 20 40 60 80

0
2
0

4
0

6
0

f1

f
2

Global

NSGA-II

p15q10

(a) DTLZ1 v30

0 50 100 150

0
5
0

1
0
0

1
5
0

f1

f
2

Global

NSGA-II

p20q5

(b) DTLZ1 v50

0 100 200 300

0
1
0
0

2
0
0

3
0
0

f1

f
2

Global

NSGA-II

p20q5

(c) DTLZ2 v70

0 0.2 0.4 0.6 0.8 1 1.2

0
0
.5

1

f1

f
2

Global

NSGA-II

p15q5

(d) DTLZ2 v30

0 0.5 1 1.5

0
0
.5

1
1
.5

2

f1

f
2

Global

NSGA-II

p15q10

(e) DTLZ2 v50

0 1 2 3

0
1

2

f1

f
2

Global

NSGA-II

p20q5

(f) DTLZ2 v70

Figure 5.7: Adapting p and q for shallow networks. Plots for the DTLZ1 and
DTLZ2 problems.

82



5.3 Results and Analysis

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p20q10

(a) WFG1 v30

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

p10q10

(b) WFG1 v50

0 0.5 1 1.5 2 2.5

0
1

2
3

4

f1

f
2

Global

NSGA-II

p10q5

(c) WFG1 v70

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p15q5

(d) WFG2 v30

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p20q20

(e) WFG2 v50

0 0.5 1 1.5 2

0
1

2
3

4

f1

f
2

Global

NSGA-II

p5q5

(f) WFG2 v70

Figure 5.8: Adapting p and q for shallow networks. Plots for the WFG1 and
WFG2 problems.

83



5 Evaluation

0 0.2 0.4 0.6 0.8 1

0
2

4

f1

f
2

Global

NSGA-II

p5q15

(a) ZDT1 v30

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

p5q15

(b) ZDT1 v50

0 0.2 0.4 0.6 0.8 1

0
1

2
3

f1

f
2

Global

NSGA-II

p5q15

(c) ZDT1 v70

0 0.2 0.4 0.6 0.8 1

0
5

1
0

1
5

f1

f
2

Global

NSGA-II

p10q20

(d) ZDT4 v30

0 0.2 0.4 0.6 0.8 1

0
2
0

4
0

f1

f
2

Global

NSGA-II

p15q20

(e) ZDT4 v50

0 0.2 0.4 0.6 0.8 1

0
5
0

1
0
0

f1

f
2

Global

NSGA-II

p15q20

(f) ZDT4 v70

Figure 5.9: Adapting p and q for shallow networks. Plots for the ZDT1 and
ZDT4 problems.

84



5.3 Results and Analysis

WFG1 v30 WFG1 v50 WFG1 v70 WFG2 v30 WFG2 v50 WFG2 v70
NSGAII 0.34402.32E−02 0.18282.88E−02 0.12321.50E−02 0.69917.19E−03 0.68468.18E−03 0.67058.09E−03
p5 q5 0.29953.53E−02 0.14261.62E−02 0.12641.39E−02 0.69647.74E−03 0.68479.77E−03 0.67329.13E−03
p5 q10 0.26663.06E−02 0.13202.41E−02 0.08731.19E−02 0.69646.77E−03 0.68151.01E−02 0.66826.80E−03
p5 q15 0.24912.67E−02 0.12311.97E−02 0.08611.39E−02 0.69687.89E−03 0.68056.42E−03 0.66371.00E−02
p5 q20 0.25013.51E−02 0.12131.91E−02 0.08061.57E−02 0.69267.24E−03 0.68207.62E−03 0.66538.09E−03
p10 q5 0.31843.68E−02 0.17002.70E−02 0.12681.69E−02 0.69817.95E−03 0.68439.35E−03 0.66839.44E−03
p10 q10 0.30363.50E−02 0.17382.19E−02 0.10891.30E−02 0.70069.38E−03 0.68327.63E−03 0.67011.07E−02
p10 q15 0.31385.27E−02 0.15051.70E−02 0.10351.63E−02 0.69716.17E−03 0.68308.88E−03 0.67038.58E−03
p10 q20 0.30413.33E−02 0.15161.90E−02 0.10271.72E−02 0.69611.15E−02 0.68201.11E−02 0.66949.42E−03
p15 q5 0.32253.04E−02 0.16712.61E−02 0.12581.45E−02 0.70111.22E−02 0.68439.95E−03 0.66748.90E−03
p15 q10 0.32404.76E−02 0.15601.86E−02 0.11151.47E−02 0.70074.90E−03 0.68369.70E−03 0.66961.38E−02
p15 q15 0.31496.61E−02 0.15303.20E−02 0.10782.07E−02 0.69917.86E−03 0.68146.11E−03 0.67039.09E−03
p15 q20 0.31823.73E−02 0.16102.30E−02 0.10691.42E−02 0.69894.55E−03 0.68397.17E−03 0.66868.59E−03
p20 q5 0.32903.60E−02 0.17111.88E−02 0.11801.05E−02 0.69946.05E−03 0.68031.19E−02 0.66861.08E−02
p20 q10 0.33563.84E−02 0.16642.58E−02 0.11371.29E−02 0.69798.32E−03 0.68461.13E−02 0.67246.94E−03
p20 q15 0.32694.35E−02 0.15643.45E−02 0.11421.71E−02 0.70066.16E−03 0.68507.31E−03 0.67011.19E−02
p20 q20 0.31503.13E−02 0.15732.20E−02 0.11362.12E−02 0.69911.05E−02 0.68501.22E−02 0.66569.73E−03

Table 5.10: Adapting p and q for shallow networks. Median for WFG1 and
WFG2. With WFG1 30.000 and 20.000 evaluations were used,
respectively.

DTLZ2 (see Table 5.9) is interesting because with the shallow network it can
only achieve a good enough approximation of the fitness landscape if the train-
ing data is collected for at least fifteen generations (in the case of "DTLZ1 v70"
twenty are needed) and perform similarly to the standard NSGA-II. The deep
network (see Table 5.6), however, significantly outperforms NSGA-II with five
or ten learning generations and most of the surrogate variants that not out-
perform NSGA-II have a similar performance to it. It seems like the shallow
network only memorizes the DTLZ2 problem and fails if not enough examples
are provided, while the deep network appears to have built a simple model of
fitness landscape that allow it generalize correctly to unseen regions. The deep
network is 3% better than the shallow one on all three DTLZ2 cases.

In the WFG1 problem (see Table 5.10) there are no big differences between the
shallow and deep network. This similarity is to be expected, WFG1 has flat
landscape, i.e, not a lot of local features, so we do not need an approximator
with great expression power.

Unlike, the deep network the shallow network did not enable the MOEA to
find the fourth part of WFG2 Pareto-optimal front. This finding indicates that
a deep network is needed to adequately approximate the multimodal second
objective of WFG2.

85



5 Evaluation

ZDT1 v30 ZDT1 v50 ZDT1 v70 ZDT4 v30 ZDT4 v50 ZDT4 v70
NSGAII 0.82772.05E−02 0.73522.37E−02 0.70462.09E−02 0.72154.29E−02 0.63218.85E−02 0.54047.04E−02
p5 q5 0.88151.46E−02 0.80512.11E−02 0.73202.53E−02 0.60791.16E−01 0.47491.19E−01 0.38921.24E−01
p5 q10 0.87682.95E−02 0.81412.19E−02 0.81192.40E−02 0.59811.29E−01 0.56151.01E−01 0.45381.01E−01
p5 q15 0.91622.66E−02 0.84722.16E−02 0.82342.49E−02 0.65001.42E−01 0.52911.16E−01 0.47668.09E−02
p5 q20 0.88862.57E−02 0.75503.18E−02 0.79823.21E−02 0.61869.01E−02 0.57539.24E−02 0.47601.11E−01
p10 q5 0.87022.29E−02 0.76332.29E−02 0.74391.20E−02 0.69301.06E−01 0.60985.79E−02 0.50741.10E−01
p10 q10 0.89261.75E−02 0.76004.02E−02 0.76162.64E−02 0.70327.68E−02 0.58718.56E−02 0.50897.49E−02
p10 q15 0.83832.03E−02 0.77553.75E−02 0.69633.37E−02 0.72685.83E−02 0.61349.87E−02 0.51726.67E−02
p10 q20 0.84523.61E−02 0.78513.52E−02 0.73602.79E−02 0.74527.51E−02 0.57531.41E−01 0.51381.08E−01
p15 q5 0.83352.31E−02 0.74072.20E−02 0.70662.01E−02 0.70056.32E−02 0.59308.71E−02 0.52648.78E−02
p15 q10 0.82801.97E−02 0.73413.90E−02 0.69982.66E−02 0.69677.28E−02 0.59909.98E−02 0.50309.48E−02
p15 q15 0.82622.68E−02 0.73602.47E−02 0.70801.92E−02 0.68047.17E−02 0.60788.54E−02 0.51071.29E−01
p15 q20 0.83082.32E−02 0.74131.70E−02 0.70042.12E−02 0.73351.12E−01 0.62089.37E−02 0.54548.41E−02
p20 q5 0.82241.89E−02 0.73561.71E−02 0.70041.54E−02 0.70387.75E−02 0.58409.67E−02 0.54198.55E−02
p20 q10 0.83792.31E−02 0.73332.69E−02 0.69872.13E−02 0.72811.12E−01 0.57871.03E−01 0.50887.39E−02
p20 q15 0.83392.21E−02 0.73591.93E−02 0.70551.77E−02 0.70337.48E−02 0.58629.84E−02 0.51014.95E−02
p20 q20 0.83431.66E−02 0.73842.96E−02 0.69911.55E−02 0.69211.29E−01 0.61131.05E−01 0.49399.25E−02

Table 5.11: Adapting p and q for shallow networks. Median for ZDT1 and
ZDT4. 3.000 and 30.000 evaluations were used, respectively.

In ZDT1 (see Table 5.11) we also observe increased performance, like with the
deeper network. A surrogate algorithm that uses five learning generations but
exploits the surrogate for more generations clearly outperforms the standard
NSGA-II. Five learning generations are also enough for the shallow network
and exploiting that surrogate for the right amount of generations (20 gener-
ations is too much) increases performance the most. When looking at the
higher-dimensional problems, we see that the deep network has a performance
advantage ( 4% for 50 variables and 7% for 70 variables).

In ZDT4 (Table5.11) we see no difference between deep and shallow networks.
Similar to DTLZ1, at least ten learning generations are needed to train ade-
quate surrogates.

Overall, we observe that shallow networks are performing worse than their
deeper counterparts at higher-dimensional problems. They also do not allow
for the MOEA to find the fourth part of the Pareto-optimal front in WFG2
and they are significantly outperformed by a deeper network in DTLZ2.

86



6 Conclusion and Future
Research

In this thesis, we have proposed an extension to a surrogate-assisted MOEA
which allows it to use multiple hidden layers. Then we investigated if more
hidden layers allow for the approximation of more difficult multi-objective
optimization problems (MOPs).

Our research goals were:

• Apply deep neural networks to surrogate-assisted multi-objective evolu-
tionary algorithms.

• Up to now, most papers used the ZDT test suite to benchmark their
surrogate models. Therefore, we want to see how our surrogate model
performs on newer test suites with more complex problems.

• How our proposed method scales up when used on higher dimensional
problems.

• Put the performance of the proposed method in relation to surrogate
models using shallow networks.

Section 4.2 gives an overview of the proposed method and Section 5.1 de-
scribes its implementation in Java using jMetal and DL4J. In chapter 5 we
have tested different combinations of hyperparameters to establish the effects
of deeper networks on the performance of the surrogate method. The first
experiment compared multiple ANN architectures to get an initial idea of how
the number of hidden layers and the number of neurons in them impact the
performance of the surrogate-assisted MOEA, and to find a promising deep
ANN architecture that can be studied further. We decided to examine a net-
work which has six hidden layers with 100 neurons each more thoroughly. The
next two experiments were designed to find the optimal values for the learning
generations and the surrogate generations. The first determines how much

87



6 Conclusion and Future Research

training data is collected and more training data will improve the quality of
the approximation. The second determines for how many generations the sur-
rogate is used, which allows us to gauge its quality. These experiments were
done for a deep and a shallow ANN, and both were compared to establish
in which cases the deeper network has better performance than the shallow
network.

Our main observations were that deeper networks perform better on higher-
dimensional problems, significantly outperform the shallow network on some
problems (DTLZ2 and WFG2). However, they still struggled with highly
multimodal problems like ZDT4 and DTLZ1.

Furthermore, most of the time there is no clear indication what combination
of the tested hyperparameters is a predictor of better performance. Only in
ZDT1, the easiest test problem, can a clear trend be established, and WFG2
is an example of a problem which is extremely sensitive to the hyperparameter
combination. This means that to use our implementation in a real world
scenario a optimization of hyperparameters has to be done first. Another
possibility is to build hyperparameter optimization into the surrogate method.
An example of this is proposed in the paper of Rosalez-Pérez et al.[50], the
authors used a grid-searching approach to find suitable hyperparameters for
each model that is created during the optimization. Using hyperparameter
optimization is always a time-consuming process, and it has to be determined
for each individual problem if the potential gains from using a surrogate are
not outweighed by time spent to find good hyperparameters.

The width of the networks played a more important role then we initially ex-
pected. We hypothesize that the network architectures used were so small
that not enough adaptable (weights and biases) parameters were available to
approximate all features of the more difficult problems. Therefore, we recom-
mend repeating the first experiment with even wider networks, with up to 1000
neurons. However, that many adaptable parameters also increase the need for
training data, which needs to be evaluated using the real objective function,
running counter to the basic idea of surrogate-assisted MOEAs. Needing more
training data is also valid regarding the depth of the network. It may be useful
to also test even deeper networks, but in the first experiment we did also test
an architecture with nine hidden layers which did not perform as well as the
ANN with six hidden layers. Increasing the width and depth will lead to large
models with a high number of adaptable parameters that can easily overfit the

88



data. Models like this need robust regularization and much more training ex-
amples. Given that the more difficult test problems seem to profit from more
training data already, it seems like an idea worth studying.

Our thesis demonstrates the feasibility of deep feedforward neural networks
as a surrogate model, but we have not yet unlocked the full potential of deep
learning with regard to the highly multimodal problems like DTLZ1 or ZDT4.
However, the representation learning aspect is, at first, only theoretical, it
does not automatically manifest itself in practice. Therefore, we recommend
to research what kind of representations are learned in our case. The field of
deep learning also contains other deep neural network types like autoencoders
or recurrent neural networks which could be used to support the feed-forward
networks or integrated directly into the MOEA.

89





Bibliography

[1] John. R. (Carnegie Mellon University) Anderson. Cognitive Psychology
and its Implications. Worth, New York, 8th edition, 2014.

[2] Alfredo Arias-Montaño, Carlos A. Coello Coello, and Efrén Mezura-
Montes. Multi-objective airfoil shape optimization using a multiple-
surrogate approach. In 2012 IEEE Congress on Evolutionary Compu-
tation, CEC 2012, pages 1–8, jun 2012.

[3] Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural Networks: Tricks of the Trade, Lecture
Notes in Computer Science, pages 437–478. Springer, Berlin, Heidelberg,
2012.

[4] Tobias Blickle and Lothar Thiele. A Comparison of Selection Schemes
Used in Evolutionary Algorithms. Evolutionary Computation, 4(4):361–
394, dec 1996.

[5] George E. P. Box and Norman R. Draper. Response Surfaces, Mixtures,
and Ridge Analyses. Wiley-Interscience, Hoboken, N.J, 2 edition, apr
2007.

[6] Adriana Cervantes-Castillo, Efren Mezura-Montes, and Carlos A Coello
Coello. An empirical comparison of two crossover operators in real-coded
genetic algorithms for constrained numerical optimization problems. In
2014 IEEE International Autumn Meeting on Power, Electronics and
Computing, ROPEC 2014, pages 1–5, nov 2014.

[7] Deepti Chafekar, Liang Shi, Khaled Rasheed, and Jiang Xuan. Multiob-
jective GA optimization using reduced models. IEEE Transactions on Sys-
tems, Man and Cybernetics Part C: Applications and Reviews, 35(2):261–
265, may 2005.

[8] Seongim Choi, Juan J Alonso, and Hyoung S Chung. Design of a Low-
Boom Supersonic Business Jet Using Evolutionary Algorithms and an

91



BIBLIOGRAPHY

Adaptive Unstructured Mesh Method. In 45th AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics & Materials Conference, 2004.

[9] Noel Cressie. The origins of kriging. Mathematical Geology, 22(3):239–
252, apr 1990.

[10] Balázs Csanád Csáji. Approximation with Artificial Neural Networks. PhD
thesis, Eötvös Loránd University, 2001.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, dec 1989.

[12] S. D’Angelo and E.A. Minisci. Multi-objective evolutionary optimization
of subsonic airfoils by kriging approximation and evolution control. 2005
IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceed-
ings, 2:1262–1267, sep 2005.

[13] Kalayanmoy Deb. Multi-Objective Optimization Using Evolutionary Al-
gorithms. John Wiley & Sons, jul 2001.

[14] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated Binary Crossover
for Continuous Search Space. Complex Systems, 9(2):115–148, 1995.

[15] Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search
(GeneAS) for engineering design. Computer Science and Informatics,
26(1):30–45, 1996.

[16] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans-
actions on Evolutionary Computation, 6(2):182–197, 2002.

[17] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler.
Scalable multi-objective optimization test problems. In Proceedings of the
2002 Congress on Evolutionary Computation, CEC 2002, volume 1, pages
825–830, 2002.

[18] Alan Díaz-Manríquez, Gregorio Toscano, Jose Hugo Barron-Zambrano,
and Edgar Tello-Leal. A review of surrogate assisted multiobjective evo-
lutionary algorithms, 2016.

[19] Alan Díaz-Manríquez, Gregorio Toscano, and Carlos A. Coello Coello.
Comparison of metamodeling techniques in evolutionary algorithms. Soft
Computing, 21(19):5647–5663, 2017.

92



BIBLIOGRAPHY

[20] Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward
Neural Networks. Conference on Learning Theory, pages 907–940, 2015.

[21] Michael T.M. Emmerich, Kyriakos C Giannakoglou, and Boris Naujoks.
Single- and multiobjective evolutionary optimization assisted by Gaussian
random field metamodels. IEEE Transactions on Evolutionary Computa-
tion, 10(4):421–439, 2006.

[22] Carlos M Fonseca and Peter J Fleming. Genetic Algorithms for Multi-
objective Optimization: FormulationDiscussion and Generalization. In
Proceedings of the 5th International Conference on Genetic Algorithms,
pages 416–423. Morgan Kaufmann Publishers Inc., 1993.

[23] L G Fonseca, H J C Barbosa, and A C C Lemonge. On Similarity-Based
Surrogate Models for Expensive Single- and Multi-objective Evolution-
ary Optimization. In Computational Intelligence in Expensive Optimiza-
tion Problems, Adaptation Learning and Optimization, pages 219–248.
Springer, Berlin, Heidelberg, 2010.

[24] António Gaspar-Cunha and Armando Vieira. A Multi-Objective Evolu-
tionary Algorithm Using Neural Networks to Approximate Fitness Eval-
uations. Int. J. Comput. Syst. Signal, 6(1):18–36, 2005.

[25] Tushar Goel, Rajkumar Vaidyanathan, Raphael T. Haftka, Wei Shyy,
Nestor V. Queipo, and Kevin Tucker. Response surface approximation of
Pareto optimal front in multi-objective optimization. Computer Methods
in Applied Mechanics and Engineering, 196(4-6):879–893, jan 2007.

[26] D. E. Goldberg and K. Deb. A Comparative Analysis of Selection Schemes
Used in Genetic Algorithms. In Foundations of genetic algorithms, Mor-
gan Kaufmann Publishers, volume 1, pages 69–93. Elsevier, jan 1991.

[27] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, Upper Saddle River, N.J, 2 edition edition, jul 1998.

[28] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
Psychology Press, Mahwah, N.J, 1 edition edition, may 2002.

[29] J Horn, N Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algo-
rithm for multiobjective optimization. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence, pages 82–87, 1994.

93



BIBLIOGRAPHY

[30] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4(2):251–257, jan 1991.

[31] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. A
Scalable Multi-objective Test Problem Toolkit. In Evolutionary Multi-
Criterion Optimization, Lecture Notes in Computer Science, pages 280–
295. Springer, Berlin, Heidelberg, mar 2005.

[32] Simon Huband, Phil Hingston, Luigi Barone, and LyndonWhile. A review
of multiobjective test problems and a scalable test problem toolkit, 2006.

[33] Afzal Husain and Kwang Yong Kim. Enhanced multi-objective opti-
mization of a microchannel heat sink through evolutionary algorithm
coupled with multiple surrogate models. Applied Thermal Engineering,
30(13):1683–1691, sep 2010.

[34] Amitay Isaacs, Tapabrata Ray, and Warren Smith. An evolutionary al-
gorithm with spatially distributed surrogates for multiobjective optimiza-
tion. In Proceedings of the 3rd Australian conference on Progress in ar-
tificial life, Lecture Notes in Computer Science, pages 257–268. Springer,
Berlin, Heidelberg, dec 2007.

[35] Joshua Knowles. ParEGO: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10(1):50–66, 2006.

[36] Joshua Knowles and Evan J Hughes. Multiobjective Optimization on a
Budget of 250 Evaluations. In Evolutionary Multi-Criterion Optimization,
pages 176–190. Springer, Berlin, Heidelberg, 2005.

[37] D G Krige. A Statistical Approach to Some Basic Mine Valuation Prob-
lems on the Witwatersrand. Journal of the Chemical, Metallurgical and
Mining Society of South Africa, 52(6):201–215, 1952.

[38] D. G. Krige. A study of gold and uranium distribution patterns in the
Klerksdorp gold field. Geoexploration, 4(1):43–53, 1966.

[39] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim,
and Matthias Steinbrecher. Computational Intelligence: A Methodologi-
cal Introduction. Texts in Computer Science. Springer-Verlag, London, 2
edition, 2016.

94



BIBLIOGRAPHY

[40] Yongsheng Lian and Meng-Sing Liou. Multi-Objective Optimization of
Transonic Compressor Blade Using Evolutionary Algorithm. Journal of
Propulsion and Power, 21(6):979–987, 2005.

[41] Xingtao Liao, Qing Li, Xujing Yang, Weigang Zhang, and Wei Li. Multi-
objective optimization for crash safety design of vehicles using stepwise re-
gression model. Structural and Multidisciplinary Optimization, 35(6):561–
569, jun 2008.

[42] G. P. Liu, X. Han, and C. Jiang. A novel multi-objective optimization
method based on an approximation model management technique. Com-
puter Methods in Applied Mechanics and Engineering, 197(33-40):2719–
2731, jun 2008.

[43] S Z Martinez and C A C Coello. MOEA/D assisted by RBF Networks
for Expensive Multi-Objective Optimization Problems. Gecco’13: Pro-
ceedings of the 2013 Genetic and Evolutionary Computation Conference,
pages 1405–1412, 2013.

[44] Saúl Zapotecas Martínez and Carlos A. Coello Coello. A memetic algo-
rithm with non gradient-based local search assisted by a meta-model. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6238
LNCS of Lecture Notes in Computer Science, pages 576–585. Springer,
Berlin, Heidelberg, sep 2010.

[45] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Biophysics,
5(4):115–133, dec 1943.

[46] Tom M Mitchell. Machine Learning. McGraw-Hill, 1997.

[47] Douglas C Montgomery, Anderson-Cook Christine M., and Raymond H
Myers. Response Surface Methodology: Process and Product Optimization
Using Designed Experiments. Wiley, Hoboken, N.J, 3 edition edition, jan
2009.

[48] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Ben-
gio. On the Number of Linear Regions of Deep Neural Networks. In
Proceedings of the 27th International Conference on Neural Information
Processing Systems, NIPS’14, pages 2924–2932, Cambridge, MA, USA,
2014. MIT Press.

95



BIBLIOGRAPHY

[49] Pawan K S Nain and Kalyanmoy Deb. Computationally effective search
and optimization procedure using coarse to fine approximation. Congress
on Evolutionary Computation, pages 2081–2088, 2003.

[50] Alejandro Rosales-Perez, Carlos A.Coello Coello, Jesus A. Gonzalez, Car-
los A. Reyes-Garcia, and Hugo Jair Escalante. A hybrid surrogate-based
approach for evolutionary multi-objective optimization. In 2013 IEEE
Congress on Evolutionary Computation, CEC 2013, pages 2548–2555.
IEEE, 2013.

[51] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 1958.

[52] D.E. Rumelhardt, G.E. Hinton, and R.J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1, chapter 8, pages
318–362. MIT Press, Cambridge, MA, USA, 1986.

[53] J. Sreekanth and Bithin Datta. Multi-objective management of saltwa-
ter intrusion in coastal aquifers using genetic programming and modular
neural network based surrogate models. Journal of Hydrology, 393(3-
4):245–256, nov 2010.

[54] N Srinivas and Kalyanmoy Deb. Muiltiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation,
2(3):221–248, 1994.

[55] Nielen Stander. An adaptive surrogate-assisted strategy for multi-
objective optimization. In Proceedings of the World Congress on Structural
and Multidisciplinary Optimization, Orlando, Florida, USA, 2013.

[56] A. Todoroki and M. Sekishiro. Modified Efficient Global Optimization
for a Hat-Stiffened Composite Panel with Buckling Constraint. AIAA
Journal, 46(9):2257–2264, 2008.

[57] A Vieira and R S Tome. a Multi-Objective Evolutionary Algorithm Us-
ing Neural Networks To Approximate Fitness. International Journal of
Computers , Systems and Signals, 6(1):18–36, 2005.

[58] Geoffrey S Watson. Linear Least Squares Regression. The Annals of
Mathematical Statistics, 38(6):1679–1699, dec 1967.

96



BIBLIOGRAPHY

[59] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. PhD thesis, Harvard University, jan 1974.

[60] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Mul-
tiobjective Evolutionary Algorithms: Empirical Results. Evolutionary
Computation, 8(2):173–195, jun 2000.

97





Declaration of Independence

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Tobias Peter Magdeburg, March 15, 2018


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Research Goals
	Structure of the Thesis

	Background
	Multi-objective Optimization
	Fitness Landscapes
	Multi-objective Evolutionary Algorithms
	The General Evolutionary Algorithm
	Selected Operators
	NSGA-II

	Surrogate-assisted MOEAs
	Types of Surrogate Models
	Integration of the Surrogate Model

	Artificial Neural Networks
	Neural Networks in Computer Science
	Learning in Neural Networks

	Deep Learning

	Related Work
	Concept
	Basic Coarse to Fine Approximation
	Proposed Method

	Evaluation
	Implementation
	Experiment Settings
	Multi-objective Test Problems
	Structure of the Results

	Results and Analysis
	Influence of the Neural Network Architecture
	Influence of Training and Exploitation of the Surrogate on a Deep Network
	Influence of Training and Exploitation of the Surrogate on a Shallow Network


	Conclusion and Future Research
	Bibliography

