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Building of a Fuzzy System

Fuzzy system can not be generated automatically (my opinion: not yet),
but this process can be already supported by several learning
methods:

- Tuning fuzzy sets and fuzzy partitions (parameter fitting, supervised)

- Finding useful fuzzy sets and fuzzy rules (clustering, mining, unsupervised)

- Creating a suitable fuzzy systems architecture (structur identification,
model selection, knowledge discovery, reinforcement learning)

Hybrid learning is currently most successful: The prior knowledge of

the useris combined with intelligent data analysis methods from
machine learning, e.g. deep learning.
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Example: Transfer Passenger Analysis

German Aerospace Center (DLR) developed macroscopic passenger flow
model for simulating passenger movements on airport’s land side

For passenger movements in terminal areas: distribution functions are
used today

Goal: build fuzzy rule base describing transfer passenger amount
between aircrafts

These rules can be used to improve macroscopic simulation

Idea: find rules based on fuzzy c-means(FCM)
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Attributes for Passenger Analysis

Maximal amount of passengers in certain aircraft (depending on type
of aircraft)

Distance between airport of departure and airport of destination (in
three categories: short-, medium-, andlong-haul)

Time of departure

Percentage of transfer passengers in aircraft
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General Clustering Procedure
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Constraints for the Objective function

Fuzzy clustering

Noise clustering

Influence of outliers
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Influence of Outliers

A weighting factor wyis attached to each datum x;

Weighting factors are adapted during clustering
Using concept of weighting factors:

¢ outliers in data set can be identified and

¢ OQutlier's influence on partition is reduced
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Membership Degrees and Weighting Factors
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Influence of Outliers

Minimize objective function
IX VO =YY
i=1j=1 i

subject to
i :Zu&-:l. Vi :Zu;j>0. ij:w

g determines emphasis put on weight adaption during clustering

Update equations for memberships and weights, resp.
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Determining the Number of Clusters
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Intensity of color indicates firing
strength of specific rule

Vague areas = fuzzy clusters where
color intensity indicates
membership degree

Tips of fuzzy partitions in single
domains = projections of
multidimensional cluster centers
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P oy Projection of cluster elements with
| ; : membership degree

Choosing fitting simple fuzzy sets

5 - Combining similar fuzzy sets
g % Rules with same input sets are
- Combined if they also have
same output set(s) or
- Otherwise removed from rule set
U
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Evaluation of the Rule Base

rule | max. no.of pax | Dest. | depart. | % transfer pax
1 paxmax1l R1 timel tpaxl
2 paxmax2 R1 time2 tpax2
3 paxmax3 R1 time3 tpax3
4 paxmax4 R1 time4 tpax4
5 paxmax5 R5 timel tpax5

rules 1 and 5: aircraft with relatively small amount of maximal
passengers (80-200), short- to medium-haul destination, and departing
late at night usually have high amount of transfer passengers(80-90%)

rule 2: flights with medium-haul destination and small aircraft (about
150 passengers), starting about noon, carry relatively high amount of
transfer passengers (ca. 70%)
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Neuron with up to

10000 inputs each

Artificial Neuron

Input-output function
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Neural Network

Input Layer

400*266 pixel

Per pixel one
input neuron

Hidden Layer 1

Hidden Layer 2

Output Layer
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Multiple hidden layers
process hierarchical features

T o N
T SRS

Output:
‘George’
entify
combinations
light/dark : or features
pixel value Identify Identify Identify
\ edges combinations features /'
——— of edges

4¢ir BB wds m=e MGG

Part5 20/91



SITA] FAKULTAT FUR
G G INFEIRMAT\K

Object Recognition in Pictures

Imagenet Large Scale Visual Recognition Challenge since 2010

Look for 200 classes (chair, table, person, bike, ...)

Pictures with ca. 500 x 400 pxels, 3 color channels

o AP s
cock ruffed grouse quail partridge

flamingo
Neural network with ca. 600.000 neurons in the first layer

200 neuronsin the last layer

Winner: Classification error 2% (better than humans, typically 5%)
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Training is the a big Challenge of Al

A7 lExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters

.
-
.
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-
.
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-
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2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation
Courtesy NVidia

Fastest Accelerator Cards Today ~ 100 Tera Flops/sec
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Comparison of Neural Networks and Fuzzy Systems

Neural Networks Fuzzy Systems

are low-level deal with reasoning on

computational structures a higher level

perform well when use linguistic information

enough data are present from domain experts

can learn neither learn nor adjust themselves
to new environment

are black-boxes for the user | are based on natural language

Neuro-fuzzy systems shall combine the parallel computation and
learning abilities of neural networks with the human-like knowledge
representation and explanation abilities of fuzzy systems.

As a result, neural networks become more transparent, while fuzzy
systems become capable of learning.
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Two Neuro-Fuzzy Systems:
ANFIS and NEFCLASS
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Neuro-Fuzzy Models

Neuro-Fuzzy Systems with supervised learning optimize the fuzzy sets
of a given rule base by observed input-output tuples.

Requirement: An existing (fuzzy) rule base must exist.

If no initial rule base is available, we might apply fuzzy clustering to
the input data for that.

In the following, we discuss two typical example for a neuro-fuzzy system
with supervised learning: ANFIS and NEFCLASS
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The neuro-fuzzy system ANFIS (Adaptive-Network-based Fuzzy
Inference System)

It has been integrated in many controllers and simulation tools,
e.g. Matlab.

The ANFIS model is based on a hybrid structure, i.e. it can be
interpreted as neural network and as fuzzy system.

The model uses the fuzzy rules of a TSK controller.
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1 2 3. 4, 5. layer
This is a model with three fuzzy rules:
R : If x; is Ay and xp is By then y = fi(x1, x2)
R> : If x; is Ay and x2 is By then y = f(x1, x2)
Rs : If x; is Ay and x; is B then y = f3(x7.x2)

with linear output functions f; = p;xy + gjx> + r; in the antecedent part.
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ANFIS: Layer 1 — The Fuzzification Layer

Here, neurons represent fuzzy sets of the fuzzy rule
antecedents.

The activation function of a membership neuron is set to the
function that specifies the neuron’s fuzzy set.

A fuzzification neuron receives a crisp input and determines
the degree to which this input belongs to the neuron’s fuzzy
set.

1

LB

where a;, bj, ciare parameters for center, width, and slope, resp.

Usually bell-curved functions are used: HEJ)(XJ) =

The output of a fuzzification neuron thus also depends on the
membership parameters.
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ANFIS: Layer 2 — The Fuzzy Rule Layer =¥ i =5 5.5

Iy B B S
AN
. &_‘\ i e B e
Each neuron corresponds to a single TSK fuzzy rule. A =5

A fuzzy rule neuron receives inputs from the fuzzification neurons that
represent fuzzy sets in the rule antecedents.

It calculates the firing strength of the corresponding rule.
In NFS, the intersection is usually implemented by the product.

So, the firing strength a7 of rule R; is

k
% =[] atq).
Jf=1
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ANFIS: Layer 3 -
The Normalization Layer

Each neuron in this layer receives the firing strengths from all neurons in
the rule layer.

The normalised firing strength of a given rule is calculated here. It
represents the contribution of a given rule to the final result.

Thus, the output of neuron i in layer 4 is determined as

_ Ef
dy = 3 = ety = ——~.
74
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ANFIS: Layers4 and 5
— Defuzzification and Summation

o

Each neuron in layer 4 is connected to the respective normalisation
neuron, and also receives the raw input values x.

A defuzzification neuron calculates the weighted consequent value of a
given rule as

The single neuron in layer 5 calculates the sum of outputs from all
defuzzification neurons and produces the overall ANFIS output:

Zf 5,'f,'(X1. G ,X,-,)
2 '

y = f(Xi) = dout = Netoy = Z)_/i =
i
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Supervised Learning for Parameter Tuning
Goal: minimize mean squared error iteratively

ANFIS uses a hybrid learning algorithm that combines least-squares
and gradient descent (backpropagation)

Each learning epoch is composed of one forward and one backward
pass.

In the forward pass, a training set of input-output tuples (x, yk) is
presented to the ANFIS, neuron outputs are calculated on the
layer-by-layer basis, and rule consequent parameters are identified by
least squares.
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How does ANFIS learn? — The Forward Pass

rij: parameters of output function f;, x;(k): input values, y(k): output
value of k-th training pair, 3;(k): relative control activation

Then we obtain
n
y(k) = Z 3;(k)yi(k) = Z 3;(k) (Z rixi(k) + .ﬁ'g) : Vi, k.
i i j=1
Therefore, with X;(k) := [1,x1(k),.... xn(k)]T we obtain the
overdetermined linear equation system
y = aRX

for m > (n+ 1) - r with m number of training points, r number of
rules, n number of input variables.

The consequent parameters are adjusted while the antecedent
parameters remain fixed.

Part5 47 /91



AT FAKULTAT FOR
G INFORMATIK

How does ANFIS learn? — The Backward Pass

In the backward pass, the error is determined in the output units
based on the new calculated output functions.

Also, with the help of gradient descent, the parameters of the fuzzy
sets are optimized.

Back propagation is applied to compute the “error” of the neurons in
the hidden layers

It updates the parameters of these neurons by the chain rule.
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ANFIS: Summary

Forward and backward passes improves convergence.

Reason: Least squares already has an optimal solution for the
parameters of the output function w.r.t. the initial fuzzy sets.

Unfortunately ANFIS has no restrictions for the optimization of the
fuzzy sets in the antecedents. So, after optimization the input range
might not be covered completely with fuzzy sets.

Thus definition gaps can appear which have to be checked afterwards.

Fuzzy sets can also change, independently form each other, and can
also exchange their order and so their importance, too.

We have to pay attention to this, especially if an initial rule base was
set manually and the controller has to be interpreted afterwards.
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The NEFCLASS Model

Gradient descent procedures are only applicable, if a differentiation is
possible, e.g. for Sugeno-type fuzzy systems.

Applying special heuristic procedures that do not use any gradient
information can facilitate the learning of Mamdani-type rules.

Learning algorithms such as NEFCLASS are based on the idea of
backpropagation but constrain the learning process to ensure
interpretability.

NEFCLASS has been used in lots of applications, e.g. at British Telecom.
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Example: Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer Dataset stores results from patients
tested for breast cancer.

These data can be used to train and evaluate classifiers.

For instance, decision support systems must tell if unseen data indicate
malignant or benign case?

A surgeon must be able to check this classification for plausibility.

We are looking for a simple and interpretable classifier.
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Example: WBC Data Set

699 cases (16 cases have missing values).

2 classes: benign (458), malignant (241).

9 attributes with values from {1, ..., 10} (ordinal scale, but usually
interpreted numerically).

In the following, x3and xs are interpreted as nominalattributes.

x3and xs are usually seen as “important” attributes.
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NEFCLASS: Neuro-Fuzzy Classifier

I I

output variables

unweighted connections
fuzzy rules
fuzzy sets (antecedents)

input attributes (variables)
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Representation of Fuzzy Rules

Example: 2 rules
R1i:ifxis large andy is small, then class is c1
Ry:if xis large and y is big, then classis ¢

Connections x > R1and x &> Rz arelinked.

Fuzzy set large is a shared weight,
i.e. the term large for x has always the same
meaning in both rules.
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1. Initialization

Specify initial fuzzy partitions for all input variables.
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2. Rule Base Induction

NEFCLASS uses modified Wang-Mendel procedure.

y 3
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3. Improving Rules by Backpropagation of the
Fuzzy Error Signal

Error Signal
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4. Improving Fuzzy Sets by Heuristics

u(x)

initial fuzzy set

reduce

ANAN
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Heuristics: A fuzzy set is moved away from x (towards x ) and its

support is reduced (enlarged) in order to reduce (enlarge) the degree

of membership of x.
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4. Improving Fuzzy Sets by Heuristics

do{
for each pattern {
accumulate parameter updates

accumulate error variations:
} « adaptivelearning
modify parameters rate

while change in error
) & * online/batch

learning
. e i * optimistic learning
e - minimum (n step look ahead)
e RS
05:0 )CICO {Jlﬂﬂ Bl‘llf.’ﬂ Sﬂlﬂﬂ IﬂIOCﬁ

observing the error on validation set
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Constraints for Training Fuzzy Sets

 valid parameter values

¢ non-empty intersection of
adjacent fuzzy sets

* keep relative positions (2

* maintain symmetry

¢ complete coverage (degrees of
membership add up to 1 for
each element)

i

Correcting a partition after
modifying the parameters
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5. Pruning

Goal: Remove variables, rules, and fuzzy sets in order to improve the
interpretability and generalization.
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Example: WBC Data Classification
Automatic Generation of (only) two Fuzzy Rules:

R1: if uniformity of cell size is small and bare nuclei is fuzzy0 then benign

R»: if uniformity of cell size is large then malignant

The main strength of NEFCLASS is its interpretability and simplicity.
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Example: WBC Classification Performance

predicted class
malign benign Y,
malign | 228 (32.62%) | 13  (1.86%) | 241  (34.99%)
benign | 15  (2.15%) | 443 (63.38%) | 458  (65.01%)
o, 243 (34.76) | 456 (65.24) | 699 (100.00%)

Estimated performance on unseen data (cross validation):

NEFCLASS: 95.42%
Discriminant Analysis: 96.05%
C4.5: 95.10%

Part5 65/91



0N GUERICKE
i FAKULTAT FUR
G INF INFORMATIK
v/

Summary

Neuro-fuzzy systems can be very useful for knowledge discovery.

The interpretability enables plausibility checks and improves the
acceptance.

(Neuro-)fuzzy systems exploit the tolerance for sub-optimal solutions.

There is no automatic model creator! The user must work with the
tool!
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Interesting Applications Areas of Fuzzy Systems
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