Fuzzy Systems

Prof. Dr. Rudolf Kruse, Alexander Dockhorn

Assignment Sheet 6

Assignment 20 Fuzzy Relations

Let the fuzzy relation R be defined on the sets $X_{1}=\{a, b, c\}, X_{2}=\{s, t\}, X_{3}=\{x, y\}$ and $X_{4}=\{i, j\}$. Furthermore, let R be different than 0 at the following positions:

$$
\begin{array}{r}
R(a, t, y, j)=0.2, \\
R(b, s, x, j)=0.5, \\
R(a, s, y, j)=1.0, \\
R(a, s, y, i)=0.9, \\
R(b, t, y, i)=0.7, \\
R(c, s, y, j)=0.3 .
\end{array}
$$

a) Compute the following projections of R :

$$
\begin{aligned}
R_{1,2,4} & =\left[R \downarrow\left\{X_{1}, X_{2}, X_{4}\right\}\right], \\
R_{1,3} & =\left[R \downarrow\left\{X_{1}, X_{3}\right\}\right], \\
R_{4} & =\left[R \downarrow\left\{X_{4}\right\}\right] .
\end{aligned}
$$

b) Compute the following cylindric extensions:

$$
\begin{aligned}
& {\left[R_{1,2,4} \uparrow\left\{X_{3}\right\}\right],} \\
& \quad\left[R_{1,3} \uparrow\left\{X_{2}, X_{4}\right\}\right], \\
& \quad\left[R_{4} \uparrow\left\{X_{1}, X_{2}, X_{3}\right\}\right] .
\end{aligned}
$$

Assignment 21 Fuzzy Relations

Prove that not every fuzzy relation R on $X \times Y$ is the Cartesian product of two fuzzy sets A of X and B of Y.

Assignment 22 Fuzzy Relations

Let R be a fuzzy relation on $X \times Y$ and S, T fuzzy relations on $Y \times Z$. Find an example where $R \circ(S \cap T) \subset(R \circ S) \cap(R \circ T)$ holds.

Fuzzy Systems

Prof. Dr. Rudolf Kruse, Alexander Dockhorn

Assignment 23 Fuzzy Binary Relations

The fuzzy binary relation R is defined on set $X=\{1,2, \ldots, 100\}$ and $Y=\{50,51, \ldots, 100\}$ and represents the relation " x is much smaller than y ". It is defined by its membership function

$$
R(x, y)= \begin{cases}1-\frac{x}{y}, & \text { if } x \leq y \\ 0, & \text { otherwise }\end{cases}
$$

whereas $x \in X$ and $y \in Y$.
a) What is the domain of R ?
b) What is the range of R ?
c) What is the height of R ?
d) Calculate R^{-1}.

