Transfer Strategies from Single- to Multi-objective Grouping
Mechanisms

Frederick Sander
Institute for Intelligent Cooperative
Systems, Otto-von-Guericke
University
Magdeburg, Germany
frederick.sander@posteo.de

ABSTRACT

In large-scale optimisation, most algorithms require a separation
of the variables into multiple smaller groups and aim to optimise
these variable groups independently. In single-objective optimisa-
tion, a variety of methods aim to identify best variable groups, most
recently the Differential Grouping 2. However, it is not trivial to
apply these methods to multiple objectives, as the variable inter-
actions might differ between objective functions. In this work, we
introduce four different transfer strategies that allow to use any
single-objective grouping mechanisms directly on multi-objective
problems. We apply these strategies to a popular single-objective
grouping method (Differential Grouping 2) and compare the per-
formance of the obtained groups inside three recent large-scale
multi-objective algorithms (MOEA/DVA, LMEA, WOF). The results
show that the performance of the original MOEA/DVA and LMEA
can in some cases be improved by our proposed grouping variants
or even random groups. At the same time the computational bud-
get is dramatically reduced. In the WOF algorithm, a significant
improvement in performance compared to random groups or the
standard version of the algorithm can on average not be observed.
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1 INTRODUCTION

In the area of multi-objective optimisation, a growing interest is
drawn to the field of large-scale problems. Large-scale Optimisation
(LSO) refers to the optimisation of problems with a large number of
decision variables, usually between 200 and 5000. Popular concepts
from single-objective optimisation like Cooperative Coevolution
[12] require a separation of the decision parameters into subcompo-
nents, called variable groups. Most algorithms developed for single-
and multi-objective LSO utilise such a form of grouping mechanism.

In single-objective optimisation, a variety of methods exist to
determine optimal groups of variables, some of them based on the
interaction between the decision parameters. This often comes
with a growing computational budget. When dealing with multiple
objective functions, it is desirable to extend the developed methods
to tackle multi-objective large-scale problems. A small number of
papers has paid attention to this area [1, 7, 17, 18, 20], but no study
exists so far that deals with different strategies to apply existing
single-objective grouping mechanisms to multi-objective problems.
Since variable interactions and their influence on the fitness value
depends on each single objective function, the optimal groups for
a multi-objective problem might be conflicting. In addition, when
multiple-objectives are present, groups cannot only be based on
variable interactions, but also on the variables’ contributions to
convergence or diversity of the non-dominated set.

In this article we examine the use of variable grouping mecha-
nisms for multi-objective optimisation. By proposing a set of differ-
ent transfer strategies, we enable existing grouping mechanisms
from the single-objective area to be applied for more than one ob-
jective function simultaneously. The contributions of this paper are
as follows:

e We introduce four transfer strategies that allow for arbi-
trary single-objective grouping mechanism to be applied to
multiple objectives simultaneously.

e We perform a comparison study by applying these strategies
to a recent single-objective grouping mechanism called Dif-
ferential Grouping 2 [11] in three popular multi-objective
large-scale algorithms (MOEA-DVA [7], LMEA [17] and
WOF [20]).

The remainder of this article is structured as follows. In Section 2
we briefly introduce the concept of multi-objective and large-scale
optimisation and the three algorithms used in this work. The next
section gives a short introduction to existing single- and multi-
objective grouping methods 3. The different transfer strategies are
proposed in Section 4. In Section 5 the experimental evaluation is
reported before concluding this article in Section 6.
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2 MULTI-OBJECTIVE AND LARGE-SCALE
OPTIMISATION

Problems in nature and science often contain multiple conflicting
objectives. These problems are called multi-objective problems
(MOPs) and can mathematically be formulated as:

Z: min &) =(AE), L& frn@)T
s.t. X€EQCR™

where m > 2. This kind of MOP maps the decision Space Q =
{X¥ € R"| g(X) < 0} of dimension n to the objective space of dimen-
sion m. For such problems, a single optimal solution can often not
be determined. Modern problem solving methods often concentrate
on finding an approximation of a Pareto-optimal solution set.

Large-scale optimisation (LSO) usually deals with optimising
MOPs that contain a large number (usually > 200) of variables. LSO
has been studied extensively for the single-objective case. One of
the most popular concepts is called Cooperative Coevolution (CC)
and was first introduced by Potter and De Jong in 1994 [12]. CC
aims to optimise several independent populations, each of which
only contains a subset of the n decision variables. Such a subset is
called a variable group in the remainder of this work. New solution
candidates have to be formed by combining the variable values
from different populations. However, genetic operators are only
applied within each groups’ population. The concept of CC has since
been used in a variety of large-scale single-objective algorithms
[2,5,6,15,16]. An overview of existing large-scale global optimisers
for single-objective problems can be found in [8]. In contrast, the
area of multi-objective problems with large numbers of variables
has only grown popularity within the last few years [1, 7, 17, 18, 20].
Most recently, three algorithms (MOEA/DVA, LMEA and WOF) to
solve multi-objective large-scale problems have been proposed.

MOEA/DVA (Multi-objective Evolutionary Algorithm based on
Decision Variable Analysis) was proposed in 2016 [7]. As previous
methods based on CC, it divides the variables into multiple groups
and then optimises these groups independently. In comparison to
previous single-objective optimisation methods and grouping mech-
anisms, the decision variable analysis in MOEA/DVA was designed
to identify not only interaction between variables, but also the con-
tribution of a variable to convergence towards optimal solutions,
diversity of the solution set or both (for details see [7]). Some details
on the used grouping mechanism to detect variable interactions
are explained below in Section 3. The actual optimisation phase of
MOEA/DVA starts after these grouping steps are completed. Each
group of convergence-related variables is optimised independently.
The diversity-related variables are fixed in this step. A utility value
is computed at the end of each second generation to determine
whether or not to continue optimising the independent groups. If
the increase in solution quality falls below a certain threshold, a
so-called uniformity optimisation is carried out, which optimises
the original problem, including the diversity-related variables, as a
whole without using groups. A disadvantage of the MOEA/DVA is
that it requires a large computational budget for the initial grouping
phase. The complexity varies depending on the problem, but rises
roughly quadratically with increasing numbers of function evalu-
ations. In [20], MOEA/DVA needed more than 8,000,000 function
evaluations for dividing a 1000-variable problem.
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Similar to MOEA/DVA, LMEA (Large-scale Many-objective Evo-
lutionary Algorithm) was designed specifically to deal with prob-
lems with many-objectives and large numbers of variables [17]. The
total number of decision variables is first divided into convergence-
and diversity-related variables using a clustering approach. After
that, an interaction analysis is carried out on the convergence-
related variables to further divide them into smaller groups, before
the actual optimisation takes place. A drawback of LMEA is, similar
to MOEA/DVA, that it requires a very large amount of function
evaluations to obtain the variable groups. The optimization ap-
proach used in MOEA/DVA and LMEA differs from CC. In CC
a solution is evaluated by combining the values of the currently
optimised group with the best values for the variables in all other
groups. MOEA/DVA and LMEA do not use completely independent
populations. They utilise one population for the whole algorithm
and keep the values of the variables in the other groups fixed when
changing a solution by genetic operators.

The Weighted Optimization Framework (WOF) was developed
in [19] and [20]. It reduces the dimensionality of the problem by
altering a large part of the decision variables at the same time and
by the same amount. This is done through so-called transformation
functions, which assign one weight-value to each group of decision
variables. These weight-values (the same amount as the number of
variable groups) are then subject to change through a separate opti-
misation step. The original solutions are altered indirectly through
applying the weights in the transformation function to the original
variables. For the optimisation inside the WOF algorithm, SMPSO
(Speed-constrained Multi-objective Particle Swarm Optimisation)
[9] has been shown efficient [20]. As MOEA/DVA and LMEA, WOF
needs to divide the variables into groups. In contrast to these two
however, WOF does not propose a unique grouping mechanism, but
instead uses random or linear groups or just assigns groups based
on absolute variable values [19-21]. This process, as opposed to
MOEA/DVA and LMEA, does not require any function evaluations.

MOEA/DVA, LMEA and WOF have been tested on a variety of
benchmark functions [7, 17, 19-21]. In 2017 a comparison study
in [21] evaluated all three of them on the LSMOP (Large-scale
Many-objective Problems) benchmarks [3] and paid special atten-
tion to the convergence speed, since the former two need large
computational budgets for obtaining groups. While MOEA/DVA
and LMEA had advantages in smaller problem instances with 200
variables, WOF performed best in terms of convergence speed and
final solution quality in the 1000-dimensional experiments.

Another approach to large-scale multi-objective optimisation
was shown in 2016 in [18]. Variable groups were directly used
within a polynomial mutation operator, without any further change
to the surrounding algorithm. The experiments with 1000 variables
applied different grouping methods, most of which did not need
any additional function evaluations. Even with random groups, the
performance of the optimisation was improved significantly by
applying the changed mutation operator.

3 EXISTING GROUPING MECHANISMS

In this section we describe briefly some basics of variable interaction
and give a short overview of existing grouping mechanisms for
single- and multi-objective optimisation.
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3.1 Variable Interaction

For obtaining suitable groups, many methods rely on the interac-
tion between decision variables. The interaction between variables
according to [7] and [17] is described as follows. For a given objec-
tive function f(X), two decision variables x; and x;j are assumed
to interact with each other if there exist values ay, az, by, by so that
both of the following conditions are fulfilled:

f(f)lx,:al,xj:bl < f(£)|xi=a2,Xj=b1 (2a)

f(f)lxi=a1,xj~=b2 > f(£)|xi=az,x1=bz (2b)

where
F@)xy=a,x;=0 = f1 0y Xin1, @ Xit 1, ooy Xjm1, b, X1, o0 X)

This formalizes the following concept: For non-interacting vari-
ables, the order between two values f(X)|x,=q, and f(X)|x,=q, does
not depend on the value of the variable x;. If f(¥)|x,=q, is smaller
than f(X)|x,=q, for a certain value of x; = by (Equation 2a), but
larger for another value of x; = by (Equation 2b), the two variables
are considered interacting.

3.2 Single-Objective Grouping Methods

In single-objective optimisation, a variety of grouping strategies
has been applied so far. Some of them, and especially the most
recent approaches will be introduced in this section. An overview
over existing grouping methods is given in [8].

3.2.1 Linear and Random Grouping. Random grouping is one of
the simplest methods and has often been used in the literature [15],
[8]. Linear grouping was used in [19] and has a similar approach. In
both methods the number of groups must be specified beforehand.
Linear grouping just divides the total number of n variables into y
equal sized groups using the index of the variable as ordering. Ran-
dom grouping also creates y equal sized groups but distributes the
variables into the groups randomly. Since groups can be obtained
without any computational costs (in terms of function evaluations),
these are fast and inexpensive methods. This also has the advan-
tage that the grouping can be repeated multiple times during the
runtime of an algorithm to increase the possibility that interacting
variables end up together in one group. On the downside however,
the effect can be quite limited when the problem at hand contains
a lot of interacting variables.

3.2.2 Differential Grouping. The idea of Differential Grouping
(DG) [10] is to use Equation 2 for the detection of interacting vari-
ables. For each combination of two variables x; and xj, DG aims
to answer the following question: “When changing the value of
variable x;, does the amount of change in the fitness fj remains the
same, no matter which values the other variable x; takes?”. This
is checked by comparing absolute fitness differences in response
to changes in x; and x;. DG needs a predefined threshold value
€ to determine how much variation in fitness is necessary to re-
gard two variables as interacting. Although it has been shown to
work well in the single-objective experiments in [10], DG needs
a large computational budget for finding the interactions, which
rises quadratically with the number of decision variables.
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3.2.3 Differential Grouping 2. More recently in 2017 an extended
version of DG was introduced [11]. The Differential Grouping 2
(DG2) improves the quality of found groups, i.e. it is able to find
more interactions, and at the same time reduces the required com-
putational budged. The required amount of function evaluations is
reduced to n(n + 1)/2. For a 1000-variable problem it only requires
around 500,000 evaluations. Although this is a smaller amount than
DG, it might still be a very large or intractable amount for real appli-
cations. The reduced number of function evaluations was achieved
through storing and reusing the results of function evaluations
within the grouping process.

3.3 Multi-Objective Grouping Methods

In the area of multi-objective large-scale optimisation, the before-
mentioned algorithms MOEA/DVA and LMEA contain grouping
methods which are designed to take the interactions of all objective
functions into account simultaneously. Each of them utilize two
different grouping types. As mentioned, they first divide the vari-
ables based on their contribution to convergence towards optimal
solutions and influence on diversity of the solution set. After that
groups based on the interaction between variables are determined.
As the focus of this work is to make single-objective methods ap-
plicable to multi-objective problems, in the following we focus on
the latter of these two grouping steps.

3.3.1 MOEA/DVA Interaction Grouping. The grouping mecha-
nism of MOEA/DVA is based on the definition mentioned in Equa-
tion 2. After creating an initial population, for each pair of variables
x; and x;j (i,j € 1,..,n), an individual is randomly selected from
the population. Three other solutions are now created by random
changes of the values of these variables. With these four solutions
the interaction is checked according to Equation 2 separately for
each of the m objective functions. To increase the chances of find-
ing interactions, this is repeated multiple times (according to a
predefined parameter) for each pair. Two variables are regarded as
interacting if they are both convergence-related and an interaction
exists in any of the m objectives. As an additional measure, the cre-
ated solutions which contain altered convergence-related variables
are merged with the current population, to obtain a better initial
population once the optimisation phase begins.

3.3.2 LMEA Interaction Grouping. The interaction analysis in
LMEA works in a similar way than the one of MOEA/DVA in the
way of how an interaction between two variables is detected. As
above, an interaction is assumed if it exists in any of the objective
functions. The difference lies in the assignment of variables into
groups. For each variable x;, the algorithm iterates over all existing
groups and checks the interactions with all variables x; in this
group. x; is added to the group, if it interacts with at least one
variable x; of this group. In addition, the analysis of LMEA performs
the interaction analysis only on the convergence-related variables,
which might lead to lower computational costs.

4 TRANSFER STRATEGIES

In this section we introduce the transfer strategies that enable single-
objective methods to be applied to multi-objective problems. In all of
the above methods to detect variable interaction, this is done based
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on the fitness values of the objective functions. As a result, these
methods can only make assumptions about the interaction on one
specific function. If multiple objective functions exist, these results
can lead to conflicting results, as two variables can be interacting
in one objective, but not in the other.

One way to deal with this problem might be to only take into ac-
count the groups obtained from one single objective. This was done
for example in [20]. This strategy however is not very promising,
since it neglects much valuable information about the interaction in
the other functions. In contrast, the methods used by MOEA/DVA
and LMEA perform interaction checks on each function, and group
variables together if an interaction exists in any of the objectives.

Except these, other ways of combining the groups of multiple
objective functions are possible. MOEA/DVA and LMEA each pro-
posed a method of combining the interaction information of dif-
ferent objectives. However, these have usually high computational
costs, and for finding interactions, efficient methods like DG2 have
been developed in the single-objective area. The goal of this work
is therefore to examine different Transfer Strategies (TS) to make
use of multiple objectives and at the same time apply arbitrary
single-objective grouping methods.

These TS can be divided into two consecutive steps. The first
one is the strategy for combining the interaction information of
different objective functions, called the Transfer Strategy for Objec-
tives (TSO). The second part is the Transfer Strategy for Variables
(TSV), which determines the composition of groups from the com-
bined information of the TSO. In the following we describe possible
variants for each of these steps and then define the overall TS as
combinations of these variants.

4.1 Transfer Strategies for Objectives

As described above, single-objective grouping mechanisms can only
make assumptions about the interaction in one objective function.
If applied to multiple objectives, the results can differ. Variables
which interact in one function might not do so in another one.
As an example we show the interaction graphs of a hypothetical
3-objective problem in Figure 1. The four decison variables x1 to
x4 are shown as vertices in a graph, where edges indicate that an
interaction between the variables exists in the respective function.
In this example it can be seen that an interaction between xz and
X4 exists in objective function f, (Figure 1b) but not in f3 (Figure
1c). For combining this conflicting information, we propose two
different strategies to determine when two variables are regarded
as interacting for the overall multi-objective problem. The first one,
called TSOspngie, regards two variables x; and x; as interacting, if
an interaction exists in any of the objective functions. That means
that a single interaction in one function is sufficient for this strategy
to assume interaction for the whole MOP. In contrast, the second
approach, called TSO,;;, only assumes interaction if this link is
present in all objective functions. With these strategies, the inter-
action graphs of the problem can be combined into one common
graph that contains the interaction information according to the
respective strategy. For the example seen in Figure 1, the resulting
combined graphs are shown in Figure 2.

Using TSOg;pngie leads to the graph depicted in Figure 2a. An
interaction in a single objective function is sufficient for the edge to
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Figure 1: Interaction graphs of three objective functions.
Edges show interaction between two decision variables

(a) Tsosingle (b) TSOan

Figure 2: Combined interaction graphs of the three func-
tions from Figure 1 for two variants of TSO

be added to the combined graph. The interactions x; — x3, x2 — x3
and x3 — x4 are present in the first objective function fi. x2 — x4 is
present in f>. The two edges from f3 are already in the combined
graph. TSO,;; leads to the graph depicted in Figure 2b. An edge only
exists in the combined graph if it is present in all three objective
functions. In the example only the connections x; — x3 and x3 — x4
are present in all three functions.

4.2 Transfer Strategies for Variables

The second step of a complete TS is the Transfer Strategy for Vari-
ables. A TSV defines which variables form a common group to be
used in the optimisation. The information obtained from the TSO
is used as input, i.e. the TSV works on the combined interaction
graph. Similar to the previous step, we call the different approaches
TSVsingle and TSVyy;. The strategy TSViipgie is the recently used
standard method in most of the single and multi-objective methods
[2, 7, 8, 17]. A variable x; is added to a group if the combined in-
teraction graph contains an edge between x; and any variable x;
in the group. This means for x; to be included in a group, a single
connection to one of the groups’ members is sufficient. In other
words each group of variables consists of a maximally connected
subgraph of the combined interaction graph. If we look back to
Figure 2a, all four variables would end up in one group, since they
are all connected by at least one edge.

In contrast, TSV,;; only considers maximal complete subgraphs
(MCS). MCS are fully connected subgraphs to which no other vertex
can be added so that the new subgraph is still complete. This results
in groups with pairwise interactions between all of its members.
This approach has one drawback, as considering only MCS leads
to a problem with shared variables, as was also described in [11].
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Shared variables are variables that are members of multiple different
MCS and the decision which of these MCS is regarded as a group is
not well-defined. In Figure 2a, the variable x3 is a shared variable,
since it appears in the MCS containing x3, x3 and x4, as well as a
second MCS with x; and x3. Thus, the resulting variable groups can
be {x1, x3}{x2, x4} or {x1 }{x2, x3, x4 }. In the implementation of the
TSV in this work, the variables are distributed to groups in natural
order, and therefore each variable is assigned to the MCS which was
first found by the algorithm. This solution is deterministic, but it
only finds one set of groups when there are maybe more. As a result,
the situation in Figure 2a results in the first of the two alternatives:
{x1, x3}{x2, x4}. Other implementations are also possible but are
not studied in this work.

4.3 Combinations of TSO and TSV

As mentioned above, a TS requires two components, a TSO and a
TSV. The combination of the shown alternatives for each step leads
to four different Transfer Strategies as follows:

e OS+VS = {TSOsingle’ TSVsingle}
e OS+VA = {Tsosingle’TSVall }
e OA+VS = {TSO,, TSVsingle}
e OA+VA ={TSO,;;, TSV, }

As shown above, the three different interaction graphs for the
three objective functions (Figure 1) result in two combined graphs
by using the respective TSO (Figures 2a and 2b). In the next step, the
TSV obtain variable groups out of these. As a result, the following
groups will be created by the four strategies:

® OS+VS: {x1,x2,%3,%4} ® OA+VS: {x1,x3, x4 }{x2}
® OS+VA: {x1,x3}{x2,x4} ® OA+VA: {x1,x3}{x2}{x4}

While the strategies containing TSOg;p 4 have been explained
above, the strategies OA+VS and OA+VA make use of the interaction
graph shown in Figure 2b. In the first case, using TSV; 41, a single
connection to a component is sufficient and the resulting groups are
{x1,x3,x4} and {x2}. If TSV,; is used, the subgraph containing x;,
x3 and x4 is not complete, and therefore only x; and x3 are grouped
together.

4.4 Relationship to Existing Methods

We now briefly compare the proposed TS to the existing approaches
used in MOEA/DVA and LMEA. Both of these methods do multiple
repeated checks of Equation 2 with different values for the variables
to determine interaction. When combining the information of the
objective functions, variables were regarded as interacting if a sin-
gle interaction in any of the functions was found. This corresponds
to TSOspg1e in our approach. In MOEA/DVA, after building this
combined interaction graph, maximally connected subgraphs are
identified as the variable groups, which is equivalent to TSVs;p -
The same is true for LMEA. As described above, each variable is
checked against already formed groups and added if only one inter-
action within the group is found. As a result, both MOEA/DVA and
LMEA use equivalent approaches to the transfer strategy OS+VS.

5 EVALUATION AND ANALYSIS

In this section we evaluate the proposed TS experimentally. For
this purpose we use three most recent large-scale algorithms for
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multi-objectve optimisation: MOEA/DVA, LMEA and WOF. A direct
comparion of the performance of these three and their advantages
and disadvantages has been studied in the literature (e.g. [21]). The
aim of our experiments is therefore not mainly to compare the al-
gorithms with each other, but to examine the influence of different
variable groups on their respective performance. A central aspect of
this is not only the final solution quality, but also to set this perfor-
mance into perspective with the necessary computational budget.
For the experiments, we replace the original grouping mechanism
inside the three algorithms with DG2, using the four different TS
to apply it to the multi-objective case. In total, each of the three
algorithms is used in six different configurations. First the orig-
inal algorithms are used. Secondly, we apply the proposed four
TS to DG2 and replace the original grouping mechanisms in the
algorithms with it, resulting in four more versions. Lastly, for com-
parison we apply a random grouping to all algorithms, which splits
the variables into evenly-sized groups randomly.

As described above, MOEA/DVA and LMEA first perform a
grouping mechanism to decide whether a decision variable con-
tributes to diversity or convergence. Secondly, the variables related
to convergence towards the optimal front are then grouped by
their interactions. Since we try to make single-objective methods
like DG2 applicable, which focus on the interaction of variables,
in our modified versions of the three algorithms this second step
is replaced by either DG2 with one of four TS, or by a random
grouping. WOF in its original form does not perform a separation
in diversity- and convergence-related variables. Therefore its usual
grouping phase is replaced entirely. As a result, DG2 is always
used on the entirety of variables, while LMEA and MOEA/DVA
only use DG2 for a specific set of variables, i.e. the ones they re-
gard as convergence-related. Note that in the case of MOEA/DVA,
the original version updates the population during the interaction
grouping. To ensure fairness we make sure every algorithm uses
the same amount of evaluations for the optimisation process. There-
fore, the initial population of MOEA/DVA (that was created before
the interaction grouping) is used to start the optimisation process
with the found groups. In the following, this modified version of
MOEA/DVA is used. A comparison with the original version (using
multiple millions of evaluations to update the population) is given
as reference in Table 12 of the supplement material.

To test the performance we use 12 common benchmarks: six
problems from the popular WFG (Walking Fish Group) family
[4] (WFG2-5,7,8) and six problems from the LSMOP family [3]
(LSMOP1-6). The WFG problems were chosen by an analysis done
in [7], were WFG2 and 3 represent problems where the number of
interacting variables is sparse, WFG4 and 5 have no interactions and
WEFG7 and 8 have a high number of interacting variables. For imple-
mentation, the PlatEMO framework (Evolutionary Multi-objective
Optimization Platform) [13] version 1.5 was used.

For each experiment we perform 31 independent runs and report
the median and interquartile range (IQR) values of the relative hy-
pervolume (HV) indicator [14]. The relative HV is the hypervolume
obtained by a solution set in relation to the hypervolume obtained
by a sample of the Pareto-front of the problem. This sample con-
sists of 10,000 solutions sampled on the true Pareto-front using the
PlatEMO framework. The used reference point for the indicator is
obtained by using the nadir point of our Pareto-front sample and
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Table 1: Relative HV of the original LMEA and its variants using DG2 and random groups

LMEA DG2 (OA+VA) DG2 (OA+VS) DG2 (OS+VA) DG2 (0S+VS) Random
LSMOP1 0.49267 (1.64E-2) 0.48892 (1.44E-2) 0.48786 (1.43E-2) 0.49299 (1.20E-2) 0.49038 (1.67E-2) — (3.91E-2) *
LSMOP2 0.97873 (4.74E-3) 0.97729 (3.56E-3) * 0.97760 (4.28E-3) * 0.98088 (4.98E-3) 0.98005 (4.85E-3) 0.97801 (6.60E-3) *
LSMOP3 | —(-) — (=) = (=) —(=) —(=) —(=)
LSMOP4 0.97458 (4.52E-3) 0.97670 (5.78E-3) 0.97612 (4.04E-3) 0.96840 (3.65E-3) * 0.96862 (3.76E-3) * 0.96769 (5.83E-3) *
LSMOP5 | —(-) — (=) = (=) —(=) —(=) —(=)
LSMOP6 | —(-) — (=) = (=) —(=) —(=) —(=)
WFG2 0.59776 (5.72E-2) * 0.62466 (3.24E-2) 0.62928 (5.91E-2) 0.60756 (5.57E-2) 0.61129 (4.07E-2) 0.58214 (6.71E-2) *
WFG3 0.60883 (5.58E-3) 0.61090 (6.46E-3) 0.61211 (5.01E-3) 0.61101 (4.12E-3) 0.61087 (3.50E-3) 0.58549 (5.66E-3) *
WFG4 0.56200 (6.14E-3) * 0.56262 (7.35E-3) 0.56155 (5.44E-3) * 0.56134 (4.54E-3) * 0.56253 (4.65E-3) 0.56532 (6.55E-3)
WFG5 0.55891 (7.57E-3) 0.55664 (5.03E-3) * | 0.55787 (6.95E-3) * | 0.55962 (8.75E-3) 0.55955 (6.10E-3) 0.56156 (4.47E-3)
WEFG7 0.52548 (347E-2) * | 0.61516 (3.29E-2) 0.61679 (2.29E-2) 0.61631 (2.48E-2) 0.61282 (1.74E-2) 0.53816 (2.13E-2) *
WEFG8 0.53369 (6.77E-3) * | 0.54550 (7.85E-3) 0.54777 (7.07E-3) 0.54532 (4.76E-3) 0.54435 (5.20E-3) 0.54054 (4.43E-3) *

Table 2: Relative HV of the original MOEA/DVA and its variants using DG2 and random groups

MOEA/DVA DG2 (OA+VA) DG2 (OA+VS) DG2 (OS+VA) DG2 (OS+VS) Random
LSMOP1 —(—)* —(—)* —(—)"* —(—)* —(—)* 0.39075 (2.52E-1)
LSMOP2 | 0.98886 (2.92E-4) 0.98887 (2.93E-4) 0.98887 (4.82E-4) 0.98879 (3.57E-4) 0.98876 (4.41E-4) 0.98875 (2.59E-4)
LSMOP3 — (=) —(—)" —(—)" —(=)"* —(—)"* 0.56864 (3.51E-3)
LSMOP4 | 0.97313 (1.02E-3) 0.80549 (1.08E-3) * | 0.80478 (1.65E-3) * | 0.97246 (1.28E-3) 0.97277 (1.04E-3) 0.97298 (1.35E-3)
LSMOP5 — (=) —(—)" —(—)" —(=)"* —(—)"* 0.08203 (7.51E-2)
LSMOP6 —(=)" 0.26054 (3.88E-1) 0.08484 (3.59E-1) — (141E-1) * —(=)" — (5.78E-1)
WFG2 0.74352 (6.18E-3) * 0.73636 (1.57E-3) * 0.73624 (1.32E-3) * 0.73599 (1.76E-3) * 0.73744 (5.26E-3) * 0.75616 (1.00E-2)
WFG3 0.57625 (3.33E-3) * 0.57676 (3.11E- 3) 0.57881 (3.67E-3) * 0.57691 (3.39E-3) * 0.57657 (6.91E-3) * 0.66822 (8.09E-3)
WFG4 0.54052 (3.10E-3) * 0.54202 (4.31E-3) 0.54087 (6.18E-3) * 0.54097 (4.83E-3) * 0.54168 (6.32E-3) * 0.76804 (3.10E-2)
WFG5 0.54942 (6.15E-3) * 0.55239 (1.01E-2) * 0.54950 (5.70E-3) * 0.55056 (7.41E-3) * 0.55009 (7.91E-3) * 0.84546 (8.37E-3)
WFG7 0.73057 (1.49E-2) 0.72937 (9.37E-3) 0.73318 (8.84E-3) 0.73049 (5.42E-3) 0.72834 (8.41E-3) 0.73387 (1.23E-2)
WFG8 0.49228 (4.85E-3) * 0.50822 (3.48E-3) * 0.50771 (6.19E-3) * 0.50813 (6.89E-3) * 0.50790 (4.81E-3) * 0.58759 (3.73E-2)

Table 3: Relative HV of the original WOF-SMPSO and its variants using DG2 and random groups

WOEF-SMPSO

DG2 (OA+VA)

DG2 (OA+VS)

DG2 (OS+VA) DG2 (OS+VS) Random

LSMOP1
LSMOP2
LSMOP3
LSMOP4
LSMOP5
LSMOP6
WFG2
WFG3
WFG4
WFG5
WFG7
‘WFG8

0.96588 (1.40E-3)
0.99620 (2.85E-4)
0.48418 (4.14E-3)
0.99052 (2.98E-4) *
0.92180 (4.48E-3)
0.95063 (2.14E-3)
0.99231 (1.37E-3)
0.85517 (6.43E-4)
0.98122 (7.39E-3)
0.98687 (1.91E-4)
0.98846 (1.38E-3)
0.94936 (1.28E-2)

0.08886 (4.12E-2) *
0.98835 (2.88E-4) *
— ()"

0.97600 (7.95E-4) *
— (=)

0.61632 (1.45E-1) *
0.68632 (1.73E-2) *
0.69960 (6.62E-3) *
0.85246 (3.61E-3) *
0.82627 (4.86E-3) *
0.71462 (1.01E-2) *
0.50485 (1.50E-2) *

0.08111 (3.61E-2) * 0.07542 (3.69E-2) * 0.82963 (4.01E-3) * 0.96613 (1.66E-3)
0.98839 (2.64E-4) * 0.99498 (4.17E-4) * 0.99535 (1.72E-4) * 0.99615 (2.89E-4)

—(=)"

(

(
0.97608 (7.23E-4) * 0.99279 (4.01E-4) 0.98910 (1.14E-4) * 0.99049 (2.75E-4) *
0.29676 (3.09E-2) (
0.91998 (2.70E-3) * | 0.59713 (4.99E-3) * | 0.93066 (4.03E-3) * | 0.95117 (1.87E-3)
0.75684 (7.89E-2) * 0.93138 (4.79E-3) * 0.92991 (4.78E-3) * 0.99163 (2.14E-3)
0.69448 (9.93E-3) * 0.69465 (1.14E-2) * 0.69902 (1.29E-2) * 0.85512 (8.74E-4)
0.85394 (5.17E-3) * 0.85215 (3.89E-3) * 0.85450 (5.20E-3) * 0.98141 (7.54E-3)
0.82676 (5.96E-3) * 0.82439 (3.76E-3) * 0.82635 (4.32E-3) * 0.98685 (2.72E-4)
0.71758 (1.62E-2) * 0.71943 (1.01E-2) * 0.71730 (1.77E-2) * 0.98802 (1.15E-3)
0.51209 (1.86E-2) * 0.50466 (1.58E-2) * 0.50826 (1.51E-2) * 0.94916 (3.84E-2)

—(=)* 0.01911 (2.07E-3) * 0.48429 (4.85E-3)

=) 0.62224 (—)* 0.92384 (3.63E-3)

Table 4: Computational budget (function evaluations) to obtain variable groups by the different methods

LMEA IMEA + DG2 | MOEA/DVA | MOEA/DVA + DG2 | WOF-SMPSO | WOF-SMPSO + DG2
LSMOPI | 9,089,228 (—) 513,564 (—) 9,119,490 (—) | 525,736 (—) 0(—) 506,522 (—)
LSMOP2 | 9,089,228 (—) 513,564 (—) 9,119,490 (—) | 62,416 (—) 0(-) 506,522 (—)
LSMOP3 | 9,086,855 (231E2) | 513,564 (—) 9,119,490 (—) | 525,736 (—) 0(-) 506,522 (—)
LSMOP4 | 9,088,364 (3.00E2) | 513,564 (—) 9,119,490 (—) | 525,736 (—) 0(-) 506,522 (—)
LSMOP5 | 4,602,638 (—) 264,019 (—) 9,119,490 (—) | 525,736 (—) 0(—) 506,522 (—)
LSMOP6 | 9,088,280 (1.17E2) | 513,564 (—) 9,119,490 (—) | 62,416 (—) 0(—) 506,522 (—)
WFG2 | 5,059,705 (2.19E2) | 289,634 (—) 9,029,120 (—) | 397,267 (1.03E4) 0(-) 501,502 (—)
WFG3 | 5,059,690 (8.40E1) | 289,634 (—) 9,029,120 (—) | 301,746 (—) 0(-) 501,502 (—)
WFG4 | 5,063,750 (—) 289,626 (—) 9,011,100 (—) | 301,726 (—) 0(-) 500,501 (—)
WFG5 | 5,063,750 (—) 289,626 (—) 9,011,100 (—) | 301,726 (—) 0(-) 500,501 (—)
WFG7 272,039 (4.36E5) | 102,831 (7.87E4) | 9,011,100 (—) | 20,101 (—) 0(-) 500,501 (—)
WFG8 240,167 (3.2884) | 289,626 (—) 9,011,100 (—) | 301,726 (—) 0(-) 500,501 (—)

multiply it by 2.0 in each dimension. This is done to make sure
most of the obtained solutions can contribute to the HV, even when
the sets are not close to the optimal front. Statistical significance is
tested using a Mann-Whitney-U Test and significance is assumed

for a value of p < 0.01.

5.1 Parameter Settings

All experiments use two objective-instances of the mentioned prob-
lems with n = 1000 decision variables for WFG4,5,7 and 8, 1001
variables for WFG2 and 3, and 1006 variables for LSMOP1-6. In
the WFG problems, the number of position-related variables have

been set to n/4 for the WFG problems and the parameter ny in the
LSMOP benchmarks was set to 5.

All algorithms used a population size of 100. For all parameters,
the standard values from the related works are used where possible.
For MOEA/DVA, we set NIA = 6 and NCA = 20. In LMEA we set
nSel = 2, nPer = 4, and nCor = 6. WOF uses a linear grouping
mechanism with 4 equal-sized groups, and SMPSO is used as the
optimiser inside the framework. Solutions for creating the g trans-
formed problems are chosen by reference directions as reported
in [21], q is set to m + 1, and the parameter-free transformation
function and the restart mechanism from [21] are used. t1, 2 and §
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are set to 1000, 500 and 0.5 respectively. The population sizes for the
transformed problems of WOF are set to 10. The distribution index
used in all operators is set to 20.0 and the probabilities for Crossover
and Mutation are set to 1.0 and 1/n. For all other parameters, the
standard values of the PlatEMO framework are used.

To test the influence of the groups, our experiments differ from
other studies in the way that all methods are equipped with the
same amount of function evaluations for the optimisation. That is,
all algorithms use 500,000 function evaluations in their optimisa-
tion phase independently of their computational budget spent on
obtaining the variable groups beforehand. As part of the analysis,
the actual used evaluations for these steps are shown in Table 4.

5.2 Results

In this subsection, we analyse the outcome of the optimisation pro-
cess and compare the original algorithms with the DG2 and random
grouping versions. In addition, we pay attention to the necessary
computational budgets spent for obtaining the variable groups, and
set these into perspective with the corresponding performance.

In Table 1 we have listed the results of the LMEA algorithm and
its variants. The first column gives the median and IQR values of
the relative HV for the original LMEA algorithm. In the following
columns, the grouping mechanism has been replaced by different
DG2 strategies or a random grouping as described above. Tables
2 and 3 follow the same structure for the algorithms MOEA/DVA
and WOF respectively. Table 4 lists the amount of evaluations each
method spent to obtain the groups. Best results are shown in bold,
while worst performance is given in italic font. An asterisk denotes
statistical significance compared to the respective best performance
in each row.

coo MOEA/DVA . True Front
asss MOEA/DVA + Random Groups

f
N

00 05 10 15 20 25
fi

Figure 3: Final solutions sets for MOEA/DVA and
MOEA/DVA with random grouping on the WFG5 prob-
lem. Shown runs obtained the median rel. HV values.

Regarding LMEA, it can be seen that the original version does
not yield a best performance in any of the 12 problems. However,
only in WFG2, 4 7 and 8 these differences are actually statistically
significant. None of the LMEA variants was able to achieve a HV
value for the LSMOP 3, 5 and 6 benchmarks, where the budget
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of 500,000 evaluations seemed not sufficient to achieve a solution
reasonably close to the Pareto-front sample. When we take a closer
look at LMSOP2, the TS including OS perform better than their
OA counterparts. In this case, the TSV strategies do not influence
the result much, the performance only depends on the selected
TSO. For LSMOP4 the same behaviour can be noticed, only now the
OA methods perform significantly better. However, the differences
between the original LMEA and the respective best DG2 or ran-
dom version are not significant in LSMOP1, 2, 4 and WFG3 and 5.
Therefore, their final outcomes can be assumed as equal, although
these numbers have to be seen in relation to the computational
budget spent to achieve them. All variants used the same amount of
evaluations in the optimisation step, but spent a different amount
for obtaining their groups first (Table 4). The original LMEA spent
more than 17 times more evaluations than the DG2 variants using
the TS, and achieved the same or significantly worse performance
in all 9 problems where HV values were obtained. In WFG4 and 5,
the best performance was achieved using random groups, which
needed no evaluations at all to be computed. In WFG2, 7 and 8 the
best results were obtained by DG2 with the OA+VS strategy with
statistical significance to the original LMEA and the version with
random groups. On the other hand, random groups performed best
on WFG4 and 5. This fits to the observation in [7] that there are no
variable interactions in WFG4 and 5, therefore random groups can
result in good performance, while WFG2, 7 and 8 show interactions
and a more sophisticated grouping mechanism is necessary. We
can conclude from these numbers that the original LMEA can be
largely improved by the proposed transfer strategies and DG2, not
necessarily in solution quality for all problems, but by a large factor
in the computational budget needed to achieve these results.

Looking at MOEA/DVA, the most striking observation is the
good performance of random groups compared to MOEA/DVA and
its DG2 variants. In 8 out of 12 problems, MOEA/DVA with random
groups performs significantly better than the original algorithm
or any of the DG2 versions. Comparing the corresponding sizes
and numbers of groups obtained (Tables 6 to 8 in the supplements),
we see that the original MOEA/DVA creates multiple hundreds
of groups for all these problems, mostly containing only between
1 and 3 variables each. The random grouping in contrast creates
four groups of relatively large size and this could be one of the
leading factors for its good performance. In most problems the large
number of small groups in MOEA/DVA and its DG2 variants leads
to a search behaviour of the algorithm where the above-mentioned
uniformity optimisation is not carried out before the end of the
optimisation process. This results in relatively low diversity of the
final solution sets compared to the random grouping version. As
an example, we show the final solution sets of the MOEA/DVA and
the MOEA/DVA with random groups in Figure 3.

In the results of MOEA/DVA not much differences between the
four TS can be noticed. In LSMOP4 the same scheme occurs that
was observed in LMEA: the TSO is crucial for the result. However,
in contrast to the results of LMEA, here the OS methods perform
significantly better than their OA counterparts. This is also one of
the rare cases, where the difference in HV between TS is rather
high. A reason for this could be that the TS containing OA lead to
potentially smaller groups. On the other hand, for LSMOP6, the OA
methods are the only TS that create positive HV values, although
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these results seem not to be stable over multiple runs as indicated
by the very large IQR values. When using MOEA/DVA on the WFG
problems, no notable differences between the TS can be noticed.

In the results of WOF (Table 3), with the exception of LSMOP4,
the best performance is always achieved by either the original
WOF (using linear groups) or the version with random groups,
both of which do not spend any budget on obtaining groups. Both
of these versions use exactly four evenly sized groups, while the
DG2 with the four TS mostly produces a much larger amount of
groups (150 - 1000) or puts all variables in one large group (see
also Table 10 in the supplement material). This good performance
of random or linear groups can be observed in problems without
interactions (e.g. LSMOP1 and 5, and WFG4 and 5 according to
[3, 7]), but also in the problems that contain interacting variables,
like for instance LSMOP6. When comparing the different TS with
each other, interesting results can also be observed for LSMOP5 and
6. LSMOPS5 does not contain any interacting variables according to
[3], while LSMOP6 does. In both of these problems, the TSV seems
to be the major influence. The strategies containing VS obtain by
far better solutions compared to the VA strategies. Although in
MOEA/DVA and LMEA, in some cases the choice of the TSO was
more important than the TSV, this case shows that the choice of TSV
can also affect the performance by a large factor. Overall, the results
indicate that a smaller number of larger groups leads to a better
performance of the WOF algorithm, regardless of the interaction of
the variables. This also matches observations made by the original
authors of the algorithm in [20].

In general, the differences in HV between the four proposed TS
are rather small in most problems, although sometimes statistically
significant. Overall, none of the four TS can be regarded as superior
for all problems and the utility of the TS depends on each prob-
lems properties. It can be observed however, that exchanging the
grouping mechanisms in MOEA/DVA and LMEA with any of the
proposed TS with DG2 does in most cases not change the perfor-
mance. However, the overall computational budget for obtaining
the groups is reduced by a large factor.

6 CONCLUSION

In conclusion, in most problem instances the importance of correct
variable groups is relatively low, especially when taking the neces-
sary computational budget into account. Depending on the used
algorithm, acceptable results can often be obtained using random
groups. When equipped with the same computational budget, the
proposed TS using DG2 were able to improve the performance of
the MOEA/DVA and LMEA search mechanisms in some cases. In
addition, the necessary budget for running DG2 is by far lower
than the MOEA/DVA and LMEA grouping mechanisms. In general,
the best performance among all methods is in most cases obtained
by WOF using linear or random groups. Future research might
include experiments with varying numbers of variables and objec-
tive functions as well as fine tuning of the algorithms’ parameters
for different grouping methods. More benchmark problems might
be taken into account. In particular, the importance of correctly
grouped variables needs further consideration, as our results indi-
cate that a large number of small non-interacting groups does not

Frederick Sander, Heiner Zille, and Sanaz Mostaghim

necessarily lead to better performance of the current state-of-the-
art algorithms, and that very good results can often be achieved
using random groups.
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